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List of abbreviations andremarks on notation1D � one-dimensional2D � two-dimensional3D � three-dimensionalAF � antiferromagnetiAO � alternating orbitalCDW � harge density waveFM � ferromagnetiFO � ferro-orbitalLOW � linear orbital waveLSW � linear spin waveSCBA � self-onsistent Born approximationVCA � variational luster approahThroughout the thesis:(i) we use H (possibly with some indies) to denote any type of the HubbardHamiltonian,(ii) we use H (possibly with some indies) to denote any omponent of the(standard or extended) t�J model,(iii) we use Heff (possibly with some indies) to denote any omponent ofthe e�etive model obtained from the (standard or extended) t�J model byintroduing slave fermions or slave bosons,(iv) the main Hamiltonians of the hapters (Hubbard, t�J , and possibly thee�etive one) do not have any index,(v) the lattie onstant is set to unity,(vi) ∑
〈ij〉 means taking summation over the bond formed between site i and j.Despite the above mentioned ommon features of the notation used in thethesis the notation in eah hapter is independent of the other hapters and islogially onsistent only within eah hapter.We all the spin t�J model of Refs. [1, 2, 3℄ the standard t�J model [seeEq. (1.22) in this thesis℄ to distinguish it from various other t�J�type modelsdisussed in this thesis.
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PrefaeIn this thesis we disuss and present solutions of three related problems whiharise in strongly orrelated eletron systems:1. Explaining harge order in Sr14−xCaxCu24O41.� The �rst problem on-erns the explanation of the peuliar harge order observed experimentally atlow temperature T = 20K in the oupled ladders Cu2O5 in Sr14−xCaxCu24O41[4, 5, 6, 7, 8℄. On the one hand, the resonant soft x-ray sattering shows thatthe harge order there is formed by a harge density wave (CDW) phase withodd period and is stable for x = 0 and x = 11 in Sr14−xCaxCu24O41 presumablydue to the on-site Coulomb repulsion [7, 8℄. On the other hand, a CDW phasewith even period has not been observed in these systems [8℄. These are strikingresults as they ontradit the theoretial predition of a stable CDW phase witheven period for x = 4 and no CDW order for other values of x [9, 10, 11℄.2. Verifying the idea of orbitally indued hole loalization.� The next prob-lem is more general and `touhes' the idea that the mere presene of orbitaldegeneray in the transition metal oxides ould lead to the hole on�nement inthe strongly orrelated eletron system. This idea an be baked by the followingfats: (i) the manganites show a olossal magnetoresistive e�et [12, 13, 14, 15℄whih an be attributed to the orbital degeneray [16, 17, 18℄, (ii) the transitionmetal oxides with orbital degeneray (e.g. manganites or vanadates) have muhmore stable insulating phases in the regime of hole doping [15, 19℄ than theuprates without orbital degeneray [20℄. However, in strongly orrelated sys-tems without orbital degeneray (and desribed by the simple Hubbard model)the hole had been thought to be loalized for a very long time [21℄ and onlymuh later [22, 23℄ it was shown that the hole was mobile. This suggests that theveri�ation of the idea of orbitally indued hole loalization should be performedrather arefully.3. Understanding hole motion in LaVO3.� The last problem is devoted tothe understanding of the behaviour of the single hole doped into the ab plane ofLaVO3. This system is a Mott insulator and superexhange interations stabilizethe spin antiferromagneti (AF) and alternating orbital (AO) ordered groundstate [19, 24, 25℄. The problem whih arises here an be in short formulatedas follows: upon doping this plane with holes (whih is possible by substitutinglantanium for strontium in La1−xSrxVO3) the orbital dynamis seems to in�u-ene the hole motion muh more than the spin dynamis (see onjeture in theIntrodution to Chapter 5 of this thesis based on the experimental results fromRef. [19℄). Thus, the question is: why the spin dynamis is quenhed in thehole doped AF and AO state.Common feature of the three problems.� Although all of the three topisbelong to the strongly orrelated transition metal oxides [20℄, `at �rst glane'7



it is hard to imagine that there is something more whih onnets all three ofthem.1 However, a loser look (taken in the onseutive hapters) will show thatthe three simplest models, formulated to solve these problems, will have a lot inommon. Atually, all three of them will turn out to be merely a more or lesselaborate version of the standard t�J model [1, 2, 3℄ although the standard t�Jmodel itself will beome evident not to be enough to explain these phenomena.More preisely, it will turn out that the simplest models apable of explainingthe above problems will be: (i) the t�J model for oupled ladders for the �rstproblem, (ii) the t2g orbital t�J model with three-site terms for the seond oneand (iii) the t2g spin-orbital t�J model with three-site terms for the third one.Thus, we will show that, as the title of the thesis suggests, one indeed has to gobeyond the standard t�J model to be able to understand the physis behind allthese three phenomena.Aim of the thesis.� The purpose of this thesis is to give answers to thethree problems using the above mentioned extensions of the t�J models. As `aside e�et' one will see how powerful is the onept of the t�J model and theanonial perturbation expansion [1, 2℄ or the Zhang-Rie sheme [26℄: merelyslight modi�ations of the model mean that it is still apable of explaining ahuge variety of phenomena present in the transition metal oxides.Struture of the thesis.� The thesis is organized as follows. Chapter 1ontains a preliminary material onerning the standard t�J model: (i) theHubbard model, (ii) its derivation from the Hubbard model by the anonialperturbation expansion, and �nally (iii) its form and range of appliability.This hapter may be easily skipped by the reader familiar with the standard
t�J model [1, 2, 3℄, though a quik look at this hapter would be always ofgreat help in understanding the results presented in this thesis. Next in thethree onseutive hapters (whih are alled the main hapters of the thesis)we disuss the three problems mentioned above: (i) in Chapter 2 we explainthe harge order in Sr14−xCaxCu24O41 using the t�J model for oupled ladders,(ii) in Chapter 3 we verify the idea of orbitally indued hole loalization usingthe t2g orbital t�J model with three-site terms, and (iii) in Chapter 4 we tryto understand hole motion in LaVO3 using the the t2g spin-orbital t�J modelwith three-site terms. Finally, in Summary we brie�y disuss the solutions ofthe problems and the ommon features of the new t�J models. The thesis issupplemented by two appendies (whih ontain some mathematial derivationneeded in Chapter 3), Bibliography, `Streszzenie' (summary in Polish), and thelist of publiations whih were published during my PhD studies. Finally, in theend we mention those people without whose support it would have never beenpossible to omplete this thesis.The organization of material serves the main idea of the thesis. First, ineah of the three main hapters: (i) we disuss the problem in more detail inthe introdution (�rst setion), (ii) we introdue the new t�J model by are-fully disussing its di�erenes with respet to the standard t�J model (seondsetion), (iii) we derive the new t�J model from the Hubbard-type model appro-priate for the onsidered problem using the anonial perturbation expansion[1, 2℄ or the Zhang-Rie sheme [26℄ (third setion). Seond, as the methods ofsolving eah t�J model di�er, we introdue the slave bosons (Chapter 2) or slave1Although, the reader familiar with the strongly orrelated eletron systems will immedi-ately note that the seond and third problem has a lot in ommon. See also Se. 4.7 for amore detailed disussion of the similarities between them.8



fermions (Chapters 3 and 4) to overome the onstraint of the restrited hoppingpresent in any t�J model and only then we solve the e�etive model written inthe slave partile language using the mean-�eld in Chapter 2 or self-onsistentBorn approximation (SCBA) in Chapter 3 and 4 (fourth setion). Finally, wedisuss the results inluding its validity (�fth setion), and we draw some on-lusions (sixth setion). Furthermore, eah main hapter is supplemented by aPostsriptum (seventh setion) in whih we disuss some side issues whih areinteresting but are not entral for the main message and an be easily skippedin �rst reading. We would like to stress that the ability to build a ommonstruture of the three main hapters re�ets (pratially) the above mentionedommon origin of the three problems disussed in the thesis.
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Chapter 1Motivation: The standard t�Jmodel1.1 The Hubbard modelHamiltonian.� The (arhe)typial model whih desribes the strongly orre-lated eletrons is the Hubbard model desribed by the Hamiltonian [27℄
H = −t

∑

〈ij〉,σ

(
c†iσcjσ + H.c.

)
+ U

∑

i

ni↑ni↓, (1.1)where 〈ij〉 denotes the bond formed between site i and j, c†iσ operator reatesan eletron at site i with spin σ, and the eletron density operator is de�nedas niσ = c†iσciσ. Here the �rst term is responsible for the hopping ∝ t ofeletrons on a hyperubi lattie while the seond term desribes the Coulombrepulsion ∝ U between two eletrons with opposite spins on the same site. Thismodel is introdued to desribe a ommon situation whih takes plae in varioustransition metal oxides [20℄: the lattie potential is very strong and one needsto alulate the Coulomb interation between eletrons in the (almost) atomiwavefuntions. This leads to a modi�ation of the bare Coulomb potential: it isshort range (i.e. merely on-site) but strongly ampli�ed. This naturally meansthat the physial regime of the model is when U > W (where W = 2zt is thebandwidth and z is the oordination number for the hyperubi lattie) andthroughout the thesis we will assume that one is always in this regime.Atually the more general de�nition of the Hubbard model (1.1) would on-tain the hemial potential. However, it is ustomary to omit that term andinstead to speify the number of eletrons per site n present in the systemseparately. This an take the values 0 ≤ n ≤ 2 due to the Pauli priniple.Spae dimensions of the lattie.� Finally, let us note that the model Eq.(1.1) an be de�ned as well in the one-dimensional (1D), two-dimensional (2D)and three-dimensional (3D) version. However, due to its most interesting (inmy opinion) appliation onerns the 2D opper oxide layers of high-Tc uprates[28℄. Moreover, as we will be interested either in layered strutures (Chapter 2)or in situations where the orbital order (Chapter 3) or spin and orbital order(Chapter 4) ontains two spatial dimensions, we restrit the disussion to the2D Hubbard model. 11



Drawbaks and advantages of the model.� It is worth mentioning that themodel Eq. (1.1) has been indeed very suessful in desribing various propertiesof the strongly orrelated eletron systems [28℄. However, there are two maindrawbaks of the model. First, despite its simpliity it is hard to solve it in theinteresting regime n 6= 1 as the Monte Carlo simulations often break down dueto the `sign problem' whereas all other methods are also not reliable due to thehuge dimensions of the Hilbert spae of the model (whih in the half-�lled aseis [N !/(N/2)!(N/2)!]2 whereN is the number of lattie sites) [28℄. Seond, let usremark that many systems are too ompliated to have the eletron orrelationsdesribed by the Hubbard model in a reliable way: e.g. the orbital degenerayregime an hange the matters drastially [29℄.On the one hand, to overome the �rst di�ulty one performs the anon-ial perturbation expansion1 of the Hubbard model whih hugely redues thedimensionality of the Hilbert spae by negleting the high-energy states in theregime U > W . This is done in the next two setions and the model whihis obtained after suh an expansion is the standard t�J model. On the otherhand, one should add extra terms and/or modify the two existing ones in Eq.(1.1) to make the Hubbard model more realisti. Atually, in the next threehapters of this thesis we will ombine both of the approahes: we will modifythe Hubbard model to make it more realisti and redue it to the appropriate
t�J model using the anonial perturbation expansion.1.2 The anonial perturbation expansionHubbard subbands.� One of the main features of the model (1.1) is the splitof the Hilbert spae (spanned by the Hubbard Hamiltonian) into the so-alledHubbard subbands [1, 2, 31℄. This an be understood in the following way. Letus assume that n ≤ 1 (the ase n > 1 follows from the partile-hole symmetryof the model) and swith o� the hopping t = 0 for a moment. Then the groundstate of the model will learly have no sites with two eletrons as eah siteoupied by two eletrons osts energy U . This ondition de�nes the lowestHubbard subband with zero total energy whih onsists of all (degenerate) stateswith no double oupanies. Next, all of the states with just one single siteoupied by two eletrons (and the rest singly oupied or empty) de�ne theseond Hubbard subbands with the total energy U . Repeating this proedurefurther, one splits up the Hilbert spae into the Hubbard subbands spanned bythe states with m doubly oupied sites and energy mU .Swithing on hopping t obviously hanges the situation: not only the stateswithin the Hubbard subband are no longer degenerate but more importantly theHubbard Hamiltonian are no longer `diagonal in the Hubbard subbands' (morepreisely the hopping t onnets the states from di�erent Hubbard subbands).However, as long as W < U the Hubbard subbands do not overlap, in orderto obtain the behaviour of the system in the low energy limit it is enough toonentrate on the lowest Hubbard subband and treat the hopping to the statesfrom higher Hubbard subbands as a perturbation.1Note that the more standard perturbation expansion of the Hubbard model [30℄, wherethe entire hopping term is treated as a small perturbation, is very tedious for the Hubbardmodel and yields results whih are very hard to interpret [2℄.12



Deriving the Hamiltonian within the Hubbard subband.� The anonial per-turbation expansion sets the above desribed proedure on the mathematialgrounds [1, 2℄ (see also Refs. [32, 33℄). In the beginning one rewrites the Hub-bard Hamiltonian H in the following way:
H = H0 + H1, (1.2)where H0 desribes the physis within the Hubbard subband (σ̄ = −σ):

H0 = V + T0,

V = U
∑

i

ni↑ni↓

T0 = −t
∑

〈ij〉,σ

{
(1 − niσ̄)c

†
iσcjσ(1 − njσ̄) + niσ̄c

†
iσcjσnjσ̄ + H.c.

}
, (1.3)while H1 is responsible for hopping proesses between di�erent Hubbard sub-bands:

H1 = T+ + T−,

T+ = −t
∑

〈ij〉,σ

{
niσ̄c

†
iσcjσ(1 − njσ̄) + H.c.

}

T− = −t
∑

〈ij〉,σ

{
(1 − niσ̄)c

†
iσcjσnjσ̄ + H.c.

}
. (1.4)Next, the task is to onstrut a anonial transformation S of the Hamilto-nian H

H̃ = eSHe−S, (1.5)where S† = −S. If H̃ is alulated from the above equation exatly then theunitarity of this transformation would mean that the observables alulatedusing the spetrum spanned by H̃ will be idential to the ones alulated usingthe spetrum spanned by H.The expliit form of S is alulated from the single requirement that theHamiltonian H̃ would not onnet states from two di�erent Hubbard subbands.A priori this an always be done as long as the Hubbard subbands do notoverlap, i.e. when W < U (whih is the ase here). Obviously, this meansthat the observables alulated using the spetrum spanned by H̃ will not beidential to the ones alulated using the spetrum spanned by H. However,the bigger distanes one has between the Hubbard subbands, the more similarthe observables are. Expliitly one alulates H̃ and S using the following steps(ompare Ref. [33℄):(i) One makes the Ansatz that S is of the order of t/U so that one an write
eS = 1 + S +

1

2
S2 +O

(
t3

U3

)
. (1.6)Sine t≪ U the terms of the order O( t

3

U3 ) should be muh smaller than 1 (e.g.
U = 12t in the high-Tc uprates [28℄ yields t3

U3 smaller than 10−3) and an beskipped. Then Eq. (1.5) an be rewritten using Eq. (1.6) as
H̃ = H + [S,H] +

1

2
[S, [S,H]] + O

(
t3

U2

)
, (1.7)13



to the order O( t
3

U2 ) (whih is again enough in the regime t ≪ U) sine H is(maximally) of the order of U .(ii) Let us �rst alulate S to �rst order in t/U [S(1)℄. Then Eq. (1.7) to theorder O( t
2

U ) is
H̃(1) = H + [S(1),H]. (1.8)Now, one demands that H1 is not present in H̃(1): this is due to the fat thatwith one hop one leaves the Hubbard subband under onsideration and oneprohibits that H̃ in any order desribes proesses whih ouple various Hubbardsubbands. Then in this order one needs to have:

T+ + T− + [S(1),H] ≡ 0. (1.9)However, T+ + T− is ∝ t while S(1) is ∝ t/U . Thus one an only have V in theommutator:
[S(1),V ] = −T+ + T−. (1.10)One an hek that:
S(1) =

1

U
(T+ − T−), (1.11)ful�lls Eq. (1.10).(iii) Having determinded S to �rst order in t/U [S(1)℄ one an now proeedfurther and alulate S to the seond order [S(2)℄. For onveniene one de�nes

S′

S(2) = S(1) + S′. (1.12)Then S′ is alulated from [ompare Eq. (1.8)℄:
H̃(2) = H0 + [S(1), T+ + T−] + [S(1), T0] +

1

2
[S(1), [S(1),V ]] + [S′,V ],(1.13)where we used the substitution [S′,H] → [S′,V ] similarly as when going fromEq. (1.9) to Eq. (1.10). Next using Eq. (1.11) we redue Eq. (1.13) to

H̃(2) = H0 +
1

U
[T+, T−] + [S(1), T0] + [S′,V ]. (1.14)However, the term [S(1), T0] is not allowed to appear in H̃(2) beause it is re-sponsible for transitions between Hubbard subbands and one prohibits that H̃in any order desribes proesses between various Hubbard subbands. Thus oneneeds to have

[S(1), T0] + [S′,V ] ≡ 0, (1.15)whih de�nes S′. From this equation one an alulate S′ � however it is notneeded (see below).(iv) To determine H(2) one needs only the expliit form of S(1). In fat, it isstraightforward to determine it by substituting Eq. (1.15) to Eq. (1.14). Oneobtains
H̃(2) = H0 +

1

U
[T+, T−]. (1.16)14



This desribes the physis of a partiular Hubbard subband up to seond orderin t/U and one an write
H̃ = T0 + V +

1

U
[T+, T−] +O

(
t3

U2

)
. (1.17)Hamiltonian for the lowest Hubbard subband.� If one is interested in H̃desribing merely the lowest Hubbard subband in the ase n ≤ 1 (alled H),one an skip T+T− and V terms in Eq. (1.17) and one arrives at

H = T0 −
1

U
T−T+ +O

(
t3

U2

)
. (1.18)One an now plug in the expliit forms of T0, T+, and T− to obtain the expliitform of H . This is done in the next setion. Note that due to the partile-holesymmetry a similar Hamiltonian as written above desribes the ase n > 1.1.3 The standard t�J HamiltonianExpliit form.� After inserting Eqs. (1.3-1.4) into Eq. (1.18) one obtains theexpliit form of the e�etive low-energy Hamiltonian for the lowest Hubbardsubband

H = − t
∑

〈ij〉,σ

{
(1 − niσ̄)c

†
iσcjσ(1 − njσ̄) + H.c.

}

− 1

4
J

∑

〈〈mij〉〉,σ,σ′

{
(1 − nmσ̄′ )c†mσ′ciσ′niσ̄′niσ̄c

†
iσcjσ(1 − njσ̄) + H.c.

}
,(1.19)where 〈〈mij〉〉 means the paths built of the three nearest neighbour sites. Herethe �rst term is responsible for hopping within the lowest Hubbard subbandwhile the seond term, whih arises from the virtual hoppings to the upperHubbard subband, is the so-alled superexhangeb term2 with the energy sale

J = 4t2/U .Equation (1.19) an be simpli�ed by replaing the eletron operators in thesuperexhange term by the S = 1/2 spin operators:
Szi =

1

2
(ñi↑ − ñi↓),

S+
i =c̃†i↑c̃i↓,

S−
i =c̃†i↓c̃i↑, (1.20)where we de�ned the onstrained eletron operators
c̃†iσ = c†iσ(1 − niσ̄). (1.21)2Note that we use here the term `superexhange' instead of the more proper `kineti ex-hange' as typially t is merely the e�etive hopping [33℄.15



Then one obtains the 2D version of the standard t�J Hamiltonian [1, 2, 3℄
H = −t

∑

〈ij〉,σ
(c̃†iσ c̃jσ + H.c.) + J

∑

〈ij〉

(
Si · Sj −

1

4
ñiñj

)
, (1.22)where ñi = c̃†i↑c̃i↑ + c̃†i↓c̃i↓ and we assumed that m = j in Eq. (1.19). The 1Dand 3D version of the standard t�J Hamiltonian follow in a natural way fromthe above equation.The kineti and superexhange terms.� The �rst term ∝ t desribes thehopping of eletrons in the onstrained Hilbert spae with no double oupanies(i.e. the lowest Hubbard subband). Thus, it an be viewed as an e�etivehopping of holes as suh a hopping of eletrons is possible only if there is a holeat the site to whih the eletron hops. Note that the operators c̃†iσ do not ful�llthe fermioni ommutation rules [32℄. Thus one annot treat these objets aseletrons and e.g. one annot introdue the Fermi energy or momentum in thisase. Therefore, even without the seond term (as obtained for U → ∞), Eq.(1.22) onstitutes a nontrivial problem.The seond term ∝ J desribes the interation between the spins whih is ofthe AF harater sine J > 0. The meaning of this term an be easily seen inthe half-�lled ase (n = 1) when Eq. (1.22) redues to the Heisenberg Hamilto-nian sine then there are no holes in the system and the kineti term does notontribute. Thus instead of having strongly orrelated eletrons, see Eq. (1.1),one is left with interating spin degrees of freedom as the harge degrees of free-dom are integrated out. This striking result means that the interations are sostrong in this ase (due to U > W in the Hubbard model) that the eletrons areloalized (harge degrees of freedom are frozen) and only the virtual hoppingsof eletrons (desribed by T+ and T− proesses) lead to a `residual' interationbetween eletron spins. This is the physial explanation of the anonial per-turbation expansion. Note also, that naturally the dimensionality of the Hilbertspae is now redued: e.g. in the half-�lled ase there are only spin degrees offreedom and the dimension of the Hilbert spae is 2N .The three-site terms.� The assumption m = j needs further explanation.It means that the eletron, whih is virtually exited to the upper Hubbardsubband by T+ proess, returns (by the T− proess) to the same site fromwhere it was exited in the lowest Hubbard band. Thus, one omits here the so-alled three-site terms. These ontribute merely if there are holes in the lowestHubbard band sine the eletron exited from site j in the lowest Hubbardsubband an return to a di�erent site m in the lowest Hubbard subband onlywhen there is a hole on site m (beause otherwise a double oupany wouldbe reated whih is prohibited in the lowest Hubbard subband). Thus similarlyas the kineti term ∝ t in Eq. (1.22) the three-site terms will desribe thehopping of holes in the lowest Hubbard subband. However, unlike the kinetiterm they sale as ∝ J . Thus, altogether the three-site terms ontribute to thetotal energy of the system as ∝ Jδ where δ is the number of holes in the system.If δ ≪ 1 (whih is the typial regime for the t�J model) and sine J < t (as

t ≪ U), then this ontribution to the total energy is very small. In partiular,it is muh smaller than both the ontribution of the kineti term ∝ tδ and thesuperexhange term ∝ J(1 − δ)2.Appliation.� The appliation of the t�J model follows from two fats: (i)as shown above, in the low energy but strongly orrelated regime, it desribes16



essentially the same physis as the widely used Hubbard model, (ii) it is muheasier to solve than the Hubbard model sine the dimensionality of its Hilbertspae is onsiderably redued in omparison with the one of the Hubbard model.The latter property means that: (i) all the numerial alulations, suh as theLanzos or exat diagonalization tehniques are more easily done, and (ii) thespins are muh easier to treat analytially as the ground states of the spin modelsare typially more lassial [33℄. Consequently there have been a tremendousnumber of papers on the t�J model, its solutions, and appliations. For furtherdetails we refer to the review artiles of Ref. [28℄ or [20℄ or to Ref. [32℄ for themore `personal perspetive on the t�J model from the pioneering times'.
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Chapter 2Explaining harge order inSr14−xCaxCu24O41This hapter is based on the following publiations: (i) K. Wohlfeld, `Doped SpinLadder: Zhang-Rie Singlets or Rung-entred Holes?', AIP Conferene Proeed-ings 918, 337-341 (2007); (ii) K. Wohlfeld, A. M. Ole±, G. A. Sawatzky, `Originof harge density wave in the oupled spin ladders of Sr14−xCaxCu24O41', Phys-ial Review B 75, 180501(R)/1-4 (2007); (iii) K. Wohlfeld, A. M. Ole±, G. A.Sawatzky, `The t-J-V Model for Coupled Ladders', in preparation to be submittedto Physial Review B (Rapid Communiation).2.1 IntrodutionCrystal struture of Sr14−xCaxCu24O41.� The telephone number ompound, asSr14−xCaxCu24O41 is often alled due to its hemial formula whih resemblesa telephone number 14-24-41, is a layered material with two distintly di�er-ent types of 2D opper oxide planes separated by Sr/Ca atoms [4℄: (i) theplanes with almost deoupled CuO2 hains and (ii) the Cu2O3 planes formedby Cu2O5 oupled ladders (see Fig. 2.1). Although in priniple there ouldbe some interation between the ladder subsystem, the hain subsystem andthe Sr/Ca atoms1 we would assume that the ladder subsystem an be treatedindependently, i.e. the Hamiltonians for eah subsystem are independent onefrom another, exept for the hemial potential whih should be determined toonserve a partiular number of eletrons in the whole 3D rystal (see below).Number of arriers in Sr14−xCaxCu24O41.� The ompliated hemial for-mula leads to the problems with determining the number of eletrons present inthe system. Let us �rst onentrate on the x = 0 ase. Atually, the ioni pi-ture suggests that one has in the formula unit: 14 Sr2+ ions, 24 Cu2+ ions and41 O2− ions with all of these ions having �lled shells, exept for opper (where1In partiular the substitution of strontium by alium yields strutural modulations inthe ladder subsystem, see Ref. [34℄. However, this modulation grows with alium doping xand annot explain the onset of harge order for small x and large x (while the harge orderis unstable for intermediate x), see disussion below. Furthermore, the in�uene of the hainsubsystem on the ladder subsystem an be redued to the hains being the harge reservoirfor the planes, see also Ref. [34℄. 19



Figure 2.1: Left panel: the 3D struture of Sr14Cu24O41. Right panel:the Cu2O5 oupled ladders whih form one of the two types of planes inSr14Cu24O41. The big yellow spheres depit opper atoms, the big red spheresstrontium atoms, the small blue spheres oxygen atoms. Both panels are repro-dued after Ref. [4℄.the 3d shell is naturally un�lled). Thus, one obtains from the ioni piture thatthere is one hole per Cu2+ ion,2 similarly as in the CuO2 planes of La2CuO4[28℄.However, one sees that suh ioni piture onsiderations lead to the 6 extraholes present in the formula unit and the ompound is self-doped already at
x = 0. As the forumula unit onsists of 7 Cu2O3 units in the ladder plane,14 strontium atoms and 10 CuO2 units in the hain plane, a natural questionarises: how these 6 extra holes are distributed between the ladders and thehains. Atually, the answer to this question is nontrivial (see Refs. [35, 36,37℄ for various senarios) and it was only reently that the x-ray absorptionspetrosopy results suggested [9℄ that there are 2.8 extra holes in the formulaunit in the ladders (whih means that there are 0.2 holes per opper site) and3.2 extra holes in the formula unit in the hains (i.e. 0.32 holes per opper site).In what follows, we adopt the latter results as they seem to agree best withother experimental data for this system [9℄.Let us now turn to the x 6= 0 ase. Here, the ioni piture suggests thatagain there are 6 extra holes in the formula unit: this is beause alium is iso-valent with strontium. However, it has been suggested that introduing aliumleads to the gradual inrease of the number of these extra holes in the laddersubsystem [9℄. Indeed the same x-ray absorption spetrosopy results as for the
x = 0 ase [9℄ revealed that for the interesting ase (see below) of x = 4 thenumber of holes in the ladders is 3.4 (i.e. a. 0.24 per opper site) and 2.6 inthe hains (i.e. a. 0.26 per opper site) while for x = 11 the number of holes2Sine it is easier to talk about one hole per opper site than about 9 eletrons per oppersite, we will use the hole language throughout this hapter.20



Figure 2.2: The intensity of the sattering at the oxygen K `mobile arrierpeak' (528.6 eV, see Ref. [8℄ for detailed explanation) in the resonant soft x-ray sattering for various values of alium doping x in Sr14−xCaxCu24O41 attemperature T = 20K. CDW is observed for x = 0 (with period λ = 5, depitedas LL = 1/5 on the �gure) and x = 11 (with period λ = 3, depited as LL = 1/5on the �gure). A small intensity is also visible for x = 10 and even smaller for
x = 12 whih also orresponds to a (small) CDW with period λ = 3. For
0 < x < 6 no re�etions are observed and in partiular no CDW is seen at x = 4where nh = 1.24 would suggest a CDW with period λ = 4 (LL = 1/4) to bestable. The �gure is reprodued after Ref. [8℄.in the ladders is 4.4 (i.e. a. 0.31 per opper site) and 1.6 in the hains (i.e. a.0.16 per opper site).Peuliar harge order in the ladder subsystem.�While the ladder subsystemexhibits the non-BCS superonduting phase for x = 13.6 under pressure largerthan 3 GPa [38℄, in broad range of x and under normal pressure a spin-gapedinsulating CDW states was disovered in the ladders [5, 6℄. By means of theresonant soft x-ray sattering it was found [7℄ that this CDW state is drivenby many-body interations (presumably just Coulomb on-site interations sinethe long-range interations are sreened in opper oxides [39℄), and it annotbe explained by a onventional Peierls mehanism. Hene, the observed om-petition between the CDW phase (also referred to as the `hole rystal' due toits eletroni origin) and superonduting states in spin ladders resembles theone between stripes and the superonduting phase in CuO2 planes of a high-Tcsuperondutor [40℄. This is why the problem of the origin of the CDW phasein the ladder subsystem of Sr14−xCaxCu24O41 is both generi and of generalinterest.Furthermore, reently it was found [8℄ that the only stable CDW states inthe low temperature regime (T = 20K) are with period λ = 5 for x = 0, andwith period λ = 3 for x = 11 (and with a muh smaller intensity for x = 10and 12), see Fig. 2.2. Even more striking results show that suh a CDW orderould not be stable for 1 ≤ x ≤ 5, see also Fig. 2.2. These striking results,whih ontradit the previous suggestion [6℄ that the CDW order ours in the21



entire range of 0 ≤ x < 10, need to be explained by onsidering hole densityper opper site inreasing with x. As written above x = 0 ase with CDW statewith period λ = 5 orresponds to nh = 1.20 (total number of holes per opperion) while the x = 11 ase with CDW order with period λ = 3 orresponds to
nh = 1.31. Interestingly, the x = 4 ase (with no CDW phase) orresponds to
nh = 1.24, i.e. to the ase where the number of extra doped holes is very loseto 1/4 and where one ould intuitively expet a CDW state with period λ = 4.Main goals of the hapter.� The main aim of this hapter is to explaintheoretially (at temperature T = 0K) the onset of the CDW order in thetelephone number ompound for only seleted values of x while using a modelwhih merely ontains on-site Coulomb interations. In partiular the questionsto be answered in this hapter are: (i) what the proper t�J model for the oupledCu2O5 ladders, whih would arise due to the on-site Coulomb interations, lookslike, and (ii) whether this model an explain the onset of the CDW phase withpartiular periods for partiular values of x.Struture of the hapter.� The hapter is organized as follows. In Se.2.2 we start the analysis by looking at the antiipated features of the new t�Jmodel whih is derived in Se. 2.3. Next, we solve the model for the threeinteresting hole dopings nh = 4/3, nh = 5/4 and nh = 6/5: (i) using theslave boson language we redue the model to the e�etive Hamiltonian withthe onstraints of `no double oupanies' (always present in any t�J model)released � see Se. 2.4.1, (ii) we introdue the mean-�eld approximation for thee�etive Hamiltonian � see Se. 2.4.2 , (iii) we solve the mean-�eld equationson a �nite mesh of k points (Se. 2.4.3). In Se. 2.5 the results are disussed,with a partiular emphasis on the approximations made in obtaining the orret
t�J model. Finally, we draw some onlusions in Se. 2.6 and add a peuliarexample of a toy-model for oupled hains in whih the even-period CDW anbeome unstable in the Postsriptum in Se. 2.7.2.2 The t�J model for oupled ladders`Rough' preditions of the new t�J model.� Let us �rst look at the antiipatedfeatures of the new t�J model without going deeply into mathematial details(suh alulations will be performed in the next setion). Atually, the biggestproblem with deriving suh a model is that the Cu2O5 oupled ladders belongto a lass of opper oxides whih are lassi�ed as harge transfer systems [41℄.On the one hand, in these systems the Hubbard repulsion U between holes inthe 3d orbitals on the opper sites is still the largest energy sale in the systemand it is muh bigger than the largest hopping tpd between the opper 3dx2−y2and the oxygen 2pσ orbitals [39℄. On the other hand, the on-site energies ∆ forthe holes in the oxygen 2pσ orbitals are smaller than the Hubbard repulsion Uon the opper sites [39℄. Therefore, when the number of holes is bigger than oneper one opper ion, some holes tend to oupy oxygen sites. Thus, unlike in theMott-Hubbard system, here the oxygen atoms annot be easily integrated outand the Hubbard model (alled then the harge transfer model [42, 43℄) shouldnot only ontain orbitals on the opper sites but also the ones on the oxygensites [41℄. Nevertheless, Zhang and Rie [26℄ showed that for the CuO2 planeit is still possible to integrate out the oxygen atoms and the t�J model, whihresults from suh an itinerant model, is apable of desribing the low energy22



Figure 2.3: The artist's view of the CDW with period λ = 4 for a single ladder asobtained from the density matrix renormalization group alulations for the t�Jmodel on a single ladder with J = 0.25t [10℄. Blak �lled irles depit a oppersite oupied by a hole, un�lled irles depit a opper site with the Zhang-Riesinglet entred around it, i.e. where the extra hole (situated symmetrially onthe four oxygen sites surrounding the opper site) formed a singlet state withthe hole on the opper site. In this way number of holes nh = 1.25 in the Cu2O5single ladder orresponds to the n = 0.75 �lling (number of spins per site) inthe t�J model on the two-leg ladder. The �gure is reprodued after Ref. [10℄.physis of harge transfer systems. Note however, that the meaning of J is thendi�erent and J 6= 4t2/U .Although the above mentioned redution of the harge transfer model tothe standard t�J model is done for the CuO2 plane [26℄, a similar derivationshould in priniple be possible for a single Cu2O5 ladder. The di�erene wouldbe that in this ase one will be left with a t�J model de�ned on a two-leg ladderbut otherwise the t�J model would be exatly the same as the standard one,known from Chapter 1. Indeed, it is widely believed [11, 44℄ that a two-legladder desribed by the t�J model aptures the essential physial properties ofthe plane with Cu2O5 ladders in Sr14−xCaxCu24O41. Furthermore suh a modelhas been extensively studied (see e.g. Refs. [45, 46, 47, 48, 49℄): in partiularWhite et al. [10℄ found using the density matrix renormalization group, that aCDW of period λ = 4 is the (possibly spin gaped) ground state at nh = 1.25(n = 0.75 �lling in the t�J model, see aption of Fig. 2.3 and disussion in theend of Se. 2.3.3 for further details). Besides, only reently it was shown inRef. [11℄ that a CDW is possible for suh a model merely for number of holes
nh = 1.25 (n = 0.75) and nh = 1.5 (n = 0.5).Reason for wrong preditions.� However, one immediately sees that theabove results are totally inompatible with the experimental ones desribed inSe. 2.1: there the CDW was stable in the Cu2O5 ladders in Sr14−xCaxCu24O41for nh = 1.31 (x = 11) and nh = 1.2 (x = 0) whereas it was not stable for
nh = 1.24 (x = 4), i.e. around the only point (apart from nh = 1.5) wherethe density matrix renormalization group predited the CDW to be stable. Onemay thus wonder what may be wrong with the above t�J model? Atually,it is easy to see that the validity of the t�J model for the plane with Cu2O5ladders is far from obvious due to the spei� geometry. In partiular: (i)unlike the CuO2 plane of a high-Tc superondutor, a single Cu2O5 ladderlaks the D4h symmetry whih makes the Zhang-Rie derivation [26℄ of the
t�J model questionable and (ii) Cu2O5 spin ladders are oupled through theon-site Coulomb interations between holes in di�erent O(2p) orbitals, so newinterations ould arise.More areful approah needed.� Thus, instead of taking the t�J model for23



`granted', i.e. assuming that the derivation of the t�J model from the hargetransfer model valid for the CuO2 would work also for the oupled Cu2O5 laddersand would give a t�J model on the two-leg ladder, one should follow the Zhangand Rie sheme [26℄ step-by-step in the ase of this spei� ladder geometry.More preisely, one should take the harge transfer model for opper oxide planes[42, 43℄, adopt it to the oupled Cu2O5 ladders, and then following the Zhangand Rie sheme [26℄ derive the proper t�J model. We present suh a derivationin the next setion.2.3 The model2.3.1 The t�J�V1�V2 HamiltonianThe Hubbard-type model.� As the starting point we hoose the Hubbard-typemodel relevant for the harge transfer systems (and thus alled also hargetransfer model [41℄). It follows from the multiband harge transfer Hamiltonian[41℄ and is adapted to the Cu2O5 oupled ladder geometry, similarly as theone introdued earlier for CuO2 planes [42℄ or CuO3 hains [50℄, the struturalunits of high-Tc superondutors. As parameters the harge transfer modelinludes: the energy for oxygen 2p orbital ∆ (measured with respet to theenergy for the 3d orbital), the d-p hopping tpd between the nearest neighbouropper and oxygen sites, and the on-site Coulomb repulsionU (Up) on the opper(oxygen) sites, respetively. Note that the harge transfer regime naturally leadsto ∆ < U sine otherwise the oxygen atoms ould be easily integrated out.Indeed, the typial parameters are U ∼ 8tpd, ∆ ∼ 3tpd, and Up ∼ 3tpd, see e.g.Ref. [51℄. Then the model in hole notation reads,
H = −tpd
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∑
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)}

+U
∑

iα

niαd↑niαd↓, (2.1)where the phases of the orbitals were expliitly taken into aount in the hoppingelements, the index α ∈ {R,L} denotes the right or left leg of the ladder (R̄ = Land L̄ = R), and σ̄ = −σ for σ ∈ {↑, ↓}. The parameter η = JH/Up ∼ 0.2 standsfor a realisti value of Hund's exhange on oxygen ions (Up is the intraorbitalrepulsion) [39℄. Besides, ε ∼ 0.9 yields the orret orbital energy (ε∆) at bridgepositions on the rung of the ladder [52℄ but, unless expliitly stated di�erently,24
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xx bFigure 2.4: Three oupled Cu2O5 ladders. Only orbitals whih are inluded inthe model Eq. (2.1) are shown, see text. The dotted line depits the unit ellof the single ladder under onsideration; it onsists of seven orbitals.we will assume that ε = 1 for simpliity (see also Se. 2.5.3 for a detaileddisussion on this issue). The model of Eq. (2.1) inludes seven orbitals perCu2O5 ladder unit ell (see Fig. 2.4): two Cu(3dx2−y2 ≡ d) orbitals on the R/Lleg, two O(2py ≡ y) orbitals on the R/L leg, two O(2px ≡ x) side orbitals onthe R/L leg, and one O(2px ≡ b) bridge orbital on the rung of the ladder.Spatial dimension of the Hubbard-type model.� It should be emphasized thatthe terms in the �fth and sixth line of Eq. (2.1) aount for interladder inter-ation � the holes within two di�erent orbitals on a given oxygen ion in a legbelong to two neighbouring ladders (shown as white/grey orbitals in Fig. 2.4),and are desribed by harge operators niαx(y)σ with/without bar sign in Eq.(2.1). Thus, in priniple one should de�ne two other Hamiltonians H whih de-sribe the two neighbouring ladders and from whih one an determine ñiαx(y)σ.Then, these two Hamiltonians will be again oupled to two Hamiltonians andso on. In what follows, we will impliitly assume that suh Hamiltonians areindeed de�ned and when needed we will use this feature to solve the oupledladder problem. Obviously, suh a notation is not very elegant. An alternativesenario would be to de�ne a single Hamiltonian for all the ladders in the plane� however, this would ompliate the notation even more and, in my opinion,would not make the physis more transparent.Central Hamiltonian of the hapter.� Applying the Zhang-Rie proedure[26℄ adopted to the geometry of oupled ladders and �nite value of the intera-tion Up we obtain the following t�J model with intraladder interation V1 andinterladder interation V2 (therefore alled also t�J�V1�V2 Hamiltonian):
H = Ht +HJ +HV1

+HV2
. (2.2)Here Ht stands for the kineti term [see Eq. (2.13) in Se. 2.3.3℄, HJ is thesuperexhange term [see Eq. (2.5) in Se. 2.3.2℄, while HV1

and HV2
are theintraladder and interladder terms, respetively [see Eq. (2.29) in Se. 2.3.4 and25



Eq. (2.39) in Se. 2.3.5℄.Note that, during the proedure suggested by Zhang and Rie not only theHamiltonian hanges but also the form and number of arriers hanges as theform of the Hilbert spae is hanged drastially [26℄. Whereas in the hargetransfer model we denote by nh the number of holes per opper site, in the
t�J�V1�V2 model the �lling (number of spins per site) is n = 2 − nh, see alsodisussion in the end of Se. 2.3.3.2.3.2 The superexhange termSingle ladder in the undoped ase.� In the so-alled half-�lled ase (i.e. whenthere is just one hole per opper site) and in the harge transfer regime (seeabove), the harge transfer model (2.1) an be easily redued to the Heisenbergmodel using the perturbation theory to fourth order in tpd [53℄.3 This is beause,when tpd = 0 the holes are loalized on the opper sites, while for small tpd inomparison with the other energy sales in the in the harge transfer systemthe holes perform merely virtual exitations whih involve the doubly oupiedopper or oxygen site. Thus, the harge degrees are frozen and one is left merelywith spin degrees of freedom, somewhat similarly as in the half-�lled ase of theHubbard model of Chapter 1. One obtains [53℄:
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, (2.3)where the superexhange onstant for �nite Up ase [53℄ is
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)
. (2.4)Spei� geometry of oupled ladders.� The reader may wonder, whether thegeometry of oupled ladders ould in�uene the above result. Indeed, there ex-ists a 900 superexhange proess between the holes on two neighbouring ladderswhih involves ñiαx(y)σ operators. However, aording to the Goodenough-Kanamori-Anderson rules [54, 55, 56℄ suh a superexhange proess [whih isferromagneti (FM) in ontrast to the above AF interation℄ is muh weakerthan the superexhange along the 1800 path in the single ladder and an benegleted. Thus, Eq. (2.3) should also be valid for oupled ladders.Coupled ladder in the doped ase.� Although when the system is not half-�lled there are other proesses whih ontribute to the low energy t�J Hamilto-nian (see below), the above result an be extended to the doped ase. Atually, ifthere is no hole on one of the sites forming a bond between the opper sites, thenthe superexhange proess does not our. One an easily hek that Eq. (2.3)for this partiular bond does not ontribute to the t�J Hamiltonian providedone hanges it into:
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.(2.5)3Note that in the half-�lled ase there is no need to perform the anonial perturbationexpansion of Chapter 1 as there are no hopping proesses within the lowest Hubbard subband.26



symmetri (|Piασ〉) antisymmetri single oxygensinglet −8(t1 + t2) + 2t3 −4t1 + 2t3 −2(t1 + t2) + 2t3triplet 0 −4t1 0Table 2.1: Binding energy of the singlet and triplet state formed by the the holeon the opper site and the extra doped hole in one of the three various oxygenstates: (i) symmetri plaquette |Piασ〉 state, (ii) antisymmetri plaquette statewith a similar ombination of oxygen orbitals as in |Piασ〉 but with the samesigns before eah oxygen orbital, and (iii) single oxygen orbital state. Here
t1 = t2pd/∆ ∼ tpd/3, t2 = t2pd/(U − ∆) ∼ tpd/5, t3 = t2pdUp/(∆

2 + Up∆) ∼ tpd/6where the estimations follow from the typial harge transfer parameters [51℄.Here tilde above the number operator denotes the fat that the double ou-panies on the opper sites are prohibited in the low energy limit of the hargetransfer system.2.3.3 The kineti energy termFinite ontribution only for doped ase.� As desribed above, in the half-�lledase the holes loalize on the opper sites with the harge degrees of freedomentirely gone and one is left with the Heisenberg Hamiltonian for the spins.Thus, there is no kineti term at all in the half-�lled ase and it ould onlyontribute in the doped ase due to the restrited hopping.Zhang-Rie sheme needed.� In the doped ase a signi�ant problem arises:where the extra hole doped into the half-�lled system goes. Atually, if tpd = 0,then the hole will for sure loalize at one of the oxygen sites as the on-site energy
∆ is smaller than the repulsion between two holes at the same opper site U .Therefore, in this regime one annot integrate out the oxygen sites. It may beexpeted that suh states will dominate also for �nite tpd.Atually, for �nite tpd in the CuO2 plane, it ours that the hole also tendsto loalize on oxygen sites but forms a peuliar bound state with the nearby holeon the opper site � the so-alled Zhang-Rie singlet [26℄. We now onstrutsuh a state step-by-step for the oupled ladder ase (again starting with thesingle ladder and only later on disussing the oupled ladder problem), see Fig.2.5 for an artist's view of the result obtained in this setion.Nonorthogonal Zhang-Rie singlets.� First, it is evident that plaing a holeon the oxygen site and aligning its spin in the AF-way with respet to the spinof the hole on the opper site, one an gain some energy due to the virtualhopping proesses by small but �nite tpd (in the ferromagneti ase suh hargeexitations are not allowed due to Pauli priniple). Seond, however, one angain even more binding energy if one uses the possibility of forming a phaseoherent state out of the four oxygen orbitals surrounding the opper. Morepreisely it ours that the singlet state formed by a hole on the opper site anda hole in one of the following symmetri plaquette state (di�erent for the leftand right leg of the ladder):

|PiLσ〉 =
1

2
(x†iLσ − b†iσ + y†i−1,Lσ − y†iLσ)|0〉, (2.6)27



Figure 2.5: The artist's view of the Zhang-Rie singlet formation in the singleladder (the state depited by a dotted ring). Large (small) arrows depit thehole spins for +1.0 (+0.25) harge. The red arrows stand for spins of dopedholes while the blue arrows show the spins in the undoped ase.or
|PiRσ〉 =

1

2
(−x†iRσ + b†iσ + y†i−1,Rσ − y†iRσ)|0〉, (2.7)has a binding energy of −8(t1 + t2) + 2t3. Atually, this binding energy is notonly negative and huge in omparison with the e�etive hopping (whih is ofthe order of t1 or t2 [26℄) but it is also muh bigger than the binding energyof some other possible bound states formed by a hole on the opper site andoxygen site, see Table 2.1. It may be veri�ed that �nite Up, not onsidered inthe Zhang and Rie paper [26℄, whih results in �nite t3 term (see Table 2.1)does not hange qualitatively the large binding energy of a symmetri singletstate.At this stage one an already imagine that all of the doped holes (if theirnumber is smaller than the number of opper sites) should be able to form suhsymmetri singlet states in the harge transfer systems and it would be possibleto integrate out oxygen sites entirely. Although this onjeture will turn out tobe true, it annot be done so easily. A quik look at Eqs. (2.6-2.7) reveals thatthe above symmetri singlet states are nonorthogonal (they ould be alled thenonorthogonal Zhang-Rie singlets) as the neighbouring states share ommonoxygen orbitals.Orthogonalized Zhang-Rie singlets.� The task is now to make the states de-�ned in Eqs. (2.6-2.7) orthogonal. This is done by the following transformationin the single ladder ase:

|φlLσ〉 =
1

N

∑

jk

eikle−ikj(αk|PjLσ〉 + βk|PjRσ〉), (2.8)and
|φlRσ〉 =

1

N

∑

jk

eikle−ikj(βk|PjLσ〉 + αk|PjRσ〉), (2.9)28



where
αk =

1√
1 − 1

2 cos k − 1
4

+
1√

1 − 1
2 cos k + 1

4

, (2.10)and
βk =

1√
1 − 1

2 cos k − 1
4

− 1√
1 − 1

2 cos k + 1
4

. (2.11)One an hek that the `extended' symmetri states |φiασ〉 are indeed orthogo-nal.Let us note that it is at this point that the equations are truely distint herethan the ones onsidered by Zhang and Rie in Ref. [26℄: there it was only shownhow to `orthogonalize' symmetri states for the 2D ase. While that proedureould have been easily generalized (or one should rather say `redued') to the 1Dase, the ladder ase required a more areful onsideration. Atually the easiestway to obtain equations for αk and βk is to derive them �rst for merely a singlerung of the ladder. In that ase one an easily hek αk = 1/
√

3 + 1/
√

5 while
βk = 1/

√
3 − 1/

√
5. Then one an generalize this result to the whole ladder.Finally one an expliitly de�ne the Zhang-Rie singlets as

|ψiα〉 =
1√
2
|φiα↑diα↓ − φiα↓diα↑〉, (2.12)see also Fig. 2.5 for an artist's view of this state. In priniple, one shouldalso hek how the binding energy hanges when the Zhang-Rie singlets areorthogonalized. It was shown in Ref. [26℄ that the energy splitting hangesonly slightly when the singlets are orthogonalized. Obviously, the results inRef. [26℄ are valid only for the 2D ase. Fortunately, a similar result an beeasily obtained for the 1D ase. Atually, the energy splitting between theorthogonalized Zhang-Rie singlets and triplets an be de�ned as 16χ2t1 (forthe simpli�ed ase t1 = t2 and t3 = 0) [26℄. Then the ruial onstant χ is verylose to one � both in the 1D (χ = 0.98) and in the 2D ase (χ = 0.96) [26℄.One an safely argue that χ for the ladders takes some value in between 0.96and 0.98 as there is no physial reason that the orthogonalization proedure forthe ladders would lead to totally di�erent behaviour than for the 1D hains or2D ase (despite the form whih is slightly more ompliated in the ladder ase).Thus, the orthogonalized Zhang-Rie singlets have a huge binding energy alsofor the ladder. In what follows, we will refer to Zhang-Rie singlets having inmind merely their orthogonal version.Kineti term for single ladder.� Having shown that the Zhang-Rie singletsin the single ladder do not di�er muh from those in the 2D ase, we an nowsafely assume that one an apply to the ladder ase all the arguments used inRef. [26℄ to derive the e�etive hopping of Zhang-Rie singlets due to �nite tpd.Thus, we obtain,

Ht = − t
∑

iασ

(
d̃†iασ d̃i+1,ασ + H.c.

)
− t

∑

iσ

(
d̃†iRσ d̃iLσ + H.c.

)
, (2.13)where again d̃iασ = diασ(1 − niασ̄) is the restrited fermion operator and asbefore diασ reates a hole in the opper site iα. This follows from the e�etivehopping of Zhang-Rie singlets t by a hole-partile transformation. While we29



do not show her the detailed expression for the e�etive hopping of Zhang-Riesinglets t, note that it is onsiderably smaller than tpd (a. 30%). Note also thathaving two Zhang-Rie singlets on the same site osts energy 4t2 +2t1 (see Ref.[26℄) and therefore we used the tilde operators above to prevent from havingtwo Zhang-Rie singlets on the same site.Extension to oupled ladders.� Sine the interoxygen hopping tpp′ < tpd [39℄in opper oxide systems, there is no possibility of hopping between the ladders.Thus, the above result will also be valid for oupled ladders provided the Zhang-Rie singlets an be onstruted in that ase. This is indeed the ase, however itis somewhat subtle and we refer the reader to the next setion for more details.Number of arriers in the t�J�V1�V2 model.� Due to the Zhang-Rie pro-edure not only the nature of arriers but also their number is hanged in thee�etive t�J�V1�V2 model. Sine the number of extra holes whih oupy theoxygen sites and form the Zhang-Rie singlets is equal to nh− 1 per opper site(where nh is the number of holes per opper site), there are ne = nh − 1 persite empty states in the e�etive t�J�V1�V2 model. This means, that the �lling
n in the t�J�V1�V2 model (i.e. the number of spins) is n = 1− ne = 2− nh persite.2.3.4 The intraladder repulsive term V1Finite Up and the interation between Zhang-Rie singlets in 2D ase.� Inthe original Zhang and Rie paper [26℄ the interation on oxygen sites Up wasentirely negleted. Here, we have already stated its rather minor role in thestability of the Zhang-Rie singlets (see e.g. Table 2.1 where t3 is �nite for�nite Up as well as disussion in Se. 2.3.3). However, this is not the full story[57, 58, 59℄. Atually, due to the �nite Up the two nonorthogonal Zhang-Riesinglets repel if they are situated on the nearest neighbour site. This is beausethese two nonorthogonal Zhang-Rie singlets share a ommon oxygen site andthe two holes situated on this oxygen site and belonging to two neighbouringnonorthogonal Zhang-Rie singlets repel.Obviously, this interation is quite redued as there is just 25% proba-bility to �nd a hole forming a nonorthogonal Zhang-Rie state on the par-tiular oxygen site (whih is shared with the neighbouring Zhang-Rie sin-glet). Indeed detailed alulations for the orthogonal Zhang-Rie singlets, per-formed in Refs. [58, 59℄, showed that this repulsion is of the order of 0.029Up(while the not-onsidered-here �nite intersite Coulomb repulsion Vpd betweenholes on oxygen sites and opper sites even further redues this value [57℄).Thus, the orthogonalization proedure redues its value from the estimated
1/2(1/4 × 1/4 + 1/4 × 1/4) = 1/32 ∼ 0.031 (the fator 1/2 before the equa-tion originates from the Pauli priniple) for nonorthogonal Zhang-Rie singlets.Therefore, one usually neglets the e�etive repulsion between holes in the t�Jmodel as it will be at maximum of the order of 0.2t (for parameters from [39℄where Up = 4.18 eV is rather large) while typially J ∼ 0.4t in opper oxides[23℄.Intraladder and interladder repulsion.� In the oupled ladder geometry,however, the situation hanges drastially. Although, within eah single ladderthe repulsion is somewhat similar as in the 2D ase (this will be alled theintraladder repulsion, see Fig. 2.6), a distint situation ours for the oupledladder. Here, there is a muh stronger repulsion between nearest neighbour30



Figure 2.6: The artist's view of the intraladder repulsion between two nearestneighbour Zhang-Rie singlets. See Fig. 2.5 for further explanation of thesymbols used here.Zhang-Rie singlets on neighbouring ladders. This is beause, suh Zhang-Riesinglets share not one but two oxygen sites, see Fig. 2.7 in the next setion.Thus, the interladder repulsion between Zhang-Rie singlets should naively befour times4 as big as the intraladder repulsion and therefore it an happen thatit ould be of the order of J .Calulation of the intraladder repulsion.� Whereas the signi�ane of theinterladder repulsion is disussed in the next setion, let us now onentrate onthe repulsion between the Zhang-Rie singlets within a single ladder (see Fig.2.6 for the artist's view of the problem). Thus, the task is to alulate repulsionbetween orthogonalized Zhang-Rie singlets within the ladder due to the on-siteinteration Up:
H′ = Up

{∑

iα

(
niαx↑niαx↓ + niαy↑niαy↓

)
+

∑

i

nib↑nib↓
}
. (2.14)Thus, one needs to alulate the following matrix elements:

〈ψsα, ψrα|H′|ψhα, ψjα〉, 〈ψsα, ψrᾱ|H′|ψhᾱ, ψjα〉. (2.15)Let us note that the mixed terms suh as for example (RL,LL) give zero inthe Zhang-Rie singlet basis � they ould a priori lead to the destrution ofthe Zhang-Rie singlets but fortunately are muh smaller than the respetivebinding energy.Intraladder repulsion along the leg.� First, we alulate the matrix elements4This is beause here both the holes with the same and opposite spins an repel: 1/4 ×
1/4 + 1/4/4 = 1/8. However, this fator will multiply smaller on-site repulsion, with respetto the intraladder ase, due to Hund's exhange and altogether it will turn out that for η = 0.2[39℄ the interladder repulsion is roughly twie stronger than the intraladder repulsion.31



of H′ between the orthogonal plaquette states Eqs. (2.8-2.9) along the leg:
〈φsασ , φrασ̄|H′|φhασ̄, φjασ〉 =

1

16
Up

1

N3

∑

kqf

eik(h−r)eiq(j−s)eif(r−s)

{ 1

16

(
αkαq + βkβq − αkβq − βkαq

)

(
αq−fαk+f + βq−fβk+f − αq−fβk+f − βq−fαk+f

)

+
(

sin
k

2
sin

q

2
sin

q − f

2
sin

k + f

2
+

1

16

)

(
αkαqαq−fαk+f + βkβqβq−fβk+f

)}
, (2.16)and

〈φsασ , φrασ̄|H′|φhασ, φjασ̄〉 = −〈φsασ , φrασ̄|H′|φhασ̄, φjασ〉, (2.17)and
〈φsασ, φrασ|H′|φhασ, φjασ〉 = 0. (2.18)One an evaluate numerially the above expressions. It ours that the largestpositive element is the nearest neighbour interation

〈φjασ , φj+1,ασ̄ |H′|φj+1,ασ̄ , φjασ〉 = 0.0544Up, (2.19)while following Eq. (2.18) the absolute value of the largest negative element,whih orresponds to spin-�ip nearest neighbour interation, is the same. Fur-thermore, the seond largest element is the next nearest neighbour interationand is over 20 times smaller, whih means that it an be easily negleted.Seond, we alulate the matrix elements of H′ between the nearest neigh-bour Zhang-Rie singlets. This introdues a fator 1/2 to the above estimationsof the repulsion between orthogonal plaquette states: It is beause there isa 50% probability to have opposite spins on a partiular shared oxygen siteoupied by two holes from two di�erent Zhang-Rie singlets. Note that thespin-�ip-plaquette terms do not give any ontribution to the repulsion betweenZhang-Rie singlets, although they ould in priniple destabilize the Zhang-Riestates themselves. Fortunately, this is not possible sine the binding energy ofthe Zhang-Rie singlets is muh larger. Thus altogether, we obtain
〈ψjα, ψj+1,α|H′|ψj+1,α, ψjα〉 = 0.0272Up. (2.20)Intraladder repulsion along the rung.� Following a similar sheme, we al-ulate the repulsion between Zhang-Rie singlets on di�erent legs. We obtainfor the matrix elements of H′ between the orthogonal plaquette states Eqs.32



(2.8-2.9) on di�erent legs
〈φsασ , φrᾱσ̄|H′|φhᾱσ̄, φjασ〉 =

1

16
Up

1

N3

∑

kqf

eik(h−r)eiq(j−s)eif(r−s)

{ 1

16

(
αkβq + βkαq − αkαq − βkβq

)

(
αq−fβk+f + βq−fαk+f − αq−fαk+f − βq−fβk+f

)

+
(

sin
k

2
sin

q

2
sin

q − f

2
sin

k + f

2
+

1

16

)

(
αkβqαq−fβk+f + βkαqβq−fαk+f

)}
, (2.21)and

〈φsασ , φrᾱσ̄|H′|φhᾱσ, φjασ̄〉 = −〈φsασ , φrᾱσ̄|H′|φhᾱσ̄, φjασ〉, (2.22)and
〈φsασ , φrᾱσ|H′|φhᾱσ, φjασ〉 = 0. (2.23)Evaluating numerially the above expressions one obtains that the largest el-ement is the nearest neighbour repulsion � this time between the orthogonalplaquette states on the same rung:

〈φjασ , φj,ᾱσ̄|H′|φj,ᾱσ̄, φjασ〉 = 0.0529Up, (2.24)while the seond largest element (the next nearest neighbour interation) but isvery small (over 15 times smaller) and an be negleted.Finally, following the same steps we obtain the repulsion between the nearestneighbour Zhang-Rie singlets whih is twie redued:
〈ψjα, ψj,ᾱ|H′|ψj,ᾱ, ψjα〉 = 0.0265Up. (2.25)Intraladder repulsion between Zhang-Rie singlets.� Hene, one an notethat the interation among the nearest neighbour Zhang-Rie singlets is almostisotropi. Thus, one an write the e�etive Hamiltonian for the repulsion be-tween Zhang-Rie singlets (ompare Fig. 2.6)

HV1
= V1

(∑

iα

nψiα
nψi+1,α

+
∑

i

nψiR
nψiL

)
, (2.26)where nψiα

= |ψiα〉〈ψiα| and
V1 ∼ 0.027Up. (2.27)Thus the onstant before Up is a. 14% smaller than the nonorthogonal value

1/32 = 0.03125. Note the trend of the renormalization fators: 0.023, 0.025,
0.027, 0.029 for single rung, 1D ase, ladder, and 2D ase, respetively (alula-tions are not shown; for 2D ase a similar result was obtained in Ref. [58, 59℄).This trend originates from the fat that in lower dimensions the harge esapesmore from the main orbitals (b or y) responsible for the interation (and theontribution to the interation due to the other orbitals is very small). In 2D it33



Figure 2.7: The artist's view of the interladder repulsion between two nearestneighbour Zhang-Rie singlets on two di�erent ladders. See Fig. 2.5 for furtherexplanation of the symbols used here.does not esape in this way as all of the orbitals su�er from the orthogonalityproblem.Intraladder repulsion in terms of opper holes.� Sine Zhang-Rie singletsare `partile-hole ousins' of opper holes (i.e. Zhang-Rie singlets orrespondto empty sites on opper) one has
nψjα

= (1 − ñjαd), (2.28)where everything happens in the onstrained Hilbert spae with no double o-upanies on opper holes. Substituting this equation and shifting the hemialpotential one obtains the intraladder repulsion between opper holes
HV1

= V1

(∑

iα

ñiαdñi+1,αd +
∑

i

ñiRdñiLd

)
, (2.29)where V1 de�ned as in Eq. (2.27).2.3.5 The interladder repulsive term V2Calulation of interladder repulsion.� Finally, the task is to alulate the re-pulsion between two Zhang-Rie singlets sitting next to eah other (and thussharing the same oxygen sites but not the p orbitals, see Fig. 2.7) due to theon-site repulsion on oxygen sites. However, again we will alulate the repul-sion between arbitrarily loated Zhang-Rie singlets and only then we will showwhih elements are negligible. Note that the plaquette states on two ladders areorthogonal to eah other although they still have to be orthogonalized for thesame ladder (as before).Expliitly one needs to alulate the following matrix elements:

〈ψsα, ψ̄r+ 1
2
,ᾱ|H′′|ψ̄h+ 1

2
,ᾱ, ψjα〉, (2.30)and

〈ψsα, ψ̄r+ 1
2
,α|H′′|ψ̄h+ 1

2
,α, ψjα〉, (2.31)34



where
H′′ = Up

{
(1 − 2η)

∑

iασ

(
niαxσn̄iᾱyσ̄ + niαyσn̄iᾱxσ̄

)
+

(1 − 3η)
∑

iασ

(
niαxσn̄iᾱyσ + niαyσn̄iᾱxσ

)}
. (2.32)Note that we introdued here a bar sign over the Zhang-Rie singlet states todenote the Zhang-Rie singlets formed on a di�erent ladder than the one underonsideration. Besides, sine the other ladder is misaligned by a lattie onstant

1/2 with respet to the ladder under onsideration, we ount the Zhang-Riesinglets on the neighbouring ladder with the index j+1/2 (note that the lattieonstant in the single ladder is the opper-opper distane whih we assume tobe equal to 1, see Remarks at Notation in the beginning of the thesis).Interladder repulsion between plaquettes with the same spin.� First, we al-ulate the matrix elements of H′′ between the orthogonal plaquette states Eqs.(2.8-2.9) with the same spin but situated on di�erent legs:
〈φrασ, φ̄s+ 1

2
,ᾱσ|H′′|φ̄h+ 1

2
,ᾱσ, φjασ〉 =

1

16
(1 − 3η)Up

1

N3

∑

kqf

αkαqαq−fαk+f

{1

4
sin q sin(q − f) +

1

4
sin k sin(k + f)

}

eik(h−r)eiq(j−s)eif(r−s− 1
2
), (2.33)while for the same legs we obtain

〈φrασ, φ̄s+ 1
2
,ασ|H′′|φ̄h+ 1

2
,ασ, φjασ〉 =

1

16
(1 − 3η)Up

1

N3

∑

kqf

αkβqαq−fβk+f

{1

4
sin q sin(q − f) +

1

4
sin k sin(k + f)

}

eik(h−r)eiq(j−s)eif(r−s− 1
2
). (2.34)As it might have been expeted, it ours that the biggest term is the repulsionbetween orthogonal plaquette states with the same spin situated on the losestpossible sites in the neighbouring ladders (see Fig. 2.7):

〈φjασ , φ̄j± 1
2
,ᾱσ|H′′|φ̄j± 1

2
,ᾱσ, φjασ〉 = 0.1355(1− 3η)Up, (2.35)and all other terms are of the order of 10−3(1 − 3η)Up and an be negleted.Interladder repulsion between plaquettes with opposite spin.� Seond, anexatly similar alulation as above, but for the orthogonal plaquette statesEqs. (2.8-2.9) with opposite spins leads to the repulsion between orthogonalplaquette states with opposite spins and situated on the losest possible sites inthe neighbouring ladders:

〈φjασ , φ̄j± 1
2
,ᾱσ̄|H′′|φ̄j± 1

2
,ᾱσ̄, φjασ〉 = 0.1355(1− 2η)Up, (2.36)while again all other longer-range repulsive terms an be negleted.Interladder repulsion between Zhang-Rie singlets.� Combining the two re-sults for the plaquette states, one an alulate repulsion between Zhang-Rie35



singlets situated on nearest neighbour sites of the neighbouring ladders (see Fig.2.7):
HV2

= V2

∑

iα

(
nψiα

nψ̄
i+1

2
,ᾱ

+ nψiα
nψ̄

i− 1
2

,ᾱ

)
, (2.37)where nψiα

is de�ned as before and
V2 ∼ 0.1355(1− 5η/2)Up. (2.38)Note that we again negleted all spin-�ip terms whih are small in omparisonwith the Zhang-Rie binding energy and give zero when `sandwihed' in thesinglet states. Besides, the prefator (equal to 0.1355) before the interationbetween the Zhang-Rie singlets is slightly enhaned with respet to the ex-peted 1/8 = 0.125 value (unlike in the intraladder ase). This is beause quitea lot of harge esapes from the b and y orbitals to the x orbitals due to theorthogonalization proedure.Interladder repulsion in terms of opper holes.� Sine Zhang-Rie singletsare `partile-hole ousins' of opper holes one an easily write down the inter-ladder repulsion in terms of opper holes:

HV2
= V2

∑

iα

(
ñiαd ˜̄ni+ 1

2
,ᾱd + ñiαd ˜̄ni− 1

2
,ᾱd

)
, (2.39)where V2 de�ned as in Eq. (2.38). Note that to obtain Eq. (2.39) from Eq.(2.37) we again [see Eq. (2.29)℄ shifted the hemial potential.2.4 Method and results2.4.1 The slave-boson approahSlave-partile formalism.� The �rst di�ulty one enounters while trying tosolve the t�J-type of Hamiltonian is to ope with the onstraint of no doubleoupanies at eah site [20℄. While there are several methods whih approxi-mately implement these onstraints (see the following hapters where the slave-fermion approah is used), in this hapter we hoose the slave boson method [60℄to obtain qualitative insights. The reason is that this method is rather reliablein desribing properties of the relatively highly doped t�J models [20℄.Introduing Kotliar-Rukenstein slave bosons.� In ontrast to the Barnesslave-boson approah [61℄, the Kotliar-Rukenstein slave-boson representation[60℄ orretly interpolates between the U = 0 and the U = ∞ limit and thereforewe hoose this slave-bosons approah in what follows. In this approximationone enlarges the Fok spae by introduing three auxiliary boson �elds. First,one deouples the onstrained fermion reation operator d̃†iασ into a fermionreation operator f †

iασ arrying the spin degree of freedom, a boson reationoperator p†iασ, and a boson annihilation operator eiα arrying the harge degreeof freedom (i.e. e†iα reates a harged hole):
d̃†iασ = f †

iασp
†
iασeiα. (2.40)This means that in order to reate a fermion at site iα, one �rst has to destroya hole at this site but then one also keeps trak of the hange of the boson36



on�guration by the extra boson p†iασ. Consequently, one not only annot reatea fermion at site iα, if there are no holes at this site but one also `remembers'whih type of the fermion was reated at site iα. However, in the U = 0 limitone reovers only 25% of the value of the unorrelated hopping, whih has tobe orreted [60℄. Thus, one further modi�es the deoupling proedure in orderto reprodue the orret U = 0 limit:
d̃†iασ = f †

iασz
†
iασ, (2.41)where

z†iασ =
p†iασeiα√

(1 − e†iαeiα − p†iασ̄piασ̄)(1 − p†iασpiασ)
. (2.42)Note, however, that we need to introdue the following onstraints to get ridof the nonphysial states in the enlarged Fok spae:

∀iα
∑

σ

p†iασpiασ + e†iαeiα = 1, (2.43)
∀iασ p†iασpiασ = f †

iασfiασ. (2.44)Thus, the full transformation ontains not only Eq. (2.41) but also Eq. (2.44).Bosoni ondensation.� A typial next step in the slave boson approahis to assume that the introdued auxiliary bosons ondense, i.e. they ould beregarded as lassial �elds [with their values determined either self-onsistentlyor using Eq. (2.44)℄. Therefore, we assume that
p†iασ ∼

√
f †
iασfiασ ∼

√
n

2
,

piασ ∼
√
f †
iασfiασ ∼

√
n

2
,

eiα ∼
√

1 − n,

e†iα ∼
√

1 − n, (2.45)where n is the already mentioned `�lling fator', i.e. the number of opper spinsreated by d̃iα operators in the e�etive t�J�V1�V2 model.Substituting transformations Eq. (2.41) together with Eq. (2.45) to Eq.37



(2.2) we obtain the following e�etive Hamiltonian for interating fermions f
Heff = −tgt

{ ∑

iασ

(
f †
iασfi+1,ασ + H.c.

)
+

∑

iσ

(
f †
iRσfiLσ + H.c.

)}

−1

2
JgJ

{ ∑

iασ

(
f †
iασfiασf

†
i+1,ασ̄fi+1,ασ̄ + f †

iασf
†
i+1,ασ̄fiασ̄fi+1,ασ

)

+
∑

iα

(
f †
iRσfiRσf

†
iLσ̄fiLσ̄ + f †

iRσf
†
iLσ̄fiRσ̄fiLσ

)}

+V1gJ

{ ∑

iασ

(
f †
iασfiασf

†
i+1,ασ̄fi+1,ασ̄ + f †

iασfiασf
†
i+1,ασfi+1,ασ

)

+
∑

iα

(
f †
iRσfiRσf

†
iLσ̄fiLσ̄ + f †

iRσfiRσf
†
iLσfiLσ

)}

+V2gJ

{ ∑

iασ

(
f †
iασfiασ f̄

†
i+ 1

2
,ᾱσ̄
f̄i+ 1

2
,ᾱσ̄ + f †

iασfiασ f̄
†
i+ 1

2
,ᾱσ
f̄i+ 1

2
,ᾱσ

+ f †
iασfiασ f̄

†
i− 1

2
,ᾱσ̄
f̄i− 1

2
,ᾱσ̄ + f †

iασfiασ f̄
†
i− 1

2
,ᾱσ
f̄i− 1

2
,ᾱσ

)}
,(2.46)where the bar sign denotes the fat that the fermion operators at in the Hilbertsubspae of the Hamiltonian for the neighbouring ladder. Furthermore, thefators gt and gJ are:

gt =
2 − 2n

2 − n
,

gJ =
4

(2 − n)2
. (2.47)The reader may wonder here whether we gained a lot by introduing theZhang-Rie sheme and then the slave bosons: The alulations were prettylengthy and we ended up with a Hamiltonian desribing again the interatingproblem. However, we gained quite a lot during the above proedure: (i) weintegrated out the oxygen orbital degrees of freedom entirely, (ii) the interationterms in Eq. (2.46) are muh weaker than those in the original model sine J ,

V1 and V2 are of the order of the e�etive hopping gtt while in the Hamiltonian(2.1) the interating terms are muh bigger than the kineti terms.Agreement with Gutzwiller fators.� Atually, the gt and gJ fators areequal to the well-known Gutzwiller fators [62, 63℄. Thus, we ould have intro-dued here the Gutzwiller approah to obtain the e�etive Hamiltonian (2.46).However, the slave boson approah seems to us to be more transparent.2.4.2 The mean-�eld approximationMean-�eld deoupling.� To solve the e�etive Hamiltonian Eq. (2.46) we in-trodue the mean-�eld deoupling:
f †
iασfiασf

†
iασ′fiασ′ →
f †
iασfiασ〈f

†
iασ′fiασ′ 〉 + 〈f †

iασfiασ〉f
†
iασ′fiασ′ − 〈f †

iασfiασ〉〈f
†
iασ′fiασ′〉,(2.48)38



where the lassial �elds 〈f †
iασfiασ〉 are to be determined self-onsistently withthe initial values for these �elds hosen in the following way:First, we assume that

〈f †
iα↑fiα↑〉 = 〈f †

iα↓fiα↓〉 =
1

2

∑

σ

〈f †
iασfiασ〉 ≡

1

2
〈f †
iαfiα〉. (2.49)Seond, if the number of fermions f per site is n = 2/3. then we assumethat

〈f †
iαfiα〉 =

{
n− p for i/3 ∈ Z

n+ 1
2p for i/3 /∈ Z

, (2.50)while if n = 3/4 then
〈f †
iαfiα〉 =

{
n− p for i/4 ∈ Z

n+ 1
3p for i/4 /∈ Z

, (2.51)and �nally if n = 4/5 then we assume that
〈f †
iαfiα〉 =

{
n− p for i/5 ∈ Z

n+ 1
4p for i/5 /∈ Z

, (2.52)where p is a real number (with its value to be determined self-onsistently, seenext setion) suh that 0 ≤ p ≤ n.Deoupling for neighbouring ladder.� Atually, a similar deoupling is donefor f̄ fermion operators. However, here we assume di�erent initial values for thelassial �elds:If the number of fermions f per site is n = 2/3, then we assume that
〈f̄ †
i− 1

2
α
f̄i− 1

2
α〉 =

{
n− p for (i+ 1)/3 ∈ Z

n+ 1
2p for (i+ 1)/3 /∈ Z

, (2.53)while if n = 3/4 then
〈f̄ †
i− 1

2
α
f̄i− 1

2
α〉 =

{
n− p for (i+ 1)/4 ∈ Z

n+ 1
3p for (i+ 1)/4 /∈ Z

, (2.54)and �nally if n = 4/5 then we assume that
〈f̄ †
i− 1

2
α
f̄i− 1

2
α〉 =

{
n− p for (i+ 2)/5 ∈ Z

n+ 1
4p for (i+ 2)/5 /∈ Z

. (2.55)Reasons for the assumed initial values of the �elds.� Note that we hoosethese partiular values for the lassial �eld in order to investigate the stabilityof the CDW state of period λ = 3 for n = 2/3 (nh = 4/3), period λ = 4for n = 3/4 (nh = 5/4) and period λ = 5 for n = 4/5 (nh = 6/5). Sinewe are merely interested in investigating whether the interladder interationan at all lead to the stability of the CDW phase in the oupled ladder, wehoose the simplest possible pattern of the CDW order in the ladders [see Eqs.(2.50)-(2.52)℄. Furthermore, we hoose that the CDW order in the neighbouringladder is suh that the rungs with lower densities in that ladder are as far away aspossible from the rungs with lower densities in the ladder under onsideration.55In the ase of n = 3/4 we ould have equally hosen (i+2) as the shift in the CDW orderin the neighbouring ladder. 39



In this way the lassial energy (i.e. for t = 0) of the system will be minimizedfor p = n with respet to the interladder interation V2. Obviously, �nite t(and also �nite V1 and J) ould hange this result and it is the task of the nextsetion to verify this assumption self-onsistently.Validity of the approximation.� One may wonder whether the above deou-pling is justi�ed sine values of the interation parameters J , V1, and V2 areomparable with the e�etive kineti energy and therefore annot be assumedas being small terms. However, as disussed in detail in Ref. [33℄ what mattersin suh a mean-�eld deoupling is the strength of quantum �utuations (whihare negleted in the mean-�eld deoupling) while the strength of the interationsis not important at all.2.4.3 The ground state propertiesStability of the CDW order.� We determine the value of the CDW order pa-rameter p (2.50-2.55) self-onsistently by diagonalizing the e�etive Hamiltonian[Eq. (2.46)℄ of the model (2.2) rewritten using the mean-�eld deoupling (2.48).The diagonalization is done numerially in the single-partile k spae using 500
k points along the single leg of the ladder. The result is shown in Fig. 2.8: itdepits the stability of the CDW order in the oupled ladders due to the inter-ladder interation V2 for all three studied doping levels (n = 2/3, n = 3/4, and
n = 4/5). Besides, the CDW ground state has a small gap at the Fermi levelfor n = 3/4 and n = 4/5 while the gap at the Fermi level does not open for
n = 2/3 (although the bands are �attened in the CDW state).In partiular, let us note that the CDW state with λ = 4, 5 is stable forthe realisti values of the parameters J = 0.4t, V1 = 0.2t and V2 = 0.5t [asalulated using Eqs. (2.4), (2.27), (2.38) and parameters from Refs. [39, 51℄℄.Furthermore, the CDW order state is stable for period λ = 3 for a somewhatenhaned value of the interladder interation V2 ∼ 0.9t whih nevertheless ouldbe obtained using the harge transfer parameters of Ref. [64℄.Role of superexhange J and intraladder interation V1.� While the sta-bility of the CDW order is entirely due to the interladder interation V2, thesuperexhange ∝ J and the intraladder interation ∝ V1 also slightly in�uenethe order. Atually, in all three ases turning on these interations redues themagnitude of the CDW order and makes it a bit less stable (i.e. the CDW orderis stable for larger values of the interladder interation V2). Besides, this e�etis well visible for period λ = 3, 5 while for period λ = 4 it is rather suppressed,see Fig. 2.8.First, let us try to understand what kind of (ordered) ground state is favouredby these interations. On the one hand, the role of the superexhange J in themean-�eld deoupling (2.48) amounts to the Ising-like interation. Furthermore,we assumed that the solution is nonmagneti (2.49). Thus, the superexhangemerely favours formation of pairs of harges along eah bond. On the other hand,the intraladder interation V1 disfavours suh pairs as it is a repulsive interationbetween nearest neighbours. Sine a typial value of the superexhange is J =
0.4t and of the intraladder interation is V1 = 0.2t (see above), the joint e�et ofthese interations is a suppression of pairs of harges (as they jointly ontributeas J − 4V1 to the e�etive mean-�eld Hamiltonian).Seond, one an try to understand how it in�uenes the CDW state. This,however, strongly depends on the CDW period. In the simplest ase λ = 3 we40
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Figure 2.8: Stability of the CDW order due to the interladder interation V2 asobtained self-onsistently from the mean-�eld deoupling (2.48) of the e�etiveHamiltonian [Eq. (2.46)℄ of the model (2.2). The panels depit the followingases: (a) �lling n = 2/3 (nh = 4/3) with period λ = 3 and order parameter
p as de�ned in Eqs. (2.50, 2.53), (b) �lling n = 3/4 (nh = 5/4) with period
λ = 4 and order parameter p as de�ned in Eqs. (2.51, 2.54), () �lling n = 4/5(nh = 6/5) with period λ = 5 and order parameter p as de�ned in Eqs. (2.52,2.55). Solid lines are for realisti values of J = 0.4t and V1 = 0.2t [see Eqs.(2.4), (2.27), (2.38) and Refs. [39, 51℄℄ while dashed lines show results for J = 0and V1 = 0.have two rungs with enhaned harge densities and therefore the joint e�etis that the realisti J and V1 disfavour formation of the CDW order, see Fig.2.8(a). On the other hand, when λ = 4 the situation is more ompliated: wehave three sites with enhaned harge density along the leg, while the pairs ofharges are again formed along the rung. Together this yields that J and V1interation disfavour the onset of CDW states only marginally, see Fig. 2.8(b).Finally, the ase with period λ = 5 is somewhat in between the two aboveases as along the leg there are four sites with enhaned harge density, see Fig.2.8().Understanding the results for J = 0 and V1 = 0.� Having understood theminor role of superexhange J and intraladder interation V1, let us now turnto the understanding of the onset of the CDW order due to the interladderinteration V2 for J = 0 and V1 = 0 (see Fig. 2.8). First, the basi mehanismwhih supports the formation of the CDW order is rather simple. The onsetof the CDW state lowers the energy interladder interation V2. This is beausethen the CDW states in the neighbouring ladders are arranged in suh a waythat the rungs with more harge in one ladder are the nearest neighbours of therungs with less harge in the neighbouring ladder and vie versa, see Eqs. (2.50-2.55). Obviously, the onset of the CDW order is assoiated with the �atteningof the bands (not shown) as then the mobility is redued. Thus, in the CDWstate the kineti energy is higher and therefore the total energy of the systemis lowered (and the transition to the CDW state takes plae) only when thederease in the interation energy is higher than the derease in the (negative)kineti energy. When the nesting onditions are not satis�ed (whih is the asehere but ompare also Se. 2.7) this an take plae for �nite value of the ratio
V2/t. 41



Seond, there are relatively big di�erenes between the onset of the CDWorder for di�erent doping levels n. However, with the exeption of the `usp' forthe CDW order with period λ = 5 (see below), this an be understood rathereasily. The CDW state is more easily stabilized and has bigger amplitude p/nwhen the number of f fermions n is bigger. This is beause then the kinetienergy is redued as there are less arriers in the system. Thus, for example theCDW order with period λ = 4 is stable already for smaller values of the ratio
V2/t and has bigger amplitude p/n than the CDW state with period λ = 3Understanding the `usp' for period λ = 5.� Finally, the `usp' in Fig. 2.8()needs some explanation. Here, in the numerially most ompliated ase withperiod λ = 5, there is a ompetition between two di�erent types of the CDWorder: (i) the CDW state with a small amplitude p, rather unhanged eletronibands and small gap at the Fermi level, and (ii) the CDW state with a largeharge modulation p, almost �at bands and a large gap at the Fermi level. WhileCDW state (ii) ould be understood as a sort of `analyti ontinuation' of theresults obtained for period λ = 3 and λ = 4, the CDW state (i) is awkward andneeds some further understanding.In fat, the existene of the possibility (i) is the result of the omplex inter-play of the ompliated band struture for the CDW state with period λ = 5(where the e�etive Brillouin zone is `�ve-folded') and the ompliated e�etivemean-�eld potential from the neighbouring ladder. Atually, the latter mean-�eld potential from the neighbouring ladder is due to the fat that the CDWorder in the neighbouring ladder ats as a negative potential merely on threerungs (out of �ve in the unit ell) in the ladder under onsideration. Thus, thispotential itself ontains ompeting terms and therefore the `interpolating' CDWstate with small amplitude p is formed.2.5 Disussion2.5.1 Validity of the resultsPossible shortomings of the present approah.� In order to obtain resultsshown in Fig. 2.8 we introdued a number of approximations to the t�J�V1�V2Hamiltonian. In partiular, we introdued: (i) the slave-boson approah to over-ome the problem of the onstraint of double oupanies, (ii) the mean-�elddeoupling. Whereas the �rst approximation is widely used [20℄, the seond oneis also a reasonable approah to the ordered states in the strongly orrelatedsystems [33℄.Still, however, both the slave-boson approah and the mean-�eld deou-pling were used in one of their simplest possible versions. For example, �rst,we assumed that the number of bosons whih ondense is equally distributedthrough the lattie whih led to the site-independent Gutzwiller fators. Onthe one hand, we heked that the site-dependent Gutzwiller fators yield sim-ilar results for the CDW with period λ = 3 as obtained in Fig. 2.8. On theother hand, it turned out that the self-onsistent mean-�eld alulations did notonverge when we used the site-dependent Gutzwiller fators for the CDW withperiod λ = 5. Seond, we assumed that the solution was nonmagneti � learlyintroduing the possibility of �nite spin polarization would improve the presentresult. However, as the purpose of the alulations was to investigate the onset42



of the CDW order due to the interladder interation, this was at least partiallyjusti�ed.Possible shortomings of the derivation of the model.� Distint approxima-tions and shortomings are related with the t�J�V1�V2 Hamiltonian itself. First,one ould verify whether the Zhang-Rie singlets do not get destroyed due tothe interladder interation. Although the Zhang-Rie binding energy is of theorder of (4−5)tpd (see Table 2.1) whih is muh bigger than the biggest possiblevalue of the interladder interation between them (V2 ∼ 0.7t), it is internallyonsistent when the expliit alulations show that this indeed annot happen.Seond, we assumed that the on-site energy for holes on the rung orbital b isthe same as the one for holes in the other oxygen orbitals. However, due to adi�erent oordination number for this site, the on-site energy of the b orbitalshould be somewhat lower. Indeed, it is estimated that the ratio between thesetwo on-site energies is ε ∼ 0.9 [52℄. Thus, it is interesting to verify whetherthis asymmetry in the on-site energies of the oxygen orbitals an destabilize theZhang-Rie singlets. Hene, in the next two setions, we study in more detailthe above mentioned possible shortomings of the derivation of the model.2.5.2 `Rigidity' of the Zhang-Rie singletsPurpose of this setion.� In order to verify whether the interladder interation
V2 ould in�uene the stability of the Zhang-Rie singlets we solve the hargetransfer model (2.1). In this way we will be able to hek how the Zhang-Riesinglets are in�uened by the on-site interation between holes on the sameoxygen sites but belonging to two neighbouring ladders.The CDW solution of the harge transfer model.� We solve the Hamilto-nian (2.1) for various values of the model parameters {U,∆, Up}, and for threedi�erent hole densities nh = 6/5, 5/4, 4/3 using the mean-�eld approximation,i.e., we deouple

njαµ↑njαµ↓ → 〈njαµ↑〉njαµ↓ + njαµ↑〈njαµ↓〉 − 〈njαµ↑〉〈njαµ↓〉, (2.56)where µ = d, x, y, b and a similar deoupling holds for the neighbouring lad-ders. The ground state was found by diagonalizing the resulting one-partileHamiltonian in real spae for a single ladder with 60 unit ells, separately forspin up and spin down. The lassial �elds {〈njαµσ〉} and {〈n̄j− 1
2
,αµσ〉} weredetermined self-onsistently with the initial values for these �elds as in Fig. 2.9.While a uniform spin density wave is stable for nh = 1, one �nds a CDW su-perimposed on the spin density wave order for realisti hole densities nh ≥ 6/5.The stability of this omposite order follows from the 1D polaroni defets inthe spin density wave state. We limit the present analysis to the stability ofthis partiular CDW phase, while we do not study here the possible ompeti-tion with other phases (see Ref. [65℄ and next setion). Charaterization of theCDW state in the harge transfer model.� For eah state we evaluate: (i) theCDW order parameter

p′≡
∑

i∈rung
〈nid + nib + nix〉−

1

λ− 1

∑

i/∈rung
〈nid + nib + nix〉

+
∑

i∈rung
〈niy〉 −

2

λ− 2

∑

i/∈rung
〈niy〉, (2.57)43



hn  = 1.25

y

x
hn  = 1.33 λ = 4(b)(a)λ = 3Figure 2.9: Artist's' view of two oupled Cu2O5 ladders (white and grey) witha CDW order of period: (a) λ = 3 and (b) λ = 4. Again (f. Fig. 2.4) theCu2O5 unit ell with two 3dx2−y2 , three 2px, and two 2py orbitals is indiatedby dashed line. The arrows stand for hole spins in opper and oxygen orbitals,with their (large) small size orresponding to +1.0 (+0.25) hole harge. Theovals show rungs with enhaned hole density in the CDW phase. The dottedovals in the grey ladder of (b) show the two possible degenerate states, see text.where λ is the period of the CDW state, and (ii) the seond moment of the holedensity distribution with respet to the ideal non-orthogonal Zhang-Rie singletstate (to be alled also Zhang-Rie dispersion; n0 = 0.25),

σ2≡
∑

i∈rung

{
(〈nib〉 − 2n0)

2+(〈nix〉 − n0)
2+(〈niy〉 − n0)

2
}
. (2.58)Here and in what follows by `rung' we mean the `rung with enhaned holedensity' whih onsists of seven oxygen orbitals (four y, two x and one b) andtwo opper orbitals (see the ovals in Fig. 2.9). Hene, in both above de�nitionsthe mean values of the partile number operators are alulated for these rungs(i ∈ rung) or for all remaining sites in the whole ladder (i /∈ rung). Note thatin the �rst term in Eq. (2.58) we subtrat 2n0 hole density as we assume thatthere are two non-orthogonal Zhang-Rie singlets in the same rung whih sharethe ommon b oxygen orbital, see Fig. 2.9. Note also that in the ideal CDWphase (shown in Fig. 2.9) p′ = 2 and σ2 = 0, irrespetively of the atual period

λ. We also introdue rung hole densities on oxygen and opper sites
np≡

∑

i∈rung
〈nib + nix + niy〉, nd≡

∑

i∈rung
〈nid〉. (2.59)Similarly, magneti order parameters are

mp ≡
∣∣∣

∑

i∈rung∩L
mix+miy

∣∣∣ +
∣∣∣

∑

i∈rung∩R
mix+miy

∣∣∣, (2.60)
md≡

∑

i∈rung
|mid|, (2.61)44
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Figure 2.10: Charaterization of the CDW ground states obtained with Up = 0for inreasing U (left, ∆ = 3tpd) and ∆ (right, U = 8tpd): (a), (b) CDW orderparameter p′, and (), (d) ZR singlet dispersion σ2, for λ = 5, 4, 3 shown by solid,dashed, and dotted lines, respetively; (e), (f) for λ = 5 harge (magnetization)in the rung on opper sites shown by solid (dotted) line and on oxygen sitesshown by dashed (dashed-dotted) line, see Eqs. (2.59)�(2.61). The realistivalues (Ref. [51℄) of U = 8tpd and ∆ = 3tpd are marked by vertial lines.where the magnetization for orbital µ at site i is miµ = 〈niµ↑ −niµ↓〉. We reallthat when holes on the rungs form two loalized Zhang-Rie singlets next toeah other, then nd = md ≃ 2, np ≃ 2, and mp ≃ 1.5, see Fig. 2.9.Results for a single ladder in the harge transfer model.� First, we inves-tigate the onset of the CDW phase in a single ladder of Fig. 2.9 by assuming
Up = 0. In the harge transfer regime (for ∆ = 3tpd following Ref. [51℄) theCDW is stable already for U ≥ tpd with periods: λ = 5 for nh = 6/5, λ = 4for nh = 5/4, and λ = 3 for nh = 4/3 [Fig. 2.10(a)℄. For higher values of theon-site Coulomb repulsion U , p′ �rst inreases quite fast irrespetively of theatual CDW period, and next saturates at p′ ∼ 1, being only about 50% ofthe maximal value p′ = 2 (a weak derease of p′ for U > 6tpd follows from theharge redistribution). In partiular, suh a CDW order is robust for the widelyaepted value of U = 8tpd for opper oxide ladders [51℄.In the strong oupling regime of U > 4tpd the CDW state is formed by holesdistributed as in the Zhang-Rie singlets sine then σ2 ∼ 0.05 is indeed verysmall for all periods [Fig. 2.10()℄. This is also visible in Fig. 2.10(e) where,in this regime, both the number of holes on oxygen sites (np) and on oppersites (nd) in the rungs are rather lose to their values in the loalized Zhang-Rie states. Note that the minimum of σ2 would orrespond to np = nd whih45



further motivates the de�nition of Eq. (2.58). We an also probe the Zhang-Rieharater of holes forming the CDW state by looking at the magnetization ofholes in the rungs, f. Fig. 2.10(e). The magnetizationmd grows with inreasing
U and for large U ∼ 12tpd it is still around 30% smaller than that for loalizedZhang-Rie singlets. However, even in this range of U the magnetization onthe oxygen sites mp is quite small and muh below the value for ideal Zhang-Rie singlets (around 70% smaller). This on�rms that the subtle (entangled)nature of the Zhang-Rie singlets an be only partly aptured within the lassialmean-�eld approah. Therefore, in what follows we all these states lassialZhang-Rie singlets.Remarkably, hanging the value of ∆ for �xed U = 8tpd does not destabilizethe CDW state [Fig. 2.10(b)℄ irrespetively of the period. This suggests thatthe harge order is triggered by the on-site Coulomb repulsion. However, theharater of the holes forming the CDW state hanges and σ2 is small (σ2 ∼
0.07) only as long as ∆ is large [Fig. 2.10(d)℄. This is also visible in Fig. 2.10(f)where a similar disussion as the one onerning Fig. 2.10(e) applies.To gain a deeper understanding of the results we alulated the harge gapas a funtion of the Hubbard U (not shown): one �nds that the CDW stategains stability when an insulating state is formed. Altogether, one �nds that:(i) the Coulomb interation U an stabilize the CDW in the Cu2O5 ladders, (ii)the CDW phase an be viewed as an equidistant distribution of the lassialZhang-Rie singlet states in the relevant parameter regime, and (iii) all of thestable periods (even and odd) behave similarly.Results for the oupled ladders in the harge transfer model.� Next, we in-vestigate the in�uene of the interladder oupling. At �nite Up the `external'�elds {〈n̄j− 1

2
,αµσ〉} in the mean-�eld version of Eq. (2.1) ontribute and wereself-onsistently determined by iterating the mean-�eld equations. Thereby, thesymmetry of the CDW state was hosen in suh a way that the rungs weretranslated by λ Cu-O lattie onstants (λ odd) in the neighbouring ladders tomaximize the distane between them (Fig. 2.9), whih minimizes the lassi-al mean-�eld energy. For even λ = 4 the numerial alulations performedwith the realisti parameters [51℄ for Cu2O5 ladder (U = 8tpd and ∆ = 3tpd)on�rmed that the two topologially equivalent possibilities of suh a transla-tion are degenerate, as expeted. The e�et of the interladder interation dueto Up was identi�ed by omparing the ground states derived separately in twoases: (A) with {〈n̄j− 1

2
,αµσ〉} = 0, i.e., using only the (intraorbital) repulsionbetween oxygen holes on the onsidered ladder; (B) by implementing the `ex-ternal' �elds {〈n̄j− 1

2
,αµσ〉} alulated self-onsistently, i.e. inluding both theintraorbital and interorbital Coulomb repulsion between holes on oxygen sites.One �nds that in ase A the CDW order parameter p′ dereases in a similarway for all periods, f. Fig. 2.11(a), as well as for even period (λ = 4) when theinterladder oupling is swithed on (ase B). Remarkably, a qualitatively dis-tint behaviour is found for odd periods � here the interladder oupling supportsthe onset of the CDW phase and the order parameter either saturates or eveninreases with inreasing strength of the on-site repulsion Up (as for λ = 3), seealso Fig. 2.11(). In fat, the interladder oupling enhanes the hole density inthe rungs.Another striking e�et is the qualitatively distint behaviour of the Zhang-Rie dispersion σ2 for odd and even periods, see Fig. 2.11(b). While for period46
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Figure 2.11: The CDW ground state for inreasing Up: (a) CDW order pa-rameter p′ and (b) Zhang-Rie singlet dispersion σ2, for λ = 5, 4, 3 shown bysolid, dashed, and dotted lines (squares, triangles, and irles) in ase A (B), seetext; () for λ = 3 harge on opper (oxygen) sites in the rung shown by solid(dashed) line in ase A and by squares (irles) in ase B, see Eq. (2.59); (d)for λ = 4 harge in di�erent y orbitals (nȳ, ny1, and ny2, shown by diamonds,triangles down, and up) in the rung in ase (B), see text. Vertial lines markthe realisti value (Ref. [51℄) of Up = 3tpd. Parameters: ∆ = 3tpd, U = 8tpd.
λ = 4 swithing on the interladder oupling (B) drastially inreases σ2 withrespet to the single ladder ase (A), the results are preisely opposite for oddperiods λ = 3, 5. Furthermore, this inrease of σ2 with Up in ase (B) is largefor even period � its value ∼ 0.1 found for large (but still realisti) Up ∼ 3.5tpdis omparable to the value of the Zhang-Rie dispersion for a single ladder with
∆ ∼ tpd [Fig. 2.10(d)℄, where we do not expet stable Zhang-Rie singlets.This large inrease of σ2 in this ase follows from the geometrial frustrationof the CDW state, as for even periods the two y orbitals in the same rung arenot equivalent [one of them (say y1) is loser than the other one (say y2) tothe rung in the neighbouring ladder℄, as shown in Fig. 2.11(d). We have alsoveri�ed that the mean hole density nȳ = 1

2 (ny1 + ny2) almost does not hangewhen the interladder oupling is swithed o� (not shown).Thus, the interladder interation: (i) supports the CDW states with oddperiods λ = 3, 5 and slightly disfavours the frustrated CDW state with evenperiod λ = 4, (ii) destabilizes (strengthens) the homogeneous Zhang-Rie�typedistribution of holes in the rungs for period λ = 4 (λ = 3, 5 ), respetively.Final onlusions.�- Altogether, the above alulations show that the Zhang-Rie�type distribution is stable in the odd-period CDW ground state of theharge transfer model. In partiular, in suh a harge ordered states it is notdestroyed due to the interladder interation, i.e. due to the on-site repulsionbetween holes on di�erent oxygen p orbitals belonging to two neighbouring lad-ders.It is only in the even-period CDW (i.e. λ = 4) that the interladder in-47



RungZhang−Rice bridge orbital

leg orbitalsFigure 2.12: Artist's view of the Zhang-Rie singlet (left panel) and rung-entred(rung) hole (right panel) in a Cu2O5 luster. Large (small) arrows depit the holespins for +1.0 (+0.25) harge. The red arrows stand for spins of doped holes.teration destabilizes the homogeneous Zhang-Rie�type distribution of holes.Although, it is not of suh an importane for us as we are mainly interested inexplaining the onset of the odd-period CDW order, this result does not meanthat the true Zhang-Rie singlets will be destabilized in this ase. Atually, inreality the Zhang-Rie singlets are even more robust than the ones disussed inthis setion � the energy gain due to quantum �utuations and phase ohereneare not aptured in these lassial states (see also Se. 2.3.3 for more disussionon the binding energy of the true Zhang-Rie singlets).Thus, we onlude that the Zhang-Rie singlets are rather `rigid' objets evenin their extremely simpli�ed lassial version. Their true quantum-mehanialounterpart with muh bigger binding energy is expeted to be even more `rigid'and is not destroyed due to the interladder interation.2.5.3 Rung states or Zhang-Rie singletsPurpose of the setion.� The purpose of this setion is to investigate the in-�uene of the lower energy of the rung (alled also bridge) oxygen orbital, withrespet to the on-site energy of the other (alled leg) orbitals, on the stability ofthe Zhang-Rie singlets. Hene, one ould expet that instead of the Zhang-Riestate a rung-entred state (rung) ould be stabilized with a doped hole residingon the O (2p) bridge orbital and bound to the two neighbouring Cu holes viasuperexhange interations (f. Fig. 2.12).Zhang-Rie versus rung states in harge transfer model.� We solve theharge transfer model (2.1) in a somewhat similar way as in the previous se-tion. There are two di�erenes: (i) we do it merely for the single ladder andfor only one hole doping nh = 4/3, (ii) we assume that the CDW state withperiod λ = 3 is formed by one Zhang-Rie singlet or rung state per rung (seeFig. 2.12). Let us note, that this means that the orresponding CDW state hasless harge (oxygen holes) per every third rung. This stays in ontrast with allthe previous alulations and with the experimental results [8, 9℄. However, thepurpose here is to merely verify how the lower value of the bridge orbital energyin�uenes the stability of the Zhang-Rie state.Qualitatively the results are as follows. For ε = 1 the hole and magnetiza-tion distribution resembles the ones in lassial Zhang-Rie state (see previous48



setion): the doped hole is distributed rather isotropially among four oxygensites surrounding the entral opper site oupied by roughly one hole. Alsothe spin of the doped hole in the oxygen (2p) orbitals ompensates roughly thespin of the hole in the opper site. On the other hand, for ε = 0.8 the dopedhole enters mainly into the b orbital when the holes are transfered from the porbitals of the leg of the ladder, suggesting a rung harater of the doped hole.Let us also note that, in agreement with the assumption of harge order, we�nd a CDW state with less harge per every third rung of the ladder for thesolution with Zhang-Rie or rung harater.In order to quantitatively investigate the role of the spei� spin laddergeometry on the stability of the Zhang-Rie and rung states we alulate thedensities and magnetization of holes involved in forming:(i) the (lassial) Zhang-Rie state:
nZR = nix + niy1 + niy2 , (2.62)for i belonging to the rung with enhaned hole density and y1 as well as y2orbitals de�ned as in the previous setion and
|mZR| = |nZR↑ − nZR↓|, (2.63)where we exlude the b orbital from the sum to be able to distinguish betweenthe rung and the Zhang-Rie states;(ii) the rung state:

nRung = nib, (2.64)for i belonging to the rung with enhaned hole density and
|mRung| = |nRung↑ − nRung↓|. (2.65)The results are shown in Fig. 2.13(a) as a funtion of the on-site energy ofthe bridge orbital ε. We �nd that with the dereasing value of ε doped holestend to oupy the b orbital, and the spins of the holes in the b orbital beomepolarized. Besides, the spins of the holes involved in forming Zhang-Rie statedo not only ompensate the spin of the entral opper hole but for ε < 0.85 evenweakly align ferromagnetially with the opper spin. Hene, we suggest that for

ε < 0.85 the doped holes show a rung harater while for ε > 0.9 they showa distintive Zhang-Rie-singlet harater separated by a rossover regime. Itmeans that the Zhang-Rie state is stable for the value of ε = 0.92, alulatedin Ref. [52℄, though we are very lose to the rossover regime.Binding energies for the Zhang-Rie versus those for the rung states.� Letus now pose the question to what extent our results are relevant for the stabilityof the real quantum-mehanial Zhang-Rie singlets or rung states. Therefore,using seond order perturbation theory in U and U−∆ [26℄ (see also Se. 2.3.3)we alulate the binding energy of a single hole doped into Zhang-Rie and rungstates: in the lassial ase (EZR and ERung, respetively), and in the quantum-mehanial ase (E|ZR〉 and E|Rung〉, respetively). In the lassial ase, whihresembles the states obtained in the mean-�eld approximation (see above), one49
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〉
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, (2.66)

ERung = ε∆ + J ′
〈 ∑

i∈Rung

Si · SO− 1

4

〉

Rung
, (2.67)where: the superexhange J ′ = 2t1 + 2t2,6 SO is the spin of the doped oxygen(2p) hole, Si is the spin of the opper (3d) hole, and the sum inludes those op-per sites whih are involved in forming a bound state with the oxygen (2p) holein rung or Zhang-Rie state. The expressions for the energies in the quantum-mehanial ase look similar exept for the averages of the spin operators whih,unlike in the lassial ase, inlude also spin �utuations. In addition, for thereal Zhang-Rie singlet we inlude the phase oherene of holes doped into theoxygen (2p) orbitals [26℄ (i.e. we assume that the holes are distributed amongthe oxygen orbitals in a symmetri way, see also Se. 2.3.3). The results areshown in Fig. 2.13(b) as a funtion of the energy of the bridge orbital ε.We �nd for the lassial state that for ε < 0.97 the energy di�erene (EZR −

ERung) is larger than the e�etive hopping energy t of the oxygen (2p) hole(= t2pd/U or t2pd/(U −∆)). Hene for �nite bandwidth the rung state ould onlybe stabilized up to the above value of the bridge orbital energy, qualitativelyin agreement with the previous mean-�eld results. However, in the quantummehanial ase the rung state ould never be stabilized, and due to the largeenergy di�erene (E|ZR〉 − E|Rung〉) the true Zhang-Rie singlet should not bedestabilized by �nite bandwidth.6Where the very small ontribution due to �nite Up is negleted, see also Table 2.1. Besides,
t1 and t2 should be slightly modi�ed for ε 6= 1 but the hange would be rather small.50



Conlusions.� In summary, this setion shows again a profound stabilityof the Zhang-Rie singlets in the hole doped spin ladders. First, using themodel harge transfer alulations in the mean-�eld approximation we obtainthat the isotropi distribution of doped holes among the oxygen (2p) orbitalssurrounding the entral opper (3d) hole is stable. Seond, quantum-mehanialalulations of the binding energy of holes forming Zhang-Rie singlets and rungstates suggest the Zhang-Rie singlets to be even more stable.2.6 ConlusionsPurpose of this hapter.� The purpose of this hapter was to explain theoret-ially the onset of the CDW state in the telephone number ompound for onlyseleted values of x while using a model whih merely ontains on-site Coulombinterations. In partiular the questions to be answered in this hapter were: (i)what the proper t�J model for the oupled Cu2O5 ladders, whih would arisedue to the on-site Coulomb interations, looked like, and (ii) whether this modelould explain the onset of the CDW order with partiular periods for partiularvalues of x in Sr14−xCaxCu24O41. Let us now answer these questions.Form of the proper model.� As disussed in Se. 2.2 the standard t�Jmodel solved for the single ladder lead to the results whih are inompatiblewith the experimentally observed CDW state in the oupled Cu2O5 ladders inSr14−xCaxCu24O41. In fat, the Cu2O5 ladder is a harge transfer system andthe Zhang-Rie sheme [26℄, whih enables the derivation of the t�J model fromthe harge transfer system, has never been done (as far as we know) for a singleladder with no D4h symmetry. In addition, the spei� geometry of oupledladders ould lead to new interations due to the on-site repulsion betweenholes on the di�erent oxygen orbitals belonging to two di�erent ladders (seeFig. 2.4).Thus, in Se. 2.3 we derived the proper t�J model for oupled ladders,starting from the appropriate harge transfer model (see Se. 2.3.1) and us-ing the Zhang-Rie sheme [26℄. First, we showed that the kineti t part andthe superexhange J part of the new model were similar to the kineti and su-perexhange parts in the standard t�J model, see Se. 2.3.3 and 2.3.2. This isbeause: (i) the holes do not hop between the oupled ladders as the interoxygenhopping an be negleted [39℄, (ii) the superexhange proesses along the 900bonds are rather weak (see Se. 2.3.2).Next, in Se. 2.3.4 we disussed the repulsion between the Zhang-Rie sin-glets (or e�etively between the opper spins in the new t�J model) in the sameladder. This term arises due to the �nite on-site interation Up between holeson the same orbital in the oxygen sites but belonging to two nearest neighbourZhang-Rie singlets. Although, a similar term should also be present in theproper t�J model for CuO2 planes, it is usually negleted as it is roughly twiesmaller then the superexhange term J . Atually, a very similar result is ob-tained for the ladder geometry but this was not a priori so lear. Besides, thisserved as a nie exerise before we we proeeded further to derive the ruialinterladder interations (see below).The last, but ertainly not least, term whih onstitutes the new proper t�Jmodel for oupled ladders is the interladder repulsion between the Zhang-Riesinglets (or again e�etively between the opper spins in the new t�J model) in51



two di�erent ladders, see Se. 2.3.5. This term also originated from the on-siteinterations between holes situated on the same oxygen orbital sites but thistime belonging to two di�erent orbitals in the two nearest neighbour Zhang-Rie singlets on neighbouring ladders. Sine, suh Zhang-Rie singlets sharetwo oxygen sites suh a term should be four times as big as the intraladderinteration (as the Pauli priniple does not prohibit holes with the same spinon the same oxygen site but di�erent orbital). In fat, a detailed hek showedthat a realisti Hund's exhange redued this interation and it turned out thatthe interladder repulsion is twie stronger than the intraladder repulsion. This,however, means that for realisti harge transfer parameters [39, 51℄ it is roughlyas strong as the superexhange J and annot be negleted.The stability of the CDW state.� Having derived the proper model, in orderto establish whether the CDW state ould be stable in the oupled ladders, wepresented the solution of this model in Se. 2.4. The model was solved usingthe the slave-boson approah (see Se. 2.4.1) and the mean-�eld deoupling(see Se. 2.4.2) and the ground state properties were disussed in Se. 2.4.3).We showed the the CDW state ould be stable in the system entirely due tothe interladder interation. In partiular, rather realisti values (see detaileddisussion in Se. 2.4.3) of this interation led to the stability of the CDWstate: (i) with period λ = 3 for the nh = 4/3 holes (n = 2/3 �lling), (ii)with period λ = 4 for the nh = 5/4 holes (n = 3/4 �lling), (iii) with period
λ = 5 for the nh = 6/5 holes (n = 4/5 �lling). Thus, the CDW phase with thepeuliar periods λ = 3 or λ = 5 ould indeed be stable in the ladder system.Furthermore, in the slave-boson and mean-�eld approah it ourred that theCDW state with period λ = 4 ould not be stable in the system merely due tothe superexhange J and more sophistiated methods are needed, see Ref. [10℄.Validity of the results.� In the end of the hapter, we also disussed thevalidity of the results (Se. 2.5.1) and of the model itself (Ses. 2.5.2-2.5.3).It is interesting to note that neither (i) the on-site repulsion between holes ondi�erent oxygen orbitals belonging to two neighbouring ladders (Se. 2.5.2), nor(ii) the lower on-site energy of the oxygen site in the middle of the ladder rung(Ses. 2.5.3) lead to the destabilization of the Zhang-Rie singlets. Therefore,the Zhang-Rie sheme indeed ould have been used to derive the proper t�Jmodel for oupled Cu2O5 ladders.Final remarks.� To onlude, let us stress that the t�J models for theladders are used frequently [10, 11, 45℄ as they are omputationally simplerthan the 2D t�J models. Here we showed that for the t�J model on a ladder tobe indeed physially meaningful, and thus ould well desribe a realisti laddersubsystem found in Sr14−xCaxCu24O41, one should add the nearest neighbourinterladder repulsive term.As a postsriptum, let us note that we have not resolved the problem ofthe peuliar absene of the CDW state with even period in Sr14−xCaxCu24O41.However, in Se. 2.7 we desribe a toy-system onsisting of two oupled hainsin whih suh a CDW ould beome unstable. Obviously, this does not answerthe question of the stability of the CDW state with even period and should berather treated as an interesting `side story'.52



2.7 Postsriptum: destabilizing even-period-CDWstate in a toy-modelProblem with CDW state with period λ = 4.� The biggest drawbak of theresults showed in this hapter is that they do not explain why the CDW orderwith period λ = 4 is not stable in the Cu2O5 oupled ladders in Sr10Ca4Cu24O41[8℄. Indeed, as shown in Fig. 2.8 the CDW state with period λ = 4 has similarfeatures as the CDW state with odd period λ and there are no signatures thatthis partiular state an beome unstable. In fat, we ould have expeted thatthe CDW state with period λ = 4 ould have beome unstable, sine for theeven period it is impossible to make a CDW state in the neighbouring ladderequally distant from the CDW state in the ladder under onsideration. This isvisible in Eq. (2.54) where we have some freedom in hoosing the CDW state inthe neighbouring ladder so that to satisfy the ondition that it is as distant aspossible from the CDW state in the ladder under onsideration. However, thismehanism did not yield any instability, see Fig. 2.8.On the other hand, it is visible that it is the ratio of the interladder in-teration V2 to the kineti energy whih plays a ruial role in the stability ofthe CDW state, see disussion in Se. 2.4.3. Sine at the same time in the theonstraint of the double oupanies is treated at the mean-�eld level, it may bethat we overestimated the kineti energy in our alulations. Thus, if we wereable to redue it, then it may be that we would disover the di�erent behaviourof the even-period-CDW state (whih is now `overed' by the overestimatedkineti energy).Toy-model for two oupled hains.� In order to verify the above idea, weintrodue the model with merely two oupled hains. As here, we will have norungs, the mobility of the arriers will be redued and perhaps we would be ableto observe a di�erent behaviour of the CDW state with period λ = 4.The toy-model for two oupled hains is de�ned as follows,
H1D = −t

∑

iσ

(
d̃†iσ d̃i+1,σ + H.c.

)
+ V2

∑

i

(
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, (2.68)with all the symbols as in Se. 2.3 and merely the leg-index α skipped (as wehave only two interating legs). This model an be obtained from the t�J�V1�V2model (2.2) by putting V1 = 0 and J = 0 as well as by negleting the existeneof one of the legs of the ladder. Note that taking V1 and J �nite does notintrodue any new physis in our mean-�eld approah, see Se. 2.4.3.Results.� We solve the model (2.68) in a similar way as model (2.2): (i) weintrodue the slave bosons approah, (ii) assume ondensation of bosons, (iii)deouple the interation between the new fermions f in a mean-�eld way, and�nally (iv) assume the existene of the CDW order parameter p (see Se. 2.4for more details). The result is shown in Fig. 2.14.We see that the results resemble those found earlier for the ladder (see Fig.2.8) with two exeptions: (i) the CDW with λ = 3 is stable for muh smallervalue of the ratio V2/t, and (ii) the CDW with period λ = 5 does not have a`usp'. While the latter is due to a distint (and simpler) band struture for thehain (f. disussion about the 'usp' in Se. 2.4.3) and is not of big importanehere, the �rst di�erene is striking and needs some more studies. In partiular,this results in a very appealing interpretation of Fig. 2.8: sine the CDW order53
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7Whih is only a. 20% smaller than the 0.5t value alulated using Eq. (2.38) andparameters from Ref. [39, 51℄. 54



Chapter 3Verifying the idea of orbitallyindued hole loalizationThis hapter is based on the following publiations: (i) K. Wohlfeld, `Polaron inthe t-J models with three-site terms: the SU(2) and the Ising ases', AIP Confer-ene Proeedings 1014, 265-269 (2008); and (ii) K. Wohlfeld, M. Daghofer, A.M. Ole±, P. Horsh, `Spetral properties of orbital polarons in Mott insulators',Physial Review B 78, 214423/1-24 (2008).3.1 IntrodutionDoping Mott insulators with holes.� The Mott insulators, i.e. suh insulatorsin whih eletrons loalize due to the strong on-site Coulomb repulsion U , arebest understood in the so-alled `ommensurate ase' [2, 54℄. Then the averagenumber of eletrons per site is an integer number and in the low-temperatureMott insulating phase the hopping between the neighbouring sites in the lattieis not allowed as it osts energy U > W (where, as in the previous Chapter,
W = 2zt with t being the strength of the largest hopping element while z isthe oordination number in the hyperubi lattie). Atually the reason whythis state is well understood is the onset of the assoiated magneti and/ororbital ordering in suh a ase: the eletrons in the `ommensurate ase' an stillperform virtual hoppings whih lower the total energy of the system and whosemagnitude strongly depends on the alignment of the spins of the eletrons onthe neighbouring sites. Suh virtual proesses, alled superexhange proesses,lead to some kind of magneti ordering and/or orbital ordering.1 Thus, morepreisely, it is the assoiated magneti and/or orbital ordering whih is well-understood in the `ommensurate ase' while the Mott insulating state itself isstill far from being understood (despite over 70 years of researh [20, 66℄).A somewhat similar situation ours in the `non-ommensurate' ase, i.e.when the number of eletrons in the system is not an integer number (see Refs.[20, 28℄ for a not-up-to-date but nevertheless a thorough review on this extremelybroad subjet). Sine always the limiting ases are the most interesting ones1The detailed form of the magneti and possibly orbital ordering depends on the details ofthe band struture. 55



in physis (as being the easiest to study), one typially looks at the problemwhen the number of eletrons in the Mott insulating systems is very lose tothe integer number. At this stage one should make a remark on the language:atually when we just take out a fration of eletrons from suh a `ommensurate'Mott insulator, then it is easier to talk about introduing holes into the Mottsystem. Anyway, in these hole doped Mott insulators one again faes a similarproblem as the one desribed in the above paragraph. Again, it is di�ult todisuss the hole doped Mott insulating state itself. On the other hand, one anrelatively easily disuss what happens when the holes are introdued into theassoiated magneti and/or orbital ordering.Motion of a single hole in Mott insulators.� The simplest problem whiharises when the holes are doped into Mott insulators ould be stated as follows:what happens when merely a single hole is introdued into the `ommensuratestate' [21, 67℄. Would suh a hole be on�ned (loalized) or would it rathermove oherently through the lattie? As disussed above suh a general questionwould be rather di�ult to answer. Instead it would be muh easier to verifywhat happens when a single hole is introdued into the magnetially/orbitallyordered state whih ould be onomitant with the Mott insulating state itself.Inter alia, one should mention here that there is a very attrative idea thatthe mere presene of orbital degeneray in the transition metal oxides leads tothe hole on�nement in the strongly orrelated eletron system. As alreadymentioned in the Prefae to the thesis this is baked by the following fats: (i)the manganites show a olossal magnetoresistive e�et [12, 13, 14, 15℄ whih anbe attributed to the orbital degeneray [16, 17, 18℄, and (ii) the transition metaloxides with orbital degeneray (e.g. manganites or vanadates) have muh morestable insulating phases with hole doping [15, 19℄ than the uprates withoutorbital degeneray [20℄.Atually, in two simple magnetially/orbitally ordered states suh a problemwas already investigated (see below) and (out of the simplest possible orderings)it is only in a peuliar Mott insulator with t2g orbital degrees of freedom thatthe answer to the problem is not yet settled � it is the purpose of this hapterto investigate this problem. Let us �rst, however, give a brief overview of thesetwo already investigated ases of the single hole in the magnetially/orbitallyordered states.Absene of hole on�nement in the AF phase.� If, in the Mott insulator, thehighest oupied orbital in the ions with un�lled eletroni shells is not degener-ate with any other orbital (whih ould in priniple happen in some partiularrystal �eld, see below) and if the ions themselves form a ubi lattie, thensuh a Mott insulating state develops an AF order below a ritial temperature
TN in the `ommensurate phase' [54℄. A typial example is the 2D AF planeformed by CuO2 sheets of atoms in, for example, La2CuO4 (the parent om-pound for high-Tc supereondutors) or Sr2CuO2Cl2 [68, 69℄. When a singlehole is inserted into suh a state then it forms a defet in the AF bakground[21℄. Naively, i.e., onsidering the fat that the AF state at temperature T = 0and in 2D has a lassial Néel order, one expets that a propagating hole woulddisturb the AF bakground and generate a string of broken bonds, with everinreasing energy ost when the hole reates defets moving away from its initialposition. This suggests hole on�nement as realized already four deades ago[21℄. Nevertheless, the quantum nature of this problem leads to a new quality:a hole in the AF Mott insulator an propagate oherently on the superexhange56



Figure 3.1: The energy splitting of the 3d states of the ion plaed in the ubirystal �eld into: (i) the t2g levels (3 degenerate states: dxy, dzx and dyz) and (ii)the eg levels (2 degenerate states: dx2−y2 and d3z2−r2). The �gure is reproduedafter Ref. [71℄.sale J whih ontrols AF quantum �utuations [22, 23, 70℄, beause they healthe defets arising on the hole path. Cruial for this observation is the preseneof transverse spin omponents ∝ (S+
i S

−
j + S−

i S
+
j ) in the e�etive low-energyHeisenberg model derived from the appropriate superexhange interations.Orbital degeneray.� Quite often the highest oupied orbital on the ionswith un�lled shells in the Mott insulators is energetially degenerate with oneor more other orbitals. This gives rise to a rih variety of phenomena [72, 73, 74℄whih ould jointly be termed as `orbital physis'. For example, if the ions areplaed in the ubi rystal �eld, then for instane the 3d levels are split intotwo distint degenerate levels: (i) the lower lying t2g levels (3 degenerate states:

dxy, dzx and dyz) and (ii) the eg levels with higher energy (2 degenerate states:
dx2−y2 and d3z2−r2); f. Fig. 3.1. This is due to the high symmetry of therystal �eld: obviously in the spherially symmetri �eld of the nuleus (as isthe ase of the single hydrogen atom) all 3d orbitals are degenerate whereasthe less symmetri rystal �eld ould in priniple remove the degeneray of the
t2g or eg levels. In the `textbook' example of the orbitally degenerate systemLaMnO3 the manganese ions have 3d4 on�guration and, in the ioni piture,the highest oupied level is the degenerate eg level: in the absene of any otherproesses (see below) there would be 50% probability to �nd the eletron in thestate dx2−y2 and 50% probability to �nd the eletron in the state d3z2−r2 .Furthermore, in the orbitally degenerate Mott insulators the superexhangeproesses are more ompliated as they have to involve the orbital and spindegrees of freedom on equal footing [72, 73℄. This ould lead to the onset of boththe magneti and orbital order in the system. The partiular kind of this orderdepends on the symmetries of the orbitally degenerate orbitals. This in turnsmeans that the behaviour of the single hole doped into the Mott insulator withorbital degrees of freedom would depend on the kind of the orbital degeneraypresent in the system [75℄.Absene of hole on�nement in systems with eg AO order.� As already57



mentioned above one of the most prominent examples of the orbitally degeneratesystems is LaMnO3. There, in this `ommensurate ase', the superexhangeproesses lead to the development of the AO order onomitant with the FMspin alignment in the ab plane and the FO order with spin AF order along the
c diretion [76℄.2 Similarly as in the purely spin ase (hole in the AF state, seeabove), one ould think that the doped hole would be on�ned in the plane ofsuh an ordered state. This time the reason is that the superexhange proesseswhih lead to the AO order are muh more lassial and the AO order is muhmore robust than in the spin AF ase [29℄. However, also here the hole �nds away to propagate: the oherent propagation arises not only due to the very smallbut still �nite quantum �utuations present in the system but predominantlydue to the possibility of the eg interorbital hopping whih allows for the holemotion without disturbing the AO bakground (whih in the spin languagewould orrespond to the spin-�ip hopping) [77℄.Main goals of the hapter.� As the t2g orbitals have naturally distint sym-metries than the eg orbitals one expets a di�erent behaviour when the hole isdoped to the system with t2g orbital degrees of freedom. A natural questionarises then: would the hole be on�ned in suh a Mott insulator? This questionis of high theoretial importane sine the hole on�nement in suh a systemwould mean that it is possible to have orbitally indued hole loalization inMott insulators. Of ourse the reverse is not true: negative answer to the abovequestion would not mean that the hole on�nement in the orbital systems wereimpossible. One ould imagine that there exist other mehanisms whih loalizethe hole in the orbital systems � for example due to the interations indued bythe lattie. However, the simplest possible mehanism, as the one disussed inthis hapter, would be outruled.Therefore, the main goals of the hapter are: (i) to establish what the min-imal t�J model, whih ontains the t2g orbital degrees of freedom and bears itstruly distintive features, looks like, (ii) what is the undoped ground state of thismodel (e.g. whether the quantum �utuations exist in the ground state), and(iii) whether the doped hole an move oherently in suh an undoped groundstate.Struture of the hapter.� The hapter is organized as follows. In Se. 3.2we start the analysis by looking at the antiipated features of the new t-J modelwhih is derived in Se. 3.3. Next, the model in the ase of the one hole added tothe undoped ground state is solved: (i) we redue the model to the polaron-typeHamiltonian using the slave fermion approah in Se. 3.4.1, (ii) we derive theequations for the Green's funtions using the SCBA method in Se. 3.4.2, (iii)we solve the equations obtained in point (ii) numerially on a �nite mesh of themomentum k points (Se. 3.4.3). Then, in Se. 3.5 the results are disussed:(i) its validity, see Se. 3.5.1, (ii) the explanation why the dispersion relationof the doped holes is stritly 1D, see Se. 3.5.2 (see also Appendix A), and (iii)we analyse how the three-site terms lead to the renormalized dispersion of thedressed hole in Se. 3.5.3. Finally, the onlusions are written in Se. 3.6 whilein the Postsriptum in Se. 3.7 the experimental onsequenes of the obtainedresults are studied (see also Appendix B).2While the Jahn-Teller e�et only further stabilizes suh an order.58



Figure 3.2: The possible hopping elements between the t2g orbitals when theoxygen p orbitals are plaed between them: (a) the hopping between di�erent
t2g orbitals is zero, (b) the hopping between the same t2g orbital is possible onlyin the partiular plane (the hoie of the plane depends on the orbital underonsiderations: e.g. for the dxy orbital is is the ab plane). Both panels arereprodued after Ref. [71℄.3.2 The t2g orbital t�J model with three-site terms`Rough' preditions of the new t�J model.� Let us look at the antiipatedfeatures of the new t�J model. Atually, the hoie of the new t�J model wassomewhat left arbitrary: we have merely noted in the introdution that weintend to study the features of suh an orbital t�J model that the symmetriesof the t2g orbitals would be demonstrated `at most'. Atually, this not a verytransparent ondition and thus let us �rstly desribe what we mean by thesedistintive features. In Fig. 3.2 we show the possible hopping elements betweenvarious t2g orbitals. Whereas Fig. 3.2(a) merely shows that the interorbitalhopping is prohibited the most striking feature is shown in Fig. 3.2(b): theeletrons in dxy ≡ c orbital an hop in the ab plane whereas they annot hopalong the c diretion. A similar phenomenon ours for dzx ≡ b (hopping onlyin the ac plane) and dyz ≡ a (hopping only in the bc plane) orbitals. Thismeans that hoosing that the c orbital has higher energy (whih ould happenin realisti systems, f. Sr2VO4) and looking at the plane with eletrons onlyin the a and b orbitals one an get rid of all the quantum �utuations in thesuperexhange proesses: this is beause then the exhange proess is impossibleas the same eletron whih performs a virtual hop to the neighbouring site hasthen to return to the original site. Thus, without any alulations, one animmediately see that the ground state at half-�lling of the appropriate t�Jmodel for spinless eletrons would be the Néel AO state (i.e. an ordered statewith two sublatties: one with eletrons loalized in a orbitals and the otherone with eletrons in b orbitals) and is an exat ground state, i.e. it does notontain any quantum �utuations.What happens when one adds a single hole to suh a state? This has alreadybeen partially disussed in the Introdution but is also shown shematially inFig. 3.3. It presents in a shemati way a few �rst steps in the motion of a59



(a) (b)

(d) (c)Figure 3.3: Shemati view of the antiipated hole motion in the t2g orbital
t�J model with AO order formed by a and b orbitals. Cirles depit holes whilehorizontal (vertial) retangles depit oupied b (a) orbitals with eletrons thatan move only horizontally (vertially), respetively. The hole inserted in theAO state (a) an move via nearest neighbour hopping t, and interhanges itsposition with an eletron, so that it has to turn by 90◦ in eah step along itspath and leaves behind broken bonds leading to string exitations with everinreasing energy (b) and (). After moving by 270◦ around a plaquette (d),the hole annot return to its initial position as would be neessary to ompletethe Trugman path [78℄.hole inserted at a seleted site into suh a Néel ordered ground state with noquantum �utuations. When the hole moves via the nearest neighbour hopping
t, it reates string exitations in eah step that annot be healed by orbital�ips beause the orbital superexhange is purely Ising-like. Moreover, it aneven not heal the defets by itself beause it annot omplete a Trugman loop[78℄ when the orbital defets are reated and three oupied orbitals are movedantilokwise on a plaquette after the hole moved lokwise by three steps, seeFig. 3.3(d). Thus, the hole is on�ned in the t2g orbital t�J model.Reasons for wrong preditions.� A priori there should be no reason why notto believe in the onjeture written above: provided, the detailed mathematialalulations on�rm the above analysis one ould indeed make a laim that `thehole is on�ned in the t2g AO ordered state'. However, in the last setion wedisussed in detail how a hole ould move in the spin AF state or in the eg AOstate. In both ases the hole at �rst ould be thought to be immobile and onlythe detailed study and inlusion of some negleted proesses (suh as quantum�utuations or interorbital hopping) leads to the onlusion that the oherenthole motion is possible. This `historial perspetive' suggests that also this timeone has to be very areful while negleting any proesses whih ould be essentialin the Hamiltonian to faithfully desribe the properties of the system.There is yet, another, more physial, reason. In Ref. [23℄ it is shown thatwhen one studies the motion of a hole in the model without quantum spin �utu-ations, then some approximations whih are valid in the SU(2) symmetri aseno longer apply. More preisely, in the Ising ase the violation of the so-alled
C1 onstraint (see Ref. [23℄), stating that no hole and magnon an be presentat the same site in the e�etive polaron-model, leads to serious underestimationof the inoherent bandwidth while the same violation of this onstraint in the60



SU(2) symmetri ase does not ause any problem. Thus in the ase when the
SU(2) symmetry is absent in the model one has to be more areful with all theapproximations made.More areful approah needed.� There exists one serious approximationwhih is already a generi feature of the standard t�J model: the so-alledthree-site terms are negleted there, see Chapter 1. These terms are presentin any meaningfull anonial perturbation theory derivation of the t�J fromthe Hubbard model [1, 2℄. Atually, `why the full strong-oupling model [i.e.
t�J model with three-site terms � note added by K. W.℄ has reeived far lessattention than the t�J model is unlear' as Eskes and Eder write in Ref. [79℄.Most probably the reason an be that the three-site terms give a muh smallerontribution to the total energy than the superexhange term or the onstrainedhopping term: the latter two sale as ∝ J(1 − δ)2 or ∝ tδ (where δ ≪ 1 is thenumber of doped holes) while the three-site terms are ∝ Jδ. Indeed, inludingthe three-site terms in the standard t�J model does not yield any new quali-tative results onerning the hole motion in the AF state [80℄. Here, however,in what follows it will be shown that these terms are indeed needed to give aphysially relevant answer to the problem of orbitally indued hole on�nement.Thus, let us now present the derivation of the physially relevant t2g orbital t�Jmodel with three-site terms.3.3 The model3.3.1 The t2g orbital t�J HamiltonianHubbard-like model.� As the starting point we onsider the Hubbard-like modeldesribing eletrons in transition metal oxides with ative t2g orbitals when therystal �eld splits them into eg and a1 states, and the doublet eg is �lled byone eletron per site. This ours for the d1 on�guration (e.g. in the titanates)when the eg doublet has lower energy than the a1 state, or for d2 on�gurationwhen the eg states have higher energy and are onsidered here, while the a1state is oupied by one eletron at eah site and thus inative (as in the high-spin ground state of the RVO3 perovskites [81℄ where R stands for a rare earthelement). More preisely, we onsider eletrons with two t2g orbital �avours, aand b, moving within the ab plane. The eletrons in suh orbitals an propagateonserving the orbital �avour by the nearest neighbour hopping t, but only alongone diretion in the ab plane, see also Fig. 3.2. Furthermore, we assume thatthe system has an FM order whih means that all the spins are the same and forthe purpose of the studies presented below one an safely skip the spin index,see also [82℄. This results in the following orbital Hubbard model

H = −t
∑

i

(
b†i bi+â + a†i ai+b̂

+ H.c.
)

+ U
∑

i

nianib, (3.1)where a†i (b†i ) reates a spinless eletron with orbital �avour a(b) at site i, {nia, nib}are eletron density operators, and t is the hopping element along b or a axis.Similarly as in the Introdution U stands for the on-site interation energy fora doubly oupied on�guration. At the �lling of one eletron in {a, b} orbitalsper site this interation orresponds to the high-spin d2 (or d3) state (i.e. it or-responds to U−3JH in terms of element of the Coulomb interation between 3d61



eletrons, where U is the intraorbital on-site interation between two eletronsand JH is the on-site exhange element whih auses the Hund's rule energygain due to the FM alignment of two spins on the same site). As disussed indetail in Se. 3.2 suh a hoie of ative t2g orbitals guarantees that the t�Jmodel would bear all of the desired and distintive features of the t�J modelfor orrelated eletrons in t2g orbitals.Canonial perturbation expansion.� The task is now to apply to Eq. (3.1)the anonial perturbation expansion similarly as the one introdued in Chapter1 for the spin Hubbard model. Atually these alulations are done in the sameway as in that hapter and the only di�erene now is that the parts of theHamiltonian whih desribe proesses within/between the Hubbard subbandsare de�ned di�erently. Namely
H = H0 + H1, (3.2)where H0 desribes the physis within the Hubbard subband:

H0 =V + T0,
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∑
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∑
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, (3.3)while H1 is responsible for hopping proesses between di�erent Hubbard sub-bands:
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. (3.4)Central Hamiltonian of the hapter.� Then following the same steps as inChapter 1 we obtain the appropriate t2g orbital t�J model:3

H = Ht +HJ +H3s, (3.5)where the Ht is the kineti energy in the onstrained Hilbert spae with nodouble oupanies (see Se. 3.3.2), HJ desribes the superexhange terms (seeSe. 3.3.3), and �nally H3s are the three-site terms whih were negleted in the�nal t�J Hamiltonian in Chapter 1 (see Se. 3.3.4).3.3.2 The kineti energy termExpliit form.� Using Eq. (3.3) and the anonial perturbation expansion of3In the literature the t�J model with three-site terms is also alled the strong-ouplingmodel [80℄. However, to avoid onfusion we will not use this name sine throughout this thesiswe deal with several di�erent extensions of the standard t�J model and the strong-ouplingmodel is just another variation of suh extended version of the t�J model.62



Chapter 1 one obtains the kineti energy term,
Ht = −t

∑

i

(
b̃†i b̃i+â + ã†i ãi+b̂

+ H.c.
)
, (3.6)where the use of the operators

b̃†i = b†i (1 − nia), (3.7)and
ã†i = a†i (1 − nib), (3.8)mean that the hopping is allowed only in the onstrained Hilbert spae with nodoubly oupied sites.3.3.3 The Ising superexhange termExpliit form.� Following the same steps as in Chapter 1 and using Eq. (3.4)we obtain that the superexhange proesses for the Hubbard model under on-sideration take the form
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z
j − 1

4
ñiñj

)
, (3.9)where the summation goes over the pairs formed by the nearest neighbour sites

i and j. The parameter J is de�ned as
J =

4t2

U
, (3.10)while the pseudospin operators T zi is

T zi =
1

2
(ñia − ñib). (3.11)Here ñi = ñia + ñib and the superexhange vanishes when two eletrons withthe same orbital �avour oupy sites i and j.The Ising harater.� Note the total absene of the pseudospin-�ip terms

∝ (T+
i T

−
j +T−

i T
+
j ) in the superexhange interations whih are now purely Isingtype. This is beause along eah partiular diretion only one orbital �avour anhop: the virtual exhange proess∝ T−T+ in whih an eletron with for example

a orbital �avour makes a virtual exursion to the neighbouring site (whih ostsenergy U) and then an eletron with b orbital �avour returns is impossible[see the form of Eq. (3.4)℄. Sine only suh virtual proesses ontribute tothe pseudospin-�ip terms, the latter terms are absent. The same phenomenonexplains also the prefator 1
2 in Eq. (3.9). Nevertheless, the stritly 1D kinetienergy of the eletrons in the two orbitals leads to the 2D superexhange.Let us also note, that the pseudospin-�ip proesses ∝ (T+

i T
−
j + T−

i T
+
j )would be present in the (not onsidered here) model for strongly orrelated aand b eletrons along the c axis. In fat, this is the ase in a somewhat moreompliated spin-orbital model for ubi vanadates [83℄ where suh pseudospin�utuations are responsible for the onset of the AF order in the ab plane andthe FM order along the c axis in LaVO3 (see Ref. [83℄ and disussion in Chapter4). 63



3.3.4 The three-site termsOrigin of the three-site terms.� As disussed in Chapter 1 when one derivesthe t�J model from the Hubbard model one obtains also the so-alled three-siteterms whih also originate from the ∝ T−T+ virtual proesses. These terms areoften negleted [e.g. in the standard t�J model, see Eq. (1.22)℄ but here theywill turn out to be important and lead to qualitative hanges, see disussion inSe. 3.2.Expliit form.� We ast the three-site terms into two di�erent lasses:
H3s = H3s(l) +H3s(d), (3.12)where H3s(l) are the three-site terms along the line and H3s(d) are along thediagonal. It is relatively straightforward [using Eq. (3.4) and Eq. (1.18) fromChapter 1℄ to obtain their expliit form:

H3s(l) =− τ
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∑
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(ã†
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i b̃i±â + H..), (3.14)where

τ =
t2

U
. (3.15)Note that in priniple we ould have used J as the energy sale of the three-site terms but for didati reasons we de�ne a di�erent onstant whih will beonneted solely with the three-site terms. In what follows this will enable usto distinguish between the proesses related to the superexhange terms and tothe three-site terms.3.4 Method and results3.4.1 The slave-fermion approahSlave-fermion approah.� It is widely reognized that the entral di�ulty insolving any t�J model is the problem of ful�lling the onstraint of no doubleoupanies at eah site. There are several methods suggested to overomethis di�ulty in an approximate way. One of them is alled the slave-bosonmethod and is typially used for systems whih are relatively highly doped[20℄, f. Chapter 2. On the other hand, for the very lightly doped system themethod of hoie is the slave-fermion approah as it is quite good in desribingthe half-�lled ground state and its exitations (where it merely amounts to theintrodution of Shwinger bosons for spins and/or pseudospins [20℄). As in thepresent hapter we are interested in the properties of the system in the extremelylow doped regime we introdue the latter method in what follows and transformthe Hamiltonian H into the e�etive Hamiltonian Heff .Undoped ase: low energy exitations.� It is easy to verify that the lassialundoped ground state of the Hamiltonian Eq. (3.5) is the Néel ordered AOstate:
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∏
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∏

j∈B
b†j |0

)
, (3.16)64



with a orbitals oupied on the sublattie A and b orbitals oupied on thesublattie B is an exat ground state. Here |0) is the true vauum state with noeletrons, while |Φ0〉 is the physial vauum at half �lling. Next, let us onsiderthe low energy states. Below, we will alulate the orbital exitations (orbitons �see Ref. [84℄) at half �lling by transforming the pseudospins into the Shwingerbosons and then using the linear orbital wave (LOW) approximation.First, in the lassial state we introdue two sublatties A and B suh thatall a (b) orbitals are oupied in the perfet AO state in sublattie A (B). Nextwe rotate pseudospins on sublattie A so that the symmetry of the lattie isreovered, all the pseudospins in the whole lattie take positive values now,
〈T zi 〉 = 1/2, and the Hamiltonian hanges appropriately.Seond, we introdue Shwinger bosons t suh that:

T zi =
1

2
(nitb − ntita) (3.17)with the loal onstraint at eah site i

∑

γ=a,b

t†iγtiγ = 1. (3.18)Third, we transform the Shwinger boson operators into the Holstein-Primako�bosons β:4
t†ib =

√
1 − t†iatia ≡

√
1 − β†

i βi, (3.19)
t†ia = β†

i , (3.20)where the above onstraint is now no longer needed.Next, we substitute the above transformations into the Hamiltonian HJand skip higher order terms (LOW approximation). The latter approximationphysially means that the number of bosons β is small (whih is naturally thease for low energy states). This results in the e�etive substitution
T zi =

1

2
− β†

i βi. (3.21)Finally, we introdue Fourier transformation separately for eah sublattie(N is the total number of sites on both sublatties while N/2 is the number ofsites in eah sublattie):
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eikjβj, (3.22)

βkB =

√
2
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j∈B
eikjβj. (3.23)Then, after negleting onstant terms whih merely give the lassial energyof the undoped ground state, the LOW Hamiltonian for orbitons reads:

Heff
J = J
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(β†
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kBβkB), (3.24)4We denote the orbital exitations with β sine it is very ommon in the literature [23℄ touse α for spin exitations. 65



where the orbiton energy does not depend on momentum k. The fat thatthe exited states have higher energy than the ground state proves the stabil-ity ground state. In fat, the dispersionless exitations do not generate anyquantum orretions and the lassial ground state is exat.Doped hole: oupling with orbitons.� We expet that a doped hole does notmodify signi�antly the lassial ground state stable for the half-�lled ase (seeabove). The situation ould be di�erent in the lightly doped regime but in thease of one hole in the whole plane suh a modi�ation is negligible and will benegleted below. Instead, the doped hole may modify its neighbourhood by itsoupling to the exitations of the lassial ground state � orbitons � whihrenormalize the hole motion. In order to desribe it mathematially, we rewrite
Ht (see next paragraph) and H3s (see below) using similar transformations asperformed for the half-�lled ase.First, we rotate spins and pseudospins on sublattie A. Next, using the slave-fermion approah we express the eletron operators in terms of the Shwingerbosons introdued above and in terms of the (onstrained) fermioni operatorsrepresenting holes:

ã†i = t†iahi, (3.25)
b̃†i = t†ibhi. (3.26)Here the onstraint on the bosoni operators is as in Eq. (3.18) while h†ihidenotes the number of holes at site i.Next, similarly as above, we transform the Shwinger bosons into the Holstein-Primako� bosons, skip all terms ontaining more than two bosons, and performFourier transformation for bosons and (additionally) for holons to arrive at theHamiltonian:

Heff
t =

zt√
N

∑

k,q1

{
Mx(k,q1)h†kAhk−q1,Bβq1A+My(k,q1)h†kBhk−q1,Aβq1B+H..},(3.27)where z = 4 is the oordination number for the 2D square lattie and

Mµ(k,q1) =
1

2
cos(kµ − q1µ) (3.28)is the vertex funtion with µ = x, y. Thus, the hopping term Ht, Eq. (3.6),transforms into a sattering of holons on orbitons (orbital exitations), with themomentum onserved in eah sattering proess.Doped hole: free dispersion.� After performing similar transformations asthe ones introdued for the t part of the Hamiltonian one obtains that the linearthree-site terms, Eq. (4.13), lead to the following Hamiltonian for the holes

Heff
3s = τ

∑

k

{
εB(k)h†kBhkB + εA(k)h†kAhkA

}
, (3.29)where the free dispersion relations are

εA(k) = 2 cos(2ky), (3.30)66



and
εB(k) = 2 cos(2kx). (3.31)Note that we entirely neglet the diagonal three-site terms whih lead to theoupling between holes and orbitons. This approximation will be disussedfurther in the next setions.Thus, in the lightly doped ase, when the lassial orbital ordered groundstate present in the half-�lled ase survives, the t�J model (3.5) an be reduedto an e�etive model:

Heff = Heff
t +Heff

J +Heff
3s , (3.32)see Eqs. (3.24), and (3.27)-(3.29). Atually, this is a polaron-type model withthe oupling between fermions (holes) and bosoni exitations (orbitons) whihis rather straightforward to solve, f. next Setion. Besides, the validity of themapping between the two models will be disussed in Se. 3.5.1.3.4.2 The self-onsistent Born approximationGreen's funtions.� The spetral properties of the hole doped into the AOground state |Φ0〉 with energy E0 [see Eq. (3.16)℄ of the t�J model Eq. (3.5) athalf-�lling, treated here as a physial vauum, follow from the Green's funtions:

Ga(k, ω) =

〈
Φ0

∣∣∣∣a
†
k

1

ω +H − E0
ak

∣∣∣∣ Φ0

〉
, (3.33)

Gb(k, ω) =

〈
Φ0

∣∣∣∣b
†
k

1

ω +H − E0
bk

∣∣∣∣Φ0

〉
. (3.34)However, due to the mapping of the t�J model onto polaron model (3.32) per-formed in the last setion, it is now onvenient to express the above Green'sfuntions in terms of the polaron Hamiltonian Heff . This requires that one�rst writes down the eletron operators in terms of the operators used in Eq.(3.32):

ak =
1√
N




∑

j∈A
eikjh†j +

∑

j∈B
eikjh†jβj



 , (3.35)
bk =

1√
N




∑

j∈A
eikjh†jβj +

∑

j∈B
eikjh†j



 . (3.36)Seond, the ground state |Φ0〉 is now a physial vauum |0〉 with respet tothe orbiton operators βk with energy E alulated in the LOW approximation.Then, one arrives at the following relations:
Ga(k, ω) =

1

2

〈
0

∣∣∣∣hkA
1

ω +Heff − E
h†kA

∣∣∣∣ 0

〉
≡ 1

2
GAA(k, ω), (3.37)

Gb(k, ω) =
1

2

〈
0

∣∣∣∣hkB
1

ω +Heff − E
h†kB

∣∣∣∣ 0

〉
≡ 1

2
GBB(k, ω), (3.38)67
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Figure 3.4: Diagrammati representation of the perturbative proedure usedwithin the SCBA: top � the Dyson's equation for the GBB(k, ω) and GAA(k, ω)Green's funtions; bottom � the summation of diagrams for the self-energy
ΣBB(k, ω). Dashed (dashed-dotted) lines stand for Green's funtions for or-bitons on sublattie B (A). Equation for ΣAA(k, ω) is similar (not shown).where the above set of equations follows from the fat that βk|0〉 = 0 and thefator 1/2 is due to the operators hkA (hkB) being de�ned separately for eahsublattie. Note that here the ground state energy E is taken as a referene inorder to be able to ompare results of the present approah with those obtainedusing the variational luster approah (VCA) for the Hubbard model, see Se.3.5.1.Equations for the self-energy.� We alulate the above Green's funtions bysumming over all possible non-rossing diagrams (i.e. negleting losed loops),f. lower part of Fig. 3.4. However, the rossing diagrams do not ontributehere sine the losed loops (Trugman proesses) do not our, see Fig. 3.3.Sine the struture of the present problem makes it neessary that two Green'sfuntions and two self-energies are onsidered, we obtain the following SCBAequations for the self-energies (see also Fig. 3.4):

ΣAA(k, ω) =
z2t2

N

∑

q

M2
x(k,q)GBB(k − q, ω + J), (3.39)

ΣBB(k, ω) =
z2t2

N

∑

q

M2
y (k,q)GAA(k − q, ω + J). (3.40)The above equations should always be supplemented by the Dyson's equations:

GAA(k, ω) =
1

ω + J + τεA(k) − ΣAA(k, ω)
, (3.41)

GBB(k, ω) =
1

ω + J + τεB(k) − ΣBB(k, ω)
. (3.42)They, together with Eqs (3.39-3.40), form a self-onsistent set of equations whihhas to be solved numerially. 68
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Figure 3.5: The spetral funtions as obtained in the SCBA for the t2g orbital t�
J model (3.5) for a hole doped into: (a) a orbital, and (b) b orbital. Parameters:
J = 0.4t and τ = 0.1t. Broadening δ = 0.01t and luster size 20 × 20.Finally, one the Green's funtions are known, one an alulate the spetralfuntions for a hole reated in a and b orbital:
Aa(k, ω) = − 2

π
lim
δ→0

ImGa(k, ω + iδ) = − 1

π
lim
δ→0

ImGAA(k, ω + iδ) , (3.43)
Ab(k, ω) = − 2

π
lim
δ→0

ImGb(k, ω + iδ) = − 1

π
lim
δ→0

ImGBB(k, ω + iδ) , (3.44)where we introdue a fator of 2 in front of the de�nition of the spetral funtion
Aγ(k, ω) for onveniene.Note that the intersublattie Green's funtion GAB(k, ω) vanishes sine itwould imply that at least one defet was left in the sublattie B after the holewas annihilated in the sublattie A, resulting in orthogonal states as there areno proesses in the Hamiltonian whih ure suh defets [f. the form of theHamiltonian Eq. (3.32) and Fig. 3.4℄.3.4.3 The spetral funtions and quasipartile propertiesSpetral funtions.� The system of SCBA equations (3.39)-(3.42) was solvedself-onsistently on a mesh of 20 × 20 k-points (besides, the onvergene washeked by omparing the results with those obtained for the luster with 32×32
k-points). The spetral funtions are displayed in Fig. 3.5. Surprisingly, thespetral density onsists of dispersive ladder-like spetrum suggesting that thehole doped into any of the two orbitals is mobile. The dispersion is partiularlypronouned for the �rst (low-energy) exitation whih an be identi�ed as aquasipartile state. One �nds that the dispersion is stritly 1D and is ditatedby the orbital �avour at the site where the hole is originally added, i.e. nodispersion ours in the omplementary diretion. For example, a hole addedto the a orbital moves only along the b diretion.Hole propagation due to three-site terms.� Sine removing the three-siteterms from the Hamiltonian (3.5) leads to the disappearane of the dispersion(not shown) one an immediately asribe the onset of this small dispersion ∝ τto the hole motion via the three-site terms. Furthermore, then the spetralfuntions (whih onsist of dispersionless ladder-type peaks) are qualitatively69
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∆. All these quantities inrease with inreasing superexhange energy J (here
τ = J/4), see Fig. 3.6. One �nds that: (i) the bandwidth W1 of the �rstquasipartile peak, see Fig. 3.6(a), is proportional to J2 for small J (J < 0.7)and to J in the regime of large J (J > 0.7) � the bandwidth renormalizationis here distint from the one found either in the spin SU(2) (see Ref. [23℄) or inthe orbital eg models [77℄, (ii) the bandwidthW2 of the seond largest dispersivepeak [Fig. 3.6(a)℄ is smaller than that for the �rst peak and tends to saturateat a value W2 ∼ 0.25t obtained for larger J > t (not shown), (iii) the spetralweight aQP of the quasipartile peak, shown in Fig. 3.6(b), grows with J , and(iv) the pseudogap ∆ shown in Fig. 3.6() grows generally like t(J/t)2/3, whilefor higher J values some deviation from this law is observed for the k = (0, 0)point.Two problems left, to be studied in next setions.� Firstly, the lak of thequasipartile dispersion in one diretion, e.g. along the a diretion for a holedoped into the a orbital (see Fig. 3.5), is at �rst instane ounterintuitive: Oneould imagine that it should be allowed that the hole doped into the a orbitalswithes to a neighbouring site of the B sublattie by the t proess, and thenpropagates freely along the a axis by the three-site e�etive hopping τ withoutgenerating any further defets. This might in priniple lead to some dispersion70



in the spetra along the kx diretion. In Se. 3.5.2 we study this problem indetail.Seondly, one �nds that the bandwidth of the quasipartile is strongly renor-malized as it is muh smaller than its free value (alulated from the free three-site term dispersion) W = 2zτ = 2J . Furthermore, the totally di�erent meh-anism of hole motion in the onsidered here t2g orbital model and in the spinmodel [23, 85, 86℄ suggest that one annot explain the renormalization of thequasipartile bandwidth using any of the ideas proposed previously. In fat, themere dependene of the bandwidth on the superexhange energy sale J is aonvex funtion of J (see Fig. 3.6) whereas in the spin t�J model the band-width is a onave funtion of J [23, 85, 86℄. Thus, one needs to understandmirosopially how the three-site terms, whih lead to the dispersion here, arerenormalized � we investigate this issue in Se. 3.5.3.3.5 Disussion3.5.1 Validity of the resultsGeneral remarks.� As there are a number of approximations employed whilereduing the t2g orbital t�J model (3.5) to the polaron Hamiltonian (3.32) andthen a slightly new approah was used to solve the latter model using the SCBAmethod (see below), in what follows: (i) we look at three partiular problemsonneted with the approximations and methods employed in the previous se-tions, and (ii) we ompare the results obtained using the SCBA method for the
t2g orbital t�J model (3.5) with those obtained in the numerial VCA methodfor the Hubbard model (3.1).Sublattie-dependene of the Green's funtions.� Firstly, as it has been al-ready noted in the previous setion, if one skips the �avour-onserving three-siteterms (3.13), the alulated spetral funtions (not shown) reprodue the well-known ladder spetra and are equivalent to those alulated for the Ising limitof the spin t-J model [23℄. This means that the zig-zag-like hole trapping inthe orbital ase is physially similar to the standard hole trapping in the spinase (apart from the modi�ed energy sale due to a di�erent value of the su-perexhange, the ladder spetra are similar in both ases), whereas for the freehole movement obviously it matters whether the dispersion relation is 1D or2D. Moreover, this also means that in this speial ase (τ = 0) the spetra arethe same for holes doped into either of the orbitals as the Green's funtions arethe same for both sublatties. However, even in this ase it is not allowed toassume a priori that A = B and GAA(k, ω) = GBB(k, ω). In fat, these are twosublatties with two distint orbital states oupied in the ground state at half�lling, and eah orbital has entirely di�erent hopping geometry. This does nothappen in the standard spin ase with isotropi hopping, and for this reasonone an eliminate there the sublattie indies.Negleted three-site terms.� Seondly, the result shown in Fig. 3.5 is ob-tained by negleting the three-site terms with 90◦ hopping, see Eq. (3.14). Onemay wonder whether this approximation is justi�ed whereas the formally quitesimilar forward hopping term (3.13) is ruial and is responsible for the abseneof hole on�nement in the ground state with the AO order [85℄. Hene, let uslook in more detail at these two di�erent kinds of three-site terms, shown in Fig.71



Figure 3.7: Shemati representation of two three-site terms in the t2g orbitalmodel (3.5). Cirles depit holes while horizontal (vertial) retangles depitoupied orbitals with eletrons that an move only horizontally (vertially),respetively. Proesses shown in panels (a)�() result from forward propagation(3.13), while the ones shown in panels (d)�(f) and given by Eq. (3.14) reate adefet in the AO order with the energy ost indiated by the lines for the bondsonneting two idential orbital states (broken bonds) in (f).3.7. The �rst (linear) hopping term (3.13) transports an a eletron along the
b axis over a site oupied by a b eletron. Suh proesses are responsible forthe 1D oherent hole propagation. As one an see in Figs. 3.7(a)�(), the AOorder remains then undisturbed, so these proesses determine the low-energyfeatures in the spetra. Hopping by the other three-site term (3.14), shown inFig. 3.7(d)�(f), involves an orbital �ip at the intermediate site, destroys theAO order on six neighbouring bonds, and thus osts additional energy. As twoorbitals are �ipped and two exited states are generated, these proesses go be-yond the lowest order perturbation theory, and it is onsistent to neglet themin the SCBA. In any ase, they ould ontribute only to the inoherent proessesat high energy and not to the low-energy quasipartile. Indeed, this interpre-tation is on�rmed by exat diagonalization performed for the t2g orbital t�JHamiltonian (3.5) on 4×4 and 4×6 lusters, whih give the same results for thequasipartile dispersion, no matter whether the orbital-�ipping terms (3.14) areinluded or not. In addition, the quasipartile dispersion found in the SCBAagrees with the numerial results obtained by the VCA (see below), whih givesfurther support to the SCBA approah in the present problem.Vertex funtion in the polaron model.� Lastly, despite several other approx-imations made in writing down the Hamiltonian Eq. (3.32), the vertex part Htis exat , in ontrast to the Ising interation in the spin t�Jz model [23℄. Thereason is that the onstraint C1 mentioned in Ref. [23℄, whih states that a holeand a boson exitation are prohibited to our simultaneously at the same site,annot be violated here, beause hopping t is stritly 1D. This an be veri�edby onsidering one hole exitation spetra in the limit of J → 0. Indeed, for72
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Figure 3.8: Spetral funtion A(k, ω) obtained with the VCA method for the2D t2g Hubbard model (3.1) for: (a) a orbitals, and (b) b orbitals. Parameter:
U = 10t. This result was obtained by Maria Daghofer.
J = 0 one obtains the inoherent spetrum with a bandwidth of Winc = 4

√
2t(not shown), whih (unlike in the spin ase) perfetly agrees with the retrae-able path approximation result Winc = 4

√
z − 2t from Ref. [67℄, where z − 2is the number of possible forward going steps in the model. However, still thethree-site terms H3s and the orbiton terms HJ are not exat in Eq. (3.32) andthus it is neessary to hek the present results by omparing them with thenumerial spetra obtained for the orbital Hubbard model (3.1) � the resultsare presented below.Comparison with VCA results.� Sine the problem of a hole added to thebakground with the AO order of t2g orbitals annot be solved exatly usinganalyti methods and the SCBA had to be employed in the last setion, thenumerial VCA alulations are presented below.5 Atually, we ompare theanalyti results for the t2g orbital t�J Hamiltonian (3.5) presented in Se. 3.4.3with those obtained for the t2g Hubbard model (3.1) using the VCA method.This enables us to ompare not only the methods employed but also the twomodels whih stand for the same physis in the strongly orrelated regime.Before we analyse the spetral funtions, let us reall that the VCA method[87℄ is appropriate for models with on-site interations, as for instane thepresent Hubbard model (3.1) for t2g orbitals, but annot be easily implementedfor models where the interating part onnets di�erent sites, like in the t-Jmodel. For the present t2g model (3.1) the VCA method is used with theopen boundary onditions [87℄, whih leads to the spetral densities depited inFig. 3.8. The results resemble very muh the SCBA results of Fig. 3.5 for t2gorbital t�J model (3.5), suggesting that not only both models are indeed equiv-alent in the strongly orrelated regime, but also that the implemented SCBAmethod of Se. 3.4.3 is of a very good quality. The di�erenes between them,almost exlusively a�eting high-energy features, are disussed below.On the one hand, one sees that the high-energy part of the spetral densityin Fig. 3.8 is omposed of a number of peaks with a dispersion almost parallel tothat of the quasipartile state. In fat, the spetrum orresponds almost exatlyto the ladder spetrum of the spin t-J model with Ising superexhange [22, 23℄but with a weak dispersion added to the peaks. The peaks at higher-energyare dispersive for the same reason as the quasipartile state: After hopping a5These alulations were performed by Maria Daghofer.73



few times by nearest neighbour hopping t � and reating string exitations,see Fig. 3.7 � the hole an exhibit oherent propagation via three-site terms,leading to the observed dispersion. On the other hand, the VCA spetrum (Fig.3.8) does not show these distint peaks and the struture of A(k, ω) is riher.However, the �rst moments alulated in separate intervals of ω follow similardispersions to those found for the �rst three peaks obtained in A(k, ω) withinthe SCBA [85℄.The above di�erene an be understood as following from the full Hilbertspae used in the VCA alulations whih results in exitations of doubly o-upied sites, weakening of the AO order even for relatively large U = 10t.Therefore the spetra of Fig. 3.8 have more inoherent features. In addition,the three-site terms whih reate two orbiton exitations (3.14) that were ne-gleted in the SCBA, might also in�uene the high-energy part of the spetrum.The di�erene to the SCBA results might also be due to the fat that stateswith longer strings inluding several orbital exitations, whih our when thehole moves by a few steps via t, annot be diretly aommodated within the10-site luster solved here, and annot be therefore reprodued with su�ientauray.Apart from the di�erenes in the high-energy part of the spetrum, onealso observes di�erenes in the spetral weight distribution: In the VCA re-sults (Fig. 3.8) the total weight found in photoemission part (hole exitation)strongly depends on momentum k, while no suh variation an be seen in theSCBA results in Fig. 3.5. This di�erene does not originate from di�erent ap-proximate methods used, but stems from the di�erent models : In Hubbard-likemodels, the number of eletron states oupied depends on the momentum k[88℄. In ontrast, undoped t�J-like models have exatly one eletron per site,whih enfores a di�erent sum rule and eliminates the k-dependene from thephotoemission part.3.5.2 Understanding the 1D dispersionPurpose of the setion.� In order to understand why the dispersion of the holedoped into 2D t2g AO state is stritly 1D (both for the quasipartile and for theexited states) we introdue below the 1D orbital Hubbard model.1D orbital Hubbard model.� The 1D orbital Hubbard model is de�ned as
H1D = −t

∑

i

(a†iai+1 + H..) + U
∑

i

nianib , (3.45)where (similarly as in 2D ase) a†i (b†i ) reates a spinless eletron with orbital�avour a (b) at site i, and {nia, nib} are eletron density operators. On-siteCoulomb repulsion U is the energy of a doubly oupied state (it arises as alinear ombination of the Coulomb and Hund's exhange in the respetive high-spin on�guration [84℄), and t is the nearest neighbour hopping element. Onlyeletrons with orbital �avour a are mobile while the other ones with �avour bannot hop. To simplify, we all below the a and b orbitals mobile and immobileones, respetively. This situation not only desribes a toy-model de�ned for thepurpose of understanding better the spetral funtions of the 2D t2g orbitalmodel but also orresponds to (spinless) interating eg eletrons in the FMhain (as along the c diretion in the manganites, see Ref. [89℄) or to the 1D(spinless) Faliov-Kimball model with degenerate orbitals.74
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a (k, ω) and A1D

b (k, ω) ofa hole added into the a orbital (middle dispersive feature between ω = −0.4tand ω = 0) and the b orbital (two side dispersionless maxima) as obtained fromthe 1D orbital t�J model (3.46). Parameters: J = 0.4t, τ = 0.1t, and peakbroadening δ = 0.01t.1D orbital t�J model.� In the regime of large U , i.e. for t ≪ U , theanonial perturbation expansion disussed in Chapter 1 (see Se. 3.3 for asimilar derivation in the 2D ase) leads to the e�etive t�J Hamiltonian withIsing-like superexhange and three-site terms
H1D = − t

∑

i

(
ã†i ãi+1 + H..) +

1

2
J

∑

i

(
T zi T

z
i+1 −

1

4
ñiñi+1

)

− τ
∑

i

(
ã†i−1ñibãi+1 + H..) , (3.46)where (again) a tilde above a fermion operator indiates that the Hilbert spaeis restrited to unoupied and singly oupied sites and the pseudospin T zi =

(ñia − ñib)/2. The superexhange onstant J and the three-site term hopping
τ are de�ned as in Eq. (3.10) and Eq. (3.15), respetively. The 1D t�J orbitalmodel de�ned without the three-site hopping τ , was solved exatly before [89℄and all exitations ourred to be dispersionless. Here we generalize this exatsolution to the full Hamiltonian (3.46) inluding the three-site terms, and showhow the spetral funtions hange then.Spetral funtion for a hole in the mobile orbital.� We start with alulating75



the Green's funtion for the hole doped into the a (mobile) orbital,6
G1D
a (k, ω) =

〈
Φ1D

0

∣∣∣∣ a
†
k

1

ω +H1D − E1D
0

ak

∣∣∣∣ Φ1D
0

〉
, (3.47)where E1D

0 is the energy of the ground state. As in ase of t2g orbitals onsideredabove, the oupied orbitals alternate and at half �lling form sublatties {A,B}.The physial vauum is
|Φ1D

0 〉 =
∏

i∈A
a†i

∏

j∈B
b†j |0

)
, (3.48)where (again) |0) is the true vauum state with no eletrons. Besides, the holewith momentum k is reated by the operator

ak =
1√
N

∑

j

eikjaj , (3.49)with N being the number of sites in the hain. Then one an easily verifythat the state ak|Φ1D
0 〉 in Eq. (3.47) is an eigenstate of the Hamiltonian (3.46).The hopping ∝ t is bloked by the onstraint of no double oupany in theHilbert spae and the only two terms that ontribute in this state are: (i) thesuperexhange term (∝ J) whih gives the energy 1

2J of two missing bonds as aorretion to E1D
0 , and (ii) the three-site hopping term (∝ τ) whih ontributesto the k dependene due to the proesses shown in Fig. 3.9(a) after Fouriertransformation. As a result, one �nds

G1D
a (k, ω) =

1

2

1

ω + 1
2J + 2τ cos(2k)

, (3.50)where the fator 1/2 originates from the fat that 〈Φ1D
0 |a†kak|Φ1D

0 〉 = 1/2. Notethat ñib ≡ 1 in the three-site terms, as in this ase all the sites with j ∈ B areoupied by b eletrons in the ground state (3.16). The hole spetral funtion,
A1D
a (k, ω) = − 2

π
lim
δ→0

ImG1D
a (k, ω + iδ) , (3.51)onsists of a single dispersive state, shown as the middle peak in Fig. 3.9(d).As expeted, the hole is mobile thanks to the three-site terms and it propagatesoherently with the unrenormalized bandwidth W = 4τ . The result obtainedhere is idential with the one found using the VCA for the orresponding Hub-bard model (3.45) (see also Fig. 5 of Ref. [85℄). This on�rms that both theorbital Hubbard model (3.45) and its t�J model with three-site terms (3.46) areequivalent and preisely desribe the same physis in the regime of t≪ U .Spetral funtion for a hole doped into the immobile orbital.� The alula-tion of the Green's funtion for the hole doped into the b (immobile) orbital isonsiderably more involved as one needs to use the ontinued fration method.6We alulate the `mobile ase' for didati reasons. It will be the `immobile ase' (seebelow) from whih we will draw some onlusions onerning the understanding of the 1Ddispersion in the 2D ase. 76



Thus, we perform these alulations in Appendix A. We obtain k-independentGreen's funtion [ompare Eq. (A.10)℄
G1D
b (ω) =

1

2

{
ω +

1

2
J − 4t2

ω + 1
2J ∓

√
(ω + J)2 − 4τ2

}−1

, (3.52)from whih we alulate the the hole spetral funtion
A1D
b (ω) = − 2

π
lim
δ→0

ImG1D
b (ω + iδ), (3.53)shown in Fig. 3.9(d). It also does not depend on k and for the realisti pa-rameters with τ < t it onsists of two poles and the inoherent part entredaround ω = −J . This latter ontribution has rather low intensity and is thusinvisible on the sale of Fig. 3.9(d) and the two peaks absorb almost the entireintensity. This result resembles the ase of τ = 0 (see Ref. [89℄) and mightappear somewhat unexpeted � we analyse it below.Why the three-site terms are suppressed in the immobile ase.� First, weomment on the absene of the k dependene in the spetral funtion A1D

b (ω)(3.53). To understand this result It su�es to analyse the hole doped into the borbital at any �nite value of J whih indues the AO ground state (3.48). Thehole an only move inoherently, beause one it moves away from the initial site
j by the hopping t [see Fig. 3.9(b) and ()℄, it reates a defet in the AO statewhih bloks its hopping by the three-site proesses over site j. Consequently,the hole may hop only in the other diretion, i.e. away from the defet in theAO state, and in order to absorb eventually this orbital exitation it has toome bak to its original position, retraing its path. In this way a forward andbakward propagation along the 1D hain interfere with eah other, resulting inthe fully inoherent spetrum of Fig. 3.9(d).Looking at the spetral funtion A1D

b (ω) of a hole doped into the b orbitalat �nite τ = 0.1t shown in Fig. 3.9(d) one may be somewhat surprised that theresult indiates only two �nal states of the 1D hain. These are the bonding andthe antibonding state of a hole on�ned within a three-site box and disussedin detail in Ref. [89℄ in the limit of τ = 0. One �nds that the two exitationenergies obtained for the present parameters, ω = −1.67t and ω = 1.17t, areindeed almost unhanged from those given by Eq. (A.9) at τ = 0. We notethat the third nonbonding state has a di�erent symmetry and thus gives noontribution to A1D
b (ω).Altogether, one �nds that in the realisti regime of parameters with τ = J/4,the inoherent part of the spetrum is extremely small and thus invisible in thesale of Fig. 3.9(d). This implies that the hole is still pratially trapped withinthe three-site box depited in Fig. 3.9(b), in spite of the potential possibility ofits deloalization by �nite τ . Only when the value of the three-site hopping τis onsiderably inreased, the hole an esape from the three-site box and maydeloalize over the entire hain.A systemati evolution of the spetral funtion A1D

b (ω) with inreasing τ isdepited in Fig. 3.10. One observes that the inoherent spetral weight growswith inreasing τ and is already visible in between the two maxima for τ = 0.5t.When the three-site hopping term approahes τ = t, the spetrum hangesin a qualitative way � both peaks are absorbed by the ontinuum and thespetral density resembles the density of states of the 1D hain with the nearest77
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Figure 3.10: Spetral funtion A1D
b (ω) of a hole doped into the b orbital in the1D model with: (a) τ = 0, (b) τ = 0.5t, () τ = t, and (d) τ = 2t. Dashed(solid) lines for J = 0 (J = 0.4t), respetively, with broadening δ = 0.01t.neighbour hopping. For the extremely large e�etive hopping τ ≃ 2t the twopeaks orresponding to the energies given by Eq. (A.9) from Appendix A areabsorbed by the ontinuum entered at ω ∼ 0, and the spetrum orrespondsto the inoherent deloalization of the hole over the 1D hain. Note also that�nite J results only in an overall shift of the spetra due to the energy ost ofthe hole exitation in the ordered ground state (3.16).Understanding the 1D dispersion in the 2D model.� Having understood the1D ase in detail one an now try to understand why the dispersion relationfor the hole doped into the 2D t2g AO state is stritly 1D. More preisely, thequestion whih arises here is: why, in the 2D ase, a hole doped for example intothe b orbital annot hop along the b diretion. In priniple one ould imaginethat the hole doped into the b orbital in the 2D lattie hops by the t proessto the neighbouring site, reates one defet in the AO site and then propagatesfreely along the b diretion via the three-site terms. This, however, annotontribute to any k-dependent motion: as shown in the above 1D example thehole always has to return to the original site where it has been doped as it hasto erase the defet it has reated in the �rst t step while moving to the othersublattie (otherwise, the hole annihilation operator would not permit to returnto the ground state).A similar phenomenon ours in the 2D ase. One should only note thatstritly speaking, in the 1D model there are atually two interrelated reasonswhy the hole annot move oherently when it is doped into the b orbital: (i)the reation of the defet after the �rst t step whih has to be erased by thehole before the hole itself is annihilated by the a†k operator in Eq. (3.47), and(ii) the fat that this defet bloks the hole motion by three-site terms in onediretion. However, in the SCBA treatment the latter onstraint is negleted,so it is the point (i) whih su�es alone to on�ne the hole.Furthermore, the spetrum assoiated with suh a propagation, as desribedin the above paragraph, is not only k-independent but also its spetral weightis extremely small both in the 2D model in the realisti range of parameters78



(where it is invisible at the sale of Fig. 3.5) and in the 1D ase (as disussedabove). Again, the reason why this spetral weight is so small in the 2D asean be understood using the 1D model: the value of the three-site hopping istoo small to deloalize the hole from the three-site box.3.5.3 Renormalization of the three-site termsPurpose of the setion.� In what follows we will study the extended versionof the 1D model, alled the `entipede model', with eletrons hopping between
dyz and dzx orbitals in ab plane � the model inludes two neighbours on everyseond site and thus has 2N sites for the hain of length N , see Fig. 3.11. Wewill show that even the shortest possible strings with the length of one bondwhih an be exited here when the hole moves in this geometry are su�ientto generate some harateristi features reognized in the spetral properties ofthe 2D t2g model (see Se. 3.4.3). In partiular, using this toy-model we willshow how the renormalization of the three-site terms in the 2D t2g orbital t�Jmodel arises due to the peuliar interrelation between the oherent propagationvia the three-site terms and the inoherent motion due to the reation of thestrings by the nearest neighbour hopping t.Introduing the entipede model.� The entipede model of Fig. 3.11(a)onsists of a hain along b axis, with the Hamiltonian as desribed by Eq.(3.45), and two sites being the nearest neighbours of every seond site of thehain along the a axis, whih ould represent radials added to a linear moleule.We use here the onvention introdued already in the previous setions, that aand b orbitals stand for dyz and dzx t2g orbitals, respetively, that permit theeletron hopping along the b and a axis in the ab plane. The Hamiltonian ofthe present model is
Hce=−t

∑

i

{
b†2i(b2i,u + b2i,d) + H..} − t

∑

i

(a†iai+1 + H..) + U
∑

i

nianib.(3.54)The hopping along the bonds parallel to the a axis is allowed only to the orbitals
b, with the orresponding reation operators {b†2i,u, b†2i,d}, see Fig. 3.11(a). Tosimplify notation, we all these orbitals u and d, and introdue the followingoperators:

u†2i ≡ b†2i,u, d†2i ≡ b†2i,d . (3.55)In the limit of large U (U ≫ t) the oupied orbitals form AO order alongthe hain and we selet the Néel state with b (u and d) orbitals oupied onthe external sites, as shown in Fig. 3.11, sine we are interested in their e�eton the hole propagation when the hole is doped to an a orbital. This leads tothe following 1D entipede t�J model (derived using the anonial perturbationexpansion disussed in Chapter 1, see also Se. 3.3 for a similar derivation inthe 2D ase) :
Hce= − t
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(ũ†2iũ2i + d̃†2id̃2i) . (3.56)79
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Figure 3.11: Propagation of a hole added into the a orbital in the entipede t�Jmodel (3.56): (a) shemati piture of a hole doped at site a and its possibledeloalization via hopping t (solid lines) and three-site e�etive τ term (dashedlines); (b) spetral funtion Acea (k, ω). Parameters: J = 0.4t, τ = 0.1t, peakbroadening δ = 0.01t. The hain is oriented along the b axis, and non-equivalentpositions of the orbitals whih do not permit hopping along this diretion arelabelled b, u and d in panel (a).On the one hand, the superexhange interation for all the bonds within theentipede is not inluded in Eq. (3.56) as it results only in a rather trivialenergy shift of the spetra obtained from the Green's funtion Gcea (k, ω) whihis of interest here,7 f. Se. 3.5.2. On the other hand, the last term in Eq.(3.56) is added to to inlude the energy loss when the hole deloalizes to one ofthe side sites and a short string is reated whih as well ours in the full 2Dmodel of Se. 3.4.3 (see also disussion below).Whereas the seond term in Eq. (3.56) is one again the three-site hoppingderived before in the 1D model (3.46) [f. Fig. 3.9(a)℄, the other two termsdesribe the possibility of reating defets in the AO order when the hole leavesthe spine of the entipede (i.e. moves away from the a sites) by reating stringsof length one, just as it may happen in the t2g 2D model. Here the hole anleave the hain to its nearest neighbour orbital u2i or d2i [f. sites attahedto the hain along the a axis shown in Fig. 3.11(a)℄. Suh defets are reatedby hopping t and ost energy 3J/4 in eah ase. Hene, the present 1D modelrepresents an extreme redution of the full t2g 2D model, allowing only thestrings of length one, and eah defet has to be deexited before the hole anhop to another three-site unit along the hain. Note, however, that the energiesof these string exitations are properly hosen and are just the same as in thefull 2D model.The model given by Eq. (3.56) onstitutes a one-partile problem (afterinserting ñ2i+1,b ≡ 1 whih is onsistent with the Ising nature of the superex-hange) and hene an be solved exatly. We will onsider the Green's funtion
Gcea (k, ω) for a orbitals, de�ned similarly as in Eq. (3.47), and a hole exitationis reated again by the operator ak of Eq. (3.49). The ontinued fration (seealso Appendix A for a more elaborate version of the method) terminates after7The Green's funtion Gce

b
(k, ω) does not show new qualitative features as ompared withthe solution obtained for the 1D orbital hain of Se. 3.5.2.80
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Gcea (k, ω) =

1

2

1

ω + 2τ cos(2k) − 2t2

ω+ 3
4
J

, (3.57)leading to the orresponding spetral funtion Acea (k, ω), de�ned as in Eq.(3.51). The numerial results obtained with J = 0.4t are shown in Fig. 3.11(b).Instead of a single dispersive state of Fig. 3.9(d), the spetral funtion onsistshere of two dispersive peaks separated by a gap of roughly 2
√

2t. This demon-strates that the larger hopping t suppresses at �rst instane the hopping alongthe hain by the element τ , and a hole doped into the a orbital deloalizes inthe �rst plae over the three-site unit, disussed in Se. 3.5.2, onsisting of ahole and two b (u and d) orbitals. Therefore the hole behaves e�etively asa defet reated at a b site in the 1D hain of Se. 3.5.2. This explains thatthe maxima of Acea (k, ω) are found again for the loal bonding and antibondingstate, similar to the struture of A1D
b (ω) in Se. 3.5.2. However, at present theorresponding states gain weak dispersion beause the hole may as well deloal-ize along the hain by the three-site hopping τ . Note also that the low-energy(right) peak has slightly higher dispersion (leading to a broader band) than theleft one. This ase illustrates that the 1D dispersion is broader for the (lowenergy) quasipartile state but is also shared by the feature at higher energy.This observation will help us to interpret the spetra for the 2D t2g model (seebelow).In addition, we also alulate some harateristi features of the spetra ofthe entipede model, f. Fig. 3.12. They will mostly serve for a omparison withthe respetive results of the 2D t2g model in the next paragraph. However, let usonly remark that the renormalization of the bandwidth, shown in Fig. 3.12(a),follows from an intriate interplay between oherent hole propagation and thestring exitations. With inreasing τ = J/4 the free bandwidth inreases but atthe same time the energies of the defets (generated by the hole when it movesto `lower' or `upper' sites) are ∝ J ; hene, the bandwidth does not depend in a81



linear way on J , f. Fig. 3.12(a). Physially this means that the hole motionis gradually more and more on�ned to just the 1D path along the hain withinreasing J (and keeping τ = J/4).Renormalization of the three-site terms in the t2g orbital t�J models.� Asalready noted in Se. 3.4.3 [see also Fig. 3.6(a)℄ the quasipartile bandwidth inthe 2D t2g orbital t�J model, arising from the superexhange three-site terms, isrenormalized as it was found to be muh smaller than the respetive free value,
W ≪ 2J . Even at J = t, the quasipartile bandwidth is only W ≃ J/2, i.e. itis here redued by a fator of 4.A similar but onsiderably weaker redution of the 1D dispersion by stringexitations an be seen in the present entipede model, see Fig. 3.12(a). Inaddition, the dispersion of the seond peak is weaker than that of the quasipar-tile. Interestingly, the bandwidth orresponding to the dispersion of the seondpeak in the entipede model is not only weaker than that of the quasipartileitself but is also renormalized in a similar way to that found for the full 2D t2gmodel.Although it should be noted that in the entipede ase the renormalizationis almost linear as the length of the string exitations is limited to a single step(within one of the three-atom units along the hain), the entipede model anindeed explain mirosopially how the renormalization of the three-site termsin the 2D model arises: The renormalization of the oherent hole propagationin the 2D t2g model, leading to a redued bandwidth, follows from the reationof string states during the 1D hole propagation via three-site terms. Note thatthe latter proesses were absent in the 1D model, and therefore the hole movedthere freely by three-site hopping terms and the bandwidth was unrenormalized[see Eq. 3.50℄.Further omparison between the entipede and the t2g orbital t�J model.�Atually, the other quasipartile properties in the 2D t2g model and in theentipede model are muh more di�erent than the bandwidth: It is only theinrease of aQP(π/2, π/2) with respet to aQP(0, 0) in the 2D ase [see Fig.3.6(b)℄ whih resembles the inrease of the spetral weight for the low-energypeak at k = π/2 over the one at k = 0 in the entipede model [see Fig. 3.12(b)℄.These di�erenes are due to the fat that both the quasipartile spetral weightand the pseudogap are heavily related to the string exitations in the systemwhih are entirely di�erent in the 2D ase (in�nitely long strings possible) andin the entipede model (where only strings of length one are possible).3.6 ConlusionsPurpose of this hapter.� The purpose of this hapter was to investigate whethera single hole added to the Mott insulating ground state at half-�lling an beon�ned due to the presene of the orbital degeneray. Atually, more preiselythe idea was to study the simplest possible example, where one ould naively ex-pet hole on�nement: a 2D Mott insulator with t2g orbital degrees of freedom.It ourred that the hole an never be on�ned in suh a system but insteadan move there on a renormalized sale due to the so-alled three-site terms.Obviously, this does not imply that the hole on�nement in the Mott insula-tor with orbital degrees of freedom is impossible: one an imagine that theremay exist another phenomenon in orbitally degenerate systems whih leads to82



hole on�nement. However, the simplest possible mehanism, as shown here, isoutruled.8In what follows, we will now show why the hole is not on�ned in suh anorbitally degenerate system by giving answers to the three questions posed inthe introdution to this hapter.Form of the t�J model with t2g orbital degrees of freedom.� As disussed inSe. 3.2 one had some hoie in de�ning the t�J model with t2g orbital degreesof freedom. However, the idea was to formulate the model in suh a way thatthe harateristi symmetries of the t2g orbitals, whih leads to the lak of theinterorbital hopping and the 2D hopping of eletrons between a partiular t2gorbital, ould be visible `as far as possible'. This is not a very preise statementbut nevertheless we demonstrated in Se. 3.2 that a model with only two ative
{dzx, dyz} orbitals in the ab plane and spinless strongly orrelated eletronswould indeed bear all these distintive features.Altogether this led (see Se. 3.3) to the t�J model with an Ising-type inter-ation between orbital pseudospins and 1D hopping of eletrons with partiularorbital �avour. However, it ourred that due to the absene of the SU(2)symmetry in suh a model one had to be more areful with any approximationsmade during the derivation of the model or while solving it. Thus, the frequentlynegleted three-site terms had to be inluded in the model.Undoped ground state.� In the half-�lled ase the above disussed t2g orbital
t�J model with three-site terms redued to the Ising-like interation betweenpseudospins. As the superexhange onstant J was positive in this model, theground state onsisted of alternating pseudospins between two sublatties andhad no pseudospin quantum �utuations, see Se. 3.4.1. Consequently, theground state turned out to be a lassial AO state with dzx and dyz alternatingorbitals.Motion of the hole in the undoped ground state.� In order to investigatemotion of a single hole doped into the half-�lled AO ground state we reduedthe t2g orbital t�J model to the e�etive polaron Hamiltonian using the slave-fermion approah (Se. 3.4.1). The latter one was rather easy to solve using theSCBA method and we obtained the spetral funtions whih onsisted of thedispersive ladder-like peaks (Se. 3.4.3). While the onset of the ladder spetrumrevealed the fat that the hole was trapped in string-like potential, the smalldispersive features suggested that the hole was not truely on�ned. This resultwas thoroughly heked and on�rmed in Se. 3.5.1 where (in partiular) weshowed that the Hubbard model led to similar spetral funtions with a small1D dispersion. Furthermore, in Se. 3.5.2 we explained the lak of the 1Dharater of the dispersion relations using the auxiliary orbital 1D model.We emphasize that the mehanism of oherent hole propagation whih o-urs in the 2D t2g orbital model is ompletely di�erent from the one known inthe spin ase. Generally, in orbital systems (with onserved orbital �avours) itoriginates entirely from the three-site hopping proesses, similarly to the dis-ussed 1D ase in Se. 3.5.2. But unlike in the latter ase, in the 2D t2g asethe quasipartile bandwidth is strongly redued from the value given by the am-plitude of bare three-site hopping. In order to investigate this problem in moredetail, we disussed the subtle interplay between the oherent hole propagation8Note that a di�erent mehanism present in systems with orbital degeneray (orbital po-larization), shown in Ref. [90℄, leads to the strong redution of the bandwidth � but thebandwidth is still �nite and additional e�ets are needed to truely loalize the hole.83



and string exitations in the 1D entipede model (Se. 3.5.3), where polaronihole on�nement ompeted with oherent propagation along the hain, whihto some extent resembled the realisti 2D t2g ase. Indeed, this explained therenormalization as following from inoherent string exitations whih dressedthe oherent propagation and did not ontribute additional momentum depen-dene.Final remarks.� In the whole hapter we disussed a highly theoretialproblem of the hole on�nement indued by the presene of the orbital degrees offreedom. However, a natural question arises: ould suh a problem be relevantfor any experiment. Atually, introdution of a single hole to the half-�lledsystem orresponds to the photoemission experiment on the half-�lled system:there the photon removes the eletron from the rystal (somewhat similarly asin the well-known photoeletri e�et), i.e. it reates a hole in the system [69℄.Thus, the only problem with whih still arises is: an one �nd a rystal witha plane with two ative {dzx, dyz} orbitals in the ab plane. As shown in thePostsriptum (Se. 3.7) there exists a ertain lass of vanadates and �uorideswhose photoemission spetra should bear all of the harateristi features ofthe spetral funtions shown in Figs. 3.5 or 3.8. It remains a hallenge for theexperimental ommunity to verify this onjeture.3.7 Postsriptum: photoemission spetra of vana-dates and �uoridesRealisti systems with longer range hopping.� In this setion we disuss thepossible impliations of the results obtained for the t2g orbital model of thishapter on future experiments and make preditions onerning the photoemis-sion spetra of strongly orrelated �uorides and vanadates. The �rst importantfeature to onsider is the interplay of the three-site hopping with the longer-range {t2, t3} hopping to seond and third neighbours whih ontributes to theeletroni struture and may always be expeted in any realisti system (forinstane, due to hybridization with oxygen orbitals). These hopping elementswere negleted in both the Hubbard model (3.1) and in the t�J model (3.5) butthey ould signi�antly in�uene the spetral weight distribution. One will see,however, that although features indued by longer-range hopping are small aslong as |t2(3)| < t, they an be learly distinguished from the e�ets of three-sitehopping.Next nearest neighbour hopping.� The same requirements for orbital symme-try that are neessary to obtain nearest neighbour hopping, as disussed in thiswork, also strongly restrit the range of allowed longer-range hopping terms.It is important to reall that the d�d hopping elements involve intermediateoxygen orbitals. For next nearest neighbour hopping, the orbital phases of theinvolved oxygen 2pπ orbitals make all terms vanish that onserve orbital �avour[75℄, and only orbital-�ipping terms
HNNN = −t2

∑

i

(
a†
i±b̂

bi±â + a†
i∓b̂

bi±â + H..) , (3.58)given by hopping element t2, are �nite. With realisti parameters one arrives atthe estimation of |t2| ∼ 20 meV, i.e., |t2| ∼ J/3. Similar to the orbital �ipping84
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Figure 3.13: Spetral density Ab(k, ω) obtained within the VCA method for ahole inserted into b orbitals of the t2g model (3.1), supplemented by �nite nextnearest neighbour hopping (3.58). Parameters: U = 10t, and t2 = 0.15t. Thisresult was obtained by Maria Daghofer.three-site term (3.14), suh a hopping proess disturbs the AO order stabilizedby the superexhange and indues string exitations. For this reason, its impatis largely on�ned to the high-energy part of the spetrum and is rather small forthe low-energy quasipartile state. This an be seen in Fig. 3.13 where we showthe spetral density for t2 = 0.15t and J = 0.4t: While the higher energy partis somewhat a�eted by �nite t2, the intensity and dispersion of the low-energyquasipartile is almost the same as obtained for t2 = 0, see Fig. 3.8(b).Third neighbour hopping.� The quasipartile dispersion ould also be in-�uened by the third-neighbour hopping terms t3, where the orbital symmetryleads to the same anisotropy as for nearest neighbour hopping: a orbitals allowonly hopping along the a axis, and b orbitals only along the b one:
Ht3 = −t3

∑

{imj}‖a
b†i bj − t3

∑

{imj}‖b
a†iaj . (3.59)Here the unit onsisting of three sites {imj}, shown in Fig. 3.3(a), is parallelto one of the ubi axes in the ab plane. In ontrast to t2 terms, these termsdo not indue any string exitations but ontribute only to the dispersion ofthe quasipartile state itself, so they mix with the three-site e�etive hopping

τ . To illustrate this e�et, one an hoose t3 = ±J/4 for the spetra shown inFig. 3.14. Note that the value of |t3| is here larger than expeted in transitionmetal oxides where it is in general smaller than the three-site hopping term
τ = J/4. The spetral density A(k, ω) ontains now the ombined e�ets of thethree-site terms ∝ τ and third-neighbour hopping ∝ t3 and one �nds that t3,depending on its sign, an either amplify or weaken the quasipartile dispersionwhih stems from the e�etive three-site hopping, see Fig. 3.14.Third versus next nearest neighbour hopping.� From the above example onean see that the longer-range hopping violates the partile-hole symmetry of thespetral funtions. The spetra obtained for the original orbital Hubbard model(3.1) with nearest neighbour hopping t obey the partile-hole symmetry. Thethree-site superexhange terms arise from this model and therefore these termsalso have to follow the partile-hole symmetry. This is in marked ontrast to85
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Figure 3.14: Photoemission [(ω−µ) < 0℄ and inverse photoemission [(ω−µ) > 0℄part of the spetral density Ab(k, ω) for a hole inserted into b orbitals ob-tained within VCA for the t2g model (3.1) with an additional longer-rangethird-neighbour hopping t3 (3.59). The value t3 is seleted so that to suppressdispersion arising from the three-site e�etive hopping in: (a) the hole (pho-toemission) setor with t3 = 0.1t = J/4, and (b) in the inverse photoemissionsetor with t3 = −0.1t = −J/4. Parameter: U = 10t. This result was obtainedby Maria Daghofer.the t2 terms that do not respet it [91℄ or to t3 terms, see Fig. 3.14. As a result,the spetra exhibit a striking partile-hole asymmetry � redued dispersion inthe partile (inverse photoemission) setor orresponds to enhaned dispersionin the hole (photoemission) setor and vie versa.It will be shown now that the above asymmetry indeed follows from thedi�erene between the nearest neighbour and next nearest neighbour hoppingunder partile-hole transformation. While this is transparent for the Hubbardmodel ating in the full Hilbert spae, it is somewhat subtle for the t�J-likemodels. Thereby let us fous on the t3 hopping whih in�uenes diretly thequasipartile dispersion. The operator for nearest neighbour hopping an betransformed from {cj, c
†
j} eletron operators to {h†j , hj} hole operators, and onearrives at an idential form for the kineti energy as long as a phase shift betweenthe two sublatties is introdued:

h†j = (−1)(jx+jy)cj , hi = (−1)(jx+jy)c†j , (3.60)where j = (jx, jy) is the lattie site. Hopping along the a axis then beomes
Kx =

∑

j

(c†j cj+â + c†j+âcj)

=
∑

j

{
(−1)jx+jyhj(−1)jx+1+jyh†j+â + (−1)jx+1+jyhj+â(−1)jx+jyh†j

}

= −
∑
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j+â + hj+âh

†
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)

=
∑
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(
h†jhj+â + h†j+âhj

)
, (3.61)and analogously along the b axis. The minus sign for one of the sublattiesorresponds to a momentum shift by q = (π, π) as an be easily veri�ed in the86



Fourier transform.
h†k =

1

N

∑

j

eikj(−1)(jx+jy)cj

=
1

N

∑

j

ei(k+q)jcj = ck+q . (3.62)The on-site density-density interation is not a�eted by the partile-hole trans-formation apart from a shift in the hemial potential.Sine the three-site hopping emerges from the Hubbard-like model with near-est neighbour hopping, it respets partile-hole symmetry. Hene it obeys thesame rules onerning partile-hole transformation i.e., momentum (0, 0) foreletrons is mapped to (π, π) for holes. For the third-neighbour hopping t3(3.59), however, the above transformation does not work any longer, beauseboth the reation and the annihilation operator at on the same sublattie.Instead the transformation vetor would have to be q′ = (π/2, π/2). Conse-quently, the ombined e�et of expliit next nearest neighbour hopping andthree-site terms stemming from nearest neighbour proesses turns out to bestrongly partile-hole asymmetri. For example, negative t3 gives a band inthe eletron setor with the largest distane from the Fermi energy at momenta
(0, 0) and (π, π), and the values nearest to it at (π/2, π/2), and the same is truefor the three-site hopping. Consequently, the two dispersions add together andlead to inreased total dispersion, see the photoemission part in Fig. 3.7. On theontrary, in inverse photoemission the diret next nearest neighbour hopping t3gives a maximal distane at (π/2, π/2), while maximal energy is still found at
(0, 0) and (π, π) for the three-site terms. Therefore, now t3 and three-site hop-ping τ ompete with eah other and the dispersion is weaker. For a partiularhoie of the model parameters they an even anel eah other, as shown inthe inverse photoemission part in Fig. 3.7. Positive t3 leads to the oppositeresult, see Fig. 3.7. Thus, even large and unphysial values of t3 not only do notdestroy the qualitative spetra predited in the previous setions but generateasymmetry between the photoemission and inverse photoemission part of thespetra, so their ontribution an easily be resolved.Conlusions onerning the realisti spetra.� The symmetry argumentsleading to Eq. (3.58) and Eq. (3.59) remain valid also for systems with spei�
eg orbital degeneray as observed in ertain �uorides with 2D AO order whihinvolves alternating z2−y2 and x2−z2 orbitals [92℄. In fat, the e�etive polaronmodel Eq. (3.32) desribes also this ase, as we show by a detailed derivationin Appendix B. Hene, we onlude that the photoemission and inverse pho-toemission spetra for the planar vanadium oxide Sr2VO4 and for the planarK2CuF4 or Cs2AgF4 �uorides should be qualitatively similar to the spetralfuntions shown in Figs. 3.5 or 3.8.
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Chapter 4Understanding hole motion inLaVO3This hapter is based on the following publiations: (i) K. Wohlfeld, A. M. Ole±,P. Horsh, `Orbitally indued string formation in the spin-orbital polarons', toappear in Physial Review B 79 (2009); and (ii) K. Wohlfeld, `Spin, orbital, andspin-orbital polarons in transition metal oxides', to appear in AIP ConfereneProeedings (2009).4.1 IntrodutionCubi vanadates.� Among the rih lass of transition metal oxides, the ubivanadium oxides (vanadates) are one of the less known `families' � espeially inomparison with their muh better investigated `ousins': the high-Tc upratesuperondutors or the olossal magnetoresistive manganites [20℄. Nevertheless,the ubi vandates are worth to look at: As it will be shown below they exhibitthe tremendously interesting orbital physis phenomena sine in this lass ofompounds spins and orbitals do not deouple and may �utuate together [93℄.Undoped ase.� Let us be more spei� and onentrate on one of the mostprominent examples of the ubi vandates: LaVO3. This rystal has a typialperovskite struture in whih the vanadium ions an be viewed as e�etivelyforming an almost undistorted ubi lattie [19℄. The nominal valene of thevanadium ions is V 4+ whereas all other ions have �lled shells. Thus, the 3dorbitals on the vanadium ions are oupied by two eletrons and the eletronibands near the Fermi level should be predominantly formed due to the e�etivehopping t between these orbitals via oxygen ions. In the `graduate ondensed-matter textbook' this would typially mean that suh a system would be onsid-ered metalli. However, due to the very large on-site Coulomb repulsion U > Wbetween eletrons in the 3d orbitals the eletrons loalize and a Mott-Hubbardinsulating state is formed [19℄ (where as before W = 8t while t stands for thee�etive hopping of 3d eletrons).So far, however, LaVO3 an be onsidered just as another example of theMott insulators, whih, at least to the author, do not seem to be partiularly89



Figure 4.1: Panel (a), reprodued after Ref. [94℄, shows the magneti and orbitalorder stable below a. 140 K in LaVO3. One eletron oupies either the dzxor the dyz orbitals (shown in a very simpli�ed, yet distinguishable, form in the�gure) while the other one always oupies the dxy orbital (not shown). Both ofthem form the S = 1 spins whih are depited by arrows. Furthermore, the dzxand dyz oupied orbitals alternate and form the G-AO order whereas the S = 1spins are aligned along the c axis and alternating along the a and b diretionsforming the C-AF phase (see also text). Panel (b), reprodued after Ref. [19℄,shows the phase diagram of La1−xSrxVO3. Note the di�erenes between thenotation used in the �gure (Ref. [94℄) and in the text: the temperature inwhih the G-AO orbital order sets in is depited in the �gure by `TS' whereasthe C-AF phase is denoted with the `AF' letters in the �gure.interesting, mainly for being very hard to understand.1 What makes this om-pound indeed very interesting is the proximity of the onset of the magneti andorbital ordering whih sets in at TN ∼ 143 K and TO ∼ 141 K, respetively[24, 25℄, with both of these orderings of relatively omplex type. Namely, themagneti phase is of a C-AF�type (AF ab plane with a FM order along the cdiretion) whereas the orbital order is of a G-AO�type (AO order of dzx ≡ band dyz ≡ a orbitals in all three ubi diretions and always oupied dxy or-bital); see also Fig. 4.1(a). Sine the Jahn-Teller oupling in ubi vanadates isvery weak the magnetially and orbitally ordered states ould only be explainedby some sort of purely eletroni mehanism. Indeed, as shown in Ref. [83℄,the eletrons in the Mott insulating phase, although loalized, perform virtualhoppings between neighbouring sites leading to suh superexhange interationsthat the observed experimentally ordered phases ould be stable.Hole doped ase.� Although these phenomena assoiated with LaVO3 wouldalone su�e to justify the above mentioned `existene of interesting orbitalphysis phenomena in the ubi vanadates' there are yet even more peuliarexperimental observations assoiated with this lass of ompounds. They on-ern the properties of the lightly doped ubi vanadate La1−xSrxVO3 [19℄. Itours that in this strongly orrelated ompound the C-AF and G-AO orderedMott insulating phase is not only stable for x = 0 but also persists to a rela-tively high value of hole doping x = 0.178 [19℄. Rather surprisingly, the C-AFphase remains stable up to an even higher value of x = 0.26 although in this1Daniel I. Khomskii (unpublished leture notes on ondensed matter theory for graduatestudents at the University of Groningen). 90



regime the insulating and orbital ordered phase has already disappeared; seealso Fig. 4.1(b) [19℄. As, in the ioni piture, x stands for the introdution ofholes into the 3d orbitals of the vanadium ions (where a nominal valene upondoping hanges as 3d2−x) it remains a hallenge to explain why the orderedand insulating states persist to suh high dopings.2 Besides, somewhat sim-ilar phase diagrams have been observed in other doped ubi vanadates suhas Pr1−xCaxVO3, Nd1−xSrxVO3 or even to some extent in Y1−xCaxVO3 [25℄.In fat, in all these ases the lattie distortions ontribute signi�antly [25℄ tothe hole loalization and thus we would like to onentrate on the (almost)undistorted ompound La1−xSrxVO3 in the further analysis.Atually, one might in priniple expet to resolve some of these puzzles byomparing the phase diagram of the doped ubi vanadates to those of thehigh-Tc superonduting uprates or the olossal magnetoresistive manganites.However, suh a omparison only further enhanes the lak of understandingof the doped ubi vanadates. First, in the uprates suh as La2−xSrxCuO4the AF order disappears very quikly with doping x, i.e. already for x ∼ 0.02[20℄. This is despite the fat that the value of the superexhange onstant
J is relatively high there whih would lead to larger magneti energy in theuprates than in the vanadates. This suggests that, among other fators, it isthe orbital dynamis whih ould be responsible for the di�erene between thetotally distint behaviour upon hole doping of these two lasses of ompounds.Seond, a similar onjeture an be drawn from the omparison between thevanadates and the manganites. In the latter ones, e.g. in La1−xSrxMnO3 theAO orbital Mott insulating state is stable up to x ∼ 0.18 [97℄, i.e. almost to thesame level as in La1−xSrxVO3. However, La1−xSrxMnO3 has FM order alreadyin the insulating planes but La1−xSrxVO3 has AF planes � this again suggeststhat it is the orbital dynamis whih governs the behaviour of the doped holesin the doped ubi vanadates.Main goals of the hapter.� Summarizing, perhaps the most important fea-ture of the experimental phase diagram of the lightly (x < 0.18) hole dopedLa1−xSrxVO3 is that: the orbital dynamis seems to drive the hole motionthere whereas the spins seem to be somewhat `hidden'. Sine the problem ofthe lightly hole doped ubi vanadates has, with one exeption (see below),never been studied before, even the simplest theoretial studies on the holedoped ubi vanadates should shed some light on this issue. Therefore, in thishapter of the thesis, we look at the problem of the motion of a single hole in-trodued into the orbitally and magnetially ordered plane of LaVO3. It shouldbe noted that the studies presented in Ref. [94℄ revealed the role of the AOand FM order stable along the third (not studied here) diretion in the dopedLa1−xSrxVO3, and explained the di�erenes between the doped Y1−xCaxVO3and La1−xSrxVO3 but, by the very nature of that 1D model, ould not addressthe problems mentioned above. This is beause, ontrary to the problem solvedin this hapter, the hole moving along the third (c) ubi diretion ouples tospin and orbital dynamis separately: either orbitons (orbital exitations) in thelightly doped C-AF phase of La1−xSrxVO3, or magnons (spin exitations) inthe very lightly doped G-AF phase of Y1−xCaxVO3 [94℄.Thus, the main goals are to investigate: (i) what the proper t�J model, whih2On the other hand, the unusual oexistene of the C-AF phase and the metalli phasein the intermediate hole-doped regime is to some extent explained using the lassial doubleexhange model adopted to the t2g orbital symmetries, see Refs. [95, 96℄.91



governs the hole motion in the 2D AF spin- and AO orbitally-ordered state ofLaVO3, looks like, (ii) whether the hole an move oherently in LaVO3, (iii)whether the orbital dynamis indeed seems to in�uene the hole motion muhmore than the spin dynamis, and (iv) what is the impat of the results obtainedhere on the understanding of the experimental phase diagram of the lightlydoped ubi vandates. Atually, it will our that by working out the answers tothe above questions we will also predit the main features of the photoemissionspetra of the leaved samples of LaVO3 with polarization orresponding to the
ab planes.Struture of the hapter.� The hapter is organized as follows. In Se. 4.2we start the analysis by looking at the antiipated features of the new t-J modelwhih is derived in Se. 4.3. Next, we solve the model in the ase of the one holeadded to the undoped ground state: (i) we redue the model to the polaron-typeHamiltonian using the slave fermion approah in Se. 4.4.1, (ii) we derive theequations for the Green's funtions using the SCBA in Se. 4.4.2, (iii) we solvethe equations obtained in point (ii) analytially (in some range parameters) andnumerially on a �nite mesh of the momentum k points (Se. 4.4.3). Then, inSe. 4.5 the results are disussed where, in partiular, we analyse the ompositeinterplay of spin and orbital dynamis on the hole motion. Finally, we drawsome onlusions in Se. 4.6 and add some general statements onerning thehole motion in various spin and/or orbitally ordered states in the Postsriptumin Se. 4.7.4.2 The t2g spin-orbital t�J model with three-siteterms`Rough' preditions of the new t-J model.� It is lear that due to the t2g orbitaldegeneray present in the 3d states on the vanadium ions in La1−xSrxVO3 eventhe simplest low energy model for orrelated eletrons should inlude the orbitaldegrees of freedom [73, 74℄. Thus, the simple Hubbard model whih desribesthe orrelated eletrons within the s orbitals would not be su�ient and onse-quently also the standard t-J model annot desribe properly the phenomenapresent in lightly doped ubi vanadates (ompare appropriate disussion inChapter 1 and Chapter 3.2). However, before we move on and derive suh amodel step-by-step (see Se. 4.3) let us try to antiipate the results obtainedthere.Atually, the J part of this new t-J model is presented in Ref. [83℄ wherethe undoped lassial ground state is also disussed. This state agrees with theone observed experimentally and is preisely the same as disussed in Se. 4.1:the C-AF and the G-AO ordered phase. Next, one an try to imagine whathappens when a single hole is doped into the ab plane of suh a state (this is thelimit in whih we want to study the solutions of the new t-J model), f. Fig.4.2. In the beginning this seems to be not very hard � one only needs to reallthe disussion of Chapter 3. There it was shown that a hole in the AF state ismobile due to spin quantum �utuation (ompare also Ref. [23℄) whereas a holein the t2g AO state was mobile only after the three-site terms were inludedin the model (see also Ref. [85℄). However, then an interesting problem arises:would a hole in a state with both orderings behave rather like the one in an AF92



Figure 4.2: Artist's view of a single hole introdued into the spin and orbitallyordered ab plane of LaVO3 [the 3D order present in LaVO3 is shown in Fig.4.1(a)℄. The eletrons oupy the dyz and dzx degenerate orbitals forming thelassial AO state (their projetions along the a and b axis are shown) whereasthe eletron spins alternate on the neighbouring sites forming the lassial AFstate. Note that the eletrons in the always oupied dxy orbitals are not shownfor larity although their spins ouple via the Hund's rule to the eletron spinsin dzx and dyz orbitals and ontribute to total spins S = 1 in the AF state(besides, at the hole position spin 1/2 is left).state or rather like the one in an AO state or in a totally di�erent way? Thisannot be answered easily and suggests that a new approah to the solution ofthis new t�J model in the `one-doped-hole' regime is needed. But let us nowtry to analyze �rst why suh a problem arises at all.Reasons for no `rough' preditions.� In fat, here the mere oexistene ofthe AF and AO order in the undoped ase represents a very exoti physis: itformally violates [93℄ the Goodenough-Kanamori rules [56, 55℄ that state om-plementary spin and orbital order in the ground state of a rystal with magnetiand orbital ordering, i.e. either FM spin oexisting with AO order, or AF spinoexisting with FO order. Although these rules are valid on the ondition thatthe orbitals annot �utuate and annot be treated as the dynamial variablesthey have been very suessfull in the predition of the ordered phase of variousompounds, suh as e.g. KCuF3 with FM and AO order in the ab planes and theAF and FO order along the c axis. As in the ubi vanadates the Goodenough-Kanamori rules are violated this suggests that most probably3 the reason forthe violations is that the orbitals should be treated as dynamial variables. A-tually, indeed there are strong quantum �utuations of the {dyz, dzx} orbitalsalong the c diretion [83℄ whih are responsible for the oexistene of the AOand AF order in the plane [83℄ whih further supports the above laim.More areful approah to the problem needed.� The main lesson from thelast paragraph is that a more areful approah to obtain the solutions of thenew t-J model is needed: one has to take into aount the spins and orbitals onequal footing as both types of degrees of freedom have to be treated as dynamialvariables. Obviously, suh approah was not needed for the standard t-J modelwithout orbital degrees of freedom but more interestingly it was also not needed3Logially one annot exlude other reasons for the violation of these rules.93



for the t-J model desribing the situation in the ab planes of the manganites.In the latter ase the Goodenough-Kanamori rules were not violated and theundoped ground state was the FM and AO state whih meant that the hole ouldmove freely in the spin setor and it solely oupled to the orbital dynamis [82℄.Thus not only we need a new t-J model to desribe the physis present inthe lightly doped ubi vanadates but also we need a new approah to get thesolutions of this model. More preisely, in the ase of the one hole doped to thehalf-�lled state this means that the hole will ouple both to the exitations ofthe AO ordered state (orbitons) and the AF ordered state (magnons). In thefollowing setions we will present the mathematial framework to investigatethe ideas of this setion.4.3 The model4.3.1 The t2g spin-orbital t�J HamiltonianHubbard-like model.� The starting point is the multiorbital Hubbard modelrelevant for the t2g orbitals in the transition metal oxides with the perovskitestruture [98, 99℄,
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iµ↓diν↓diν↑, (4.1)where U is the intraorbital Coulomb repulsion and JH is the on-site Hund'sexhange interation. Here the d†iµσ operator stands for reation of an eletronwith spin σ in one of the three t2g orbitals, µ ∈ {dxy, dyz, dzx}. Note that thehopping is allowed only between the same t2g orbitals and µ(γ) (where γ = a, b, cis a ubi diretion) is hosen in suh a way that the eletron in eah t2g orbitalhops only in the allowed plane, f. Ref. [71℄ or the more detailed disussion onthis issue in Chapter 3. Besides, the summations in the interation terms aredone in suh a way that eah pair of the orbitals is inluded only one and thespin operator is de�ned as:
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(niµ↑ − niµ↓)} (4.2)Let us also note, that this Hamiltonian desribes rigorously the multiplet stru-ture of the d2 and d3 ions in the t2g subspae as only one Hund's exhangeelement is involved [99℄.Central Hamiltonian of this hapter.� Applying the anonial perturbationexpansion of Chapter 1 to the Hamiltonian Eq. (4.1) for the ase of the twoeletrons per site, relevant for the planes of lightly doped ubi vanadates, weobtain the Hamiltonian of the spin-orbital t�J model with the three-site terms:4

H = Ht +HJ +H3s, (4.3)4In the literature the t�J model with three-site terms is also alled the strong-ouplingmodel [80℄. However, we will not use this name sine throughout this thesis we deal with94



where the Ht is the kineti energy in the onstrained Hilbert spae with no`double oupanies' (see Se. 4.3.2), HJ desribes the superexhange terms (seeSe. 4.3.3) and �nally H3s are the three-site terms (see Se. 4.3.4). Please notethat unlike in the previous hapter we will not give here the expliit expressionsfor the T0, T+, and T− proesses (see Chapter 1 for their de�nition) as theyare rather tedious. This is further baked by the fat that the ompliated Jpart of the t�J model has been already derived [100℄ while for the kineti andthree-site terms will not be needed (see below).4.3.2 The kineti energy termExpliit form.� The kineti energy term of the t2g spin-orbital t-J model, whihdesribe the hopping of the eletrons in the onstrained Hilbert spae, i.e. inthe spae with singly oupied or doubly oupied sites (the lowest Hubbardsubband of the model), follow in a straightforward way from the unonstrainedhopping of eletrons residing in the t2g orbitals. Thus in the ab plane, whihis under onsideration here, eletrons in dyz ≡ a (dzx ≡ b) orbitals an hoponly along the b (a) diretion. Besides, we will assume here that the dxy orbitaldoes not ontribute to hopping elements as it lies lower in energy and is alwaysoupied by one eletron in the half-�lled and lightly hole-doped regime of ubivanadates [101℄. Hene, we arrive at
Ht = −t

∑

i,σ

P
(
b̃†i,σ b̃i+â,σ + ã†i,σãi+b̂,σ + H.c.

)
P. (4.4)Here the use of the onstrained operators

b̃†iσ = b†iσ(1 − nibσ̄)(1 − niaσ̄)(1 − niaσ), (4.5)and
ã†iσ = a†iσ(1 − niaσ̄)(1 − nibσ̄)(1 − nibσ), (4.6)means that the hopping is allowed only in the onstrained Hilbert spae. Be-sides, sine the Hund's oupling dominates over the kineti proesses, JH ≫ t,in the ubi vanadates [102℄ we projet the �nal states resulting from the ele-tron hopping onto the high spin states, whih is denoted by the P operators inEq. (4.4). Note that Eq. (4.4) is a generalization of Eq. (3.6) valid only forspinless fermions in the t2g system under onsideration.4.3.3 The spin-orbital superexhange termsExpliit form.� The spin-orbital superexhange in ubi vanadates is derivedin Ref. [100℄ [see Eqs. (6.5)-(6.7) there℄. It reads,

HJ = HJ(1) +HJ(2) +HJ(3), (4.7)many di�erent extensions of the standard t�J models and the strong-oupling model is justanother variation of suh extended version of the t�J model. See also a similar footnote inChapter 3.3.1. 95



where
HJ(1) = −1

6
Jr1

∑

〈ij〉
(Si · Sj + 2)

(
1

4
− T zi T

z
j

)
, (4.8)

HJ(2) =
1

8
J

∑

〈ij〉
(Si · Sj − 1)

(
19

12
∓ 1

2
T zi ∓ 1

2
T zj − 1

3
T zi T

z
j

)
, (4.9)

HJ(3) =
1

8
Jr3

∑

〈ij〉
(Si · Sj − 1)

(
5

4
∓ 1

2
T zi ∓ 1

2
T zj + T zi T

z
j

)
. (4.10)Here: Si is a spin S = 1 operator, T zi = (ñib − ñia)/2 is a pseudospin T = 1/2operator, and the superexhange onstant J = 4t2/U with U being the e�etiverepulsion between eletrons on the same vanadium site and in the same orbitaland with t ≪ U being the e�etive hopping between vanadium ions, see Eq.(4.1). The fators r1 = 1/(1−3η) and r3 = 1/(1+2η) (where η = JH/U) aountfor the Hund's oupling JH and originate from the energy splitting of various

d3 exited states due to the various possible spin and orbital on�gurations(multiplet struture) [83℄. Let us reall, that superexhange Hamiltonian (4.7)was derived [100℄ with the assumption that the dxy orbital was singly oupiedat eah vanadium ion (see also disussion in Se. 4.3.2. Besides, in prinipleHamiltonian (4.7) was originally derived for the undoped ase and should bemodi�ed for the doped ase by adding the superexhange interations due tothe existene of the d1
i d

1
j and d1

i d
2
j nearest neighbour on�gurations. However,the ontributions of these terms should be very small in the disussed here smalldoping regime and they will be negleted.4.3.4 The three-site termsIdenti�ation of `important' three-site terms.� The three-site terms have notbeen derived before for the ase of the d2 systems with spin and orbital degreesof freedom. These terms, although frequently negleted, an play an importantrole in the oherent hole propagation in orbital systems (see Chapter 3 or Ref.[85℄). However, in the present ase the derivation of all possible three-site termsis relatively tedious and leads to a omplex expression. Fortunately, it wasshown in Chapter 3 or Ref. [85℄ (for orbital systems) and in Ref. [80℄ (forspin systems) that the only three-site terms whih ourred to be relevant forthe lightly doped systems were these whih did not ontribute to the ouplingbetween hole and orbital or spin exitation but merely ontributed to the freehole motion (see also Se. 4.4.1). Nevertheless, we disuss �rst the possible roleof the negleted three-site terms in Se. 4.5.1.Derivation of the `important' three-site terms.� In what follows, using theanonial perturbation theory of Chapter 1, we derive the three-site terms whihwould ontribute to suh a motion of a single hole that it does not disturb theAO and AF order present in the undoped ground state (see also disussion inthe beginning of Se. 4.4.1). We start the analysis by looking at the possibilityof the free hole motion along the a diretion, see Fig. 4.3. We would like tomove the eletron in the b orbital (the one in the a orbital does not hop alongthis diretion) from the right site to the left site over the middle site in suh away that the spin and orbital order present before the proess stays intat (inthe language of Chapter 1 this means transfering the eletron �rst with the T+96



i−a i i+a

b orbital

a orbital

c orbitalFigure 4.3: Three neighbouring sites along the a diretion with suh an AO andAF order that the eletron on site i + â an move over the intermediate site ivia the superexhange proess ∝ J to site i− â without disturbing the AO andAF order.and then with the T− proess). This on�nes the hoie of the possible highenergy intermediate d3
i on�gurations at the middle site to the states with thetotal spin |3/2,−1/2〉 (see Fig. 4.3) and the possible states: (i) 4A2 with energy

U − 3JH , (ii) 2E 1
2θ state with energy U , (iii) 2E 1

2ε state with energy U . Notethat all the intermediate states with orbital singlets are exluded as they wouldrequire orbital exitations. Thus, one arrives at the following ontribution (seeChapter 1 for more details) to the free hole motion whih arises due to thethree-site term proesses along the a diretion,
−

(
1

3

1

1 − 3η
+

2

3

)
t2

U
P b̃†i−â,σñiaσ̄ b̃i+â,σ P. (4.11)A similar onsideration but for the proesses along the b diretion yields

−
(

1

3

1

1 − 3η
+

2

3

)
t2

U
P ã†

i−b̂,σ
ñibσ̄ãi+b̂,σ P. (4.12)However, the 900 proesses, alled also around `the orner' (see Chapter 3), suhas e.g. �rst the hopping of an eletron along the b diretion and then along the

a diretion would not ontribute to the free motion. This is beause an eletronin a partiular orbital an hop only along one partiular ubi diretion andthus one would have to interhange the hopping of eletrons at the intermediatehigh energy site whih would lead to the orbital exitation.Hene, after adding the sums over all sites i and spins σ and the onjugateterms to Eqs. (4.11)-(4.12) one ends up with:
H3s=−

1

12
J (r1 + 2)

∑

i,σ

P
(
b̃†i−â,σñiaσ̄ b̃i+â,σ + H.c.

)
P

− 1

12
J (r1 + 2)

∑

i,σ

P
(
ã†
i−b̂,σ

ñibσ̄ãi+b̂,σ + H.c.
)
P. (4.13)Note that these terms are ∝ J and hene are of the same order in t2/U assuperexhange terms (4.7).Finally, one may wonder how Eq. (4.13) ould ontribute to the free holemotion sine it ontains four eletron operators. However, the number operatorswhih stand in the middle of this equation only re�et the relevant on�gurationsand in fat an be dropped out in the assumed here AO and AF order. Morepreisely, let us introdue two sublatties {A,B} in suh a way that e.g. the97



intermediate site in Fig. 4.3 belongs to the sublattie A (with all a orbitalsoupied and the spins pointing `downwards'); let us also onentrate on Eq.(4.11). Sine we assumed that in this sublattie the eletrons have spin `down'and are loated in the a orbital thus if, in addition, one assumes that σ =↑ inEq. (4.11), then one is allowed to write ñia↓ ≡ 1 and drop out this operator.Obviously, if one assumed σ =↓ or that i ∈ B, then one would not get anyontribution. Thus for some partiular hoies of σ and the sublattie indiesEq. (4.11) would desribe the free hole motion whereas in some other ases thisequation would not ontribute at all. While writing down Eq. (4.45) in Se.4.4.1 we take are of this problem.4.4 Method and results4.4.1 The slave-fermion approahSlave-partile formalism.� Similarly as in Chapter 3 also here we will alulatethe properties of the half-�lled system with one doped hole using the slavefermion method whih takes are of the onstraint of `no double oupanies'in the kineti energy term of the t�J model. In fat, this is a method of hoiefor low doped t�J models [20℄ with some kind of magneti/orbital order in thehalf-�lled ground state.Undoped ase: low energy exitations.� It was shown in Ref. [83℄ that thelassial ground state of the 3D version of the Hamiltonian Eq. (4.7) is a C-AFstate and G-AO ordered state. Thus, the lassial undoped ground state of theHamiltonian Eq. (4.3) is the (Néel ordered) AF state and AO state. Certainly,this is not the eigenstate of the Hamiltonian and thus the full desription ofthe system should also take into aount the quantum �utuations around suha lassial ground state. Below, we will alulate them by transforming thespins and pseudospins into the appropriate Shwinger bosons and then usingthe linear spin wave (LSW) and linear orbital wave (already denoted as LOW,see previous Chapter) approximation. In addition from the LSW and LOWapproah, we will obtain the spetrum of the low energy exited states.First, in the lassial state we introdue two sublatties A and B suh that:(i) all a (b) orbitals are oupied in the perfet AO state in sublattie A (B),and (ii) spins pointing `downwards' (`upwards') are loated on sublattie A (B).Next we rotate spins and pseudospins on sublattie A so that all the spinsand pseudospins in the whole lattie are in the same loal eigenstates witheigenvalues of Szi and T zi .Seond, we introdue Shwinger bosons t and f suh that:
T zi =

1

2
(ntib − ntia), (4.14)

Szi =
1

2
(nf i↑ − nf i↓), (4.15)

S+
i = f †

i↑fi↓, (4.16)
S−

i = f †
i↓fi↑, (4.17)98



with the onstraints
∑

γ=a,b

t†iγtiγ = 1,
∑

σ=↑,↓
f †
iσfiσ = 2. (4.18)Third, we transform the Shwinger boson operators into the Holstein-Primako�bosons α and β:

t†ib =

√
1 − t†iatia ≡

√
1 − β†

i βi, (4.19)
t†ia = β†

i , (4.20)
f †
i↑ =

√
2 − f †

i↓fi↓ ≡
√

2 − α†
iαi, (4.21)

f †
i↓ = α†

i , (4.22)where the above onstraints are now no longer needed.Next, we substitute the above transformations into the Hamiltonian HJ andskip higher order terms (LSW and LOW approximation). The latter approx-imation physially means that the number of bosons α and β, whih desribethe �utuations around the ordered state, is small. This results in the e�etivesubstitutions:
T zi =

1

2
− β†

i βi, (4.23)
Szi = 1 − α†

iαi, (4.24)
S+

i =
√

2αi, (4.25)
S−

i =
√

2α†
i . (4.26)Finally, we introdue Fourier transformation separately for eah sublattie(N is the total number of sites on both sublatties):

βkA =

√
2

N

∑

j∈A
eikjβj, (4.27)

βkB =

√
2

N

∑

j∈B
eikjβj, (4.28)

αkA =

√
2

N

∑

j∈A
eikjαj, (4.29)

αkB =

√
2

N

∑

j∈B
eikjαj, (4.30)de�ne operators

αk± = (αkA ± αkB)/
√

2, (4.31)and perform the standard Bogoliubov transformation for magnons [23℄
α̃k± = ukαk± − vkα

†
−k±, (4.32)99



where
uk =

√
1 + νk
2νk

, vk = −sgn(γk)

√
1 − νk
2νk

, (4.33)with νk =
√

1 − γ2
k and the struture fator for the square lattie

γk =
1

2
(cos kx + cos ky). (4.34)Then, after negleting onstant terms whih merely give the lassial energyof the undoped ground state, the LSW and LOW Hamiltonian for magnons andorbitons reads:

Heff
J = HeffLSW +HeffLOW, (4.35)

HeffLSW = JS
∑

k

ωk(α̃†
k+α̃k+ + α̃†

k−α̃k− + 1), (4.36)
HeffLOW = JO

∑

k

(β†
kAβkA + β†

kBβkB), (4.37)where
JO = η

2 − η

(1 − 3η)(1 + 2η)
J, (4.38)and

JS =
−5η2 − 3η + 1

4(1 − 3η)(1 + 2η)
J. (4.39)in agreement with Eq. (6.11) of Ref. [100℄ and Eq. (11) of Ref. [103℄. Besides,the dispersion relation for the magnons is

ωk = zS
√

1 − γ2
k (4.40)where z = 4 is the oordination number, S = 1 is the value of the spin. Letus note that in the regime of reasonable values of η ∈ [0, 0.20]: EO is negativewhereas JO > 0 and JS > 0, whih means that the lassial ground state indeedhas oexisting AO and AF order. Furthermore, at temperature T = 0 theonsidered here lassial 2D AO and AF ground state is stable with respetto the quantum �utuations, both in spin and orbital hannel. In fat, theorbital order is undisturbed by loal Ising exitations, while the quantum AFground state is modi�ed and the order parameter is renormalized with magnonexitations [23℄.Doped hole: oupling with magnons and orbitons.� We expet that a dopedhole does not modify signi�antly the lassial ground state stable for the half-�lled ase (see above). This ould play a role in the lightly doped regime, butin the ase of one hole in the whole plane suh a modi�ation is negligible andwill be negleted below. Instead, the doped hole may modify its neighborhoodby its oupling to the exitations of the lassial ground state � magnons andorbitons � whih renormalize the hole motion. In order to desribe it mathe-matially, we rewrite Ht (see next paragraph) and H3s (see below) using similartransformations as performed for the half-�lled ase.First, we rotate spins and pseudospins on sublattie A. Next, using the slave-fermion approah we express the eletron operators in terms of the Shwinger100



bosons introdued above and in terms of the (onstrained) fermioni operatorsrepresenting holes:
ã†iσ =

1√
2
f †
iσt

†
iahi, (4.41)

b̃†iσ =
1√
2
f †
iσt

†
ibhi. (4.42)Here the onstraints on the bosoni operators are as in Eq. (4.18) while h†ihidenotes the number of holes at site i.Note that the fator 1√

2
is not added `ad ho' but originates from a detailedhek of the validity of the above equations: it should always be present in thespin S = 1 ase beause e.g. when one annihilates one boson in a two-bosonstate with the f operator, then a fator √2 appears. Due to this fator and theabove onstraint on the number of bosons the high spin projetion operators

P in Ht are no longer needed (i.e. quantum double exhange [104℄ fators areimpliitly inluded in this formalism).Next, similarly as above, we transform the Shwinger bosons into the Holstein-Primako� bosons, skip all terms ontaining more than two bosons, performFourier transformation for bosons and (additionally) for holons here, introdue
αk± operators, and �nally perform Bogoliubov transformation to arrive at theHamiltonian:

Heff
t =

zt

2N

∑

k,q1,q2

{
Mx(k,q1,q2)h†kAhk̄B(α̃q1+

+ α̃q1−
)βq2A

+My(k,q1,q2)h†kBhk̄A(α̃q1+
− α̃q1−

)βq2B

+Mx(k,q1,q2)h†kAhk̄B(α̃†
−q1+

− α̃†
−q1−

)βq2A

+My(k,q1,q2)h†kBhk̄A(α̃†
−q1+

+ α̃†
−q1−

)βq2B + H..}, (4.43)where
Mµ(k,q1,q2) = uq1

γkµ−q1µ−q2µ
+ vq1

γkµ−q2µ
, (4.44)with µ = x, y. Here k̄ = k − q1 − q2 follows from momentum onservation, andthe oe�ients {uq1

vq1
} are the standard Bogoliubov fators (4.33).Doped hole: free dispersion.� After performing similar transformations asthe ones introdued for the t part of the Hamiltonian one obtains that thethree-site terms, Eq. (4.13), lead to the following Hamiltonian for the holes

Heff
3s = τ

∑

k

{
εB(k)h†kBhkB + εA(k)h†kAhkA

}
, (4.45)where

τ =
1

4

1 − 2η

1 − 3η
J, (4.46)and the free hole dispersion relations on the sublatties are

εA(k) = 2 cos(2ky), (4.47)101



0.00 0.05 0.10 0.15 0.20
 η

0.0

0.2

0.4

0.6

J S / 
J,

 J
O

 / 
J,

  τ
 / 

J

Figure 4.4: The e�etive spin and orbital exhange interation JS (dashed line)and JO (dotted line) as a funtion of the Hund's rule oupling η = JH/U ,respetively. The solid line shows the dependene of the three-site term τ on η.The realisti value of η = 0.15 (f. Ref. [83℄) is indiated by the light dottedline.and
εB(k) = 2 cos(2kx). (4.48)Note that, we have negleted all of the three-site terms whih lead to the ou-pling between holes and magnons and/or orbitons. This is physially justi�edsine then suh terms would be of the order of J/4, i.e. muh smaller than theterms in Eq. (4.43). See also Se. 4.5.1 for further disussion.Thus in the lightly doped ase, when the lassial spin and orbital orderedground state present in the half-�lled ase is not destroyed, the t�J model (4.3)an be redued to an e�etive model

Heff = Heff
t +Heff

J +Heff
3s , (4.49)see Eqs. (4.35), and (4.43)-(4.45). Atually, this is a polaron-type model withthe oupling between fermions (holes) and bosoni exitations (orbitons andmagnons), whih is relatively easy to solve (see next setion). The validity ofthe mapping between the two models was thoroughly disussed in Ref. [23℄ andChapter 3.Note that the original t-J model with three-site terms (4.3) has three param-eters {J, η, t}, whereas the e�etive polaron model given by Eq. (4.49) is moreonveniently analysed when using four parameters {JS , JO, τ, t}, whih deter-mine the sale of spin and orbital exitations as well as free hole propagation(due to the three-site terms) and the vertex funtion (t), see below. In whatfollows we will use either one of these two parameter sets (and only sometimesboth of them) depending on the ontext. Hene, we plot in Fig. 4.4 the fun-tional relation between the parameters {JS , JO, τ} on Hund's exhange η. Whilethe magnon energies ∝ JS derease with η, the energy sale of orbitons ∝ JOinreases rapidly, so the latter exitations are expeted to play an importantrole in the realisti regime of parameters.4.4.2 The self-onsistent Born approximationGreen's funtions.� The spetral properties of the hole doped into the AF/AO102



ground state |Φ0〉 with energy E0 of the t�J model Eq. (4.3) at half-�lling followfrom the Green's funtions:
Ga↓(k, ω) =

〈
Φ0

∣∣∣∣a
†
k↓

1

ω +H − E0
ak↓

∣∣∣∣ Φ0

〉
, (4.50)

Ga↑(k, ω) =

〈
Φ0

∣∣∣∣a
†
k↑

1

ω +H − E0
ak↑

∣∣∣∣ Φ0

〉
, (4.51)

Gb↓(k, ω) =

〈
Φ0

∣∣∣∣b
†
k↓

1

ω +H − E0
bk↓

∣∣∣∣Φ0

〉
, (4.52)

Gb↑(k, ω) =

〈
Φ0

∣∣∣∣b
†
k↑

1

ω +H − E0
bk↑

∣∣∣∣Φ0

〉
. (4.53)However, due to the mapping of the t�J model onto the polaron model per-formed in the last setion, it is now onvenient to express the above Green'sfuntions in terms of the polaron Hamiltonian Heff . This requires that one�rst writes down the eletron operators in terms of the operators used in Eq.(4.49):

ak↓ =
1√
N




∑

j∈A
eikjh†j +

∑

j∈B
eikjh†jαjβj



 , (4.54)
ak↑ =

1√
N



 1√
2

∑

j∈A
eikjh†jαj +

∑

j∈B
eikjh†jβj



 , (4.55)
bk↓ =

1√
N




∑

j∈A
eikjh†jβj +

1√
2

∑

j∈B
eikjh†jαj



 , (4.56)
bk↑ =

1√
N




∑

j∈A
eikjh†jαjβj +

∑

j∈B
eikjh†j



 . (4.57)Seond, the ground state |Φ0〉 is now a physial vauum |0〉, with respet to theBogoliubov operators α̃k± and the operators βk, with the ground state energy
E alulated now in the LSW and LOW approximation. Then, one arrives atthe following relations:

Ga↓(k, ω) =
1

2

〈
0

∣∣∣∣hkA
1

ω +Heff − E
h†kA

∣∣∣∣ 0

〉
≡ 1

2
GAA(k, ω), (4.58)

Gb↑(k, ω) =
1

2

〈
0

∣∣∣∣hkB
1

ω +Heff − E
h†kB

∣∣∣∣ 0

〉
≡ 1

2
GBB(k, ω), (4.59)where the fator 1/2 is due to the operators hkA (hkB) being de�ned separatelyfor eah sublattie. Furthermore, the Green's funtions

Ga↑(k, ω) ≪ Ga↓(k, ω) , (4.60)
Gb↓(k, ω) ≪ Gb↑(k, ω) , (4.61)orrespond to exited states and thus an be skipped. Note that the above setof equations follows from the fat that βk|0〉 = 0 and the inequalities are due to

〈
0

∣∣∣∣∣
α†
iαi
2

∣∣∣∣∣ 0

〉
∼ n0

2
∼ 0.1 , (4.62)103
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=ΣAAFigure 4.5: Diagrammati representation of the SCBA equations: top � theDyson's equation for the GAA(k, ω) and GBB(k, ω) Green's funtions; bottom� alulation of the respetive self-energies. Note the appearane of the twowiggly lines in the alulation of the self-energies oming from the orbiton andthe magnon exitations.where n0 is the average number of spin deviations in the 2D ground state |0〉.Note that below we will eliminate the ground state energy E to simplify equa-tions.Equations for the self-energy.� As seen in Setion 4.4.1 the verties in thespin-orbital model are more omplex than for the standard spin ase [23℄: (i)one always has two boson and two holon lines at eah vertex (instead of just oneboson and two holons lines in the standard lowest SCBA order), (ii) one has thesublattie struture (this resembles the orbital ase), (iii) one has two kinds ofmagnons (whih we had to introdue in order to keep trak of the lattie index).Also, in the LSW and LOW order all the terms ∝ α†
iβi do not ontribute (theself-energies for them would require altogether four boson lines instead of justtwo for ∝ αiβi).5 Hene, we largely follow the route whih was proposed for theorbital t2g model in Chapter 3 and obtain the following SCBA equations for theself-energies (see also Fig. 4.5):

ΣAA(k, ω) = 2
z2t2

4N2

∑

q1,q2

M2
x(k,q1,q2)

×GBB(k − q1 − q2, ω + JSωq1
+ J0) (4.63)

ΣBB(k, ω) = 2
z2t2

4N2

∑

q1,q2

M2
y (k,q1,q2)

×GAA(k − q1 − q2, ω + JSωq1
+ J0), (4.64)5We have veri�ed analytially that these terms would not lead to any k-dependene in thespetra as in the self-energies desribing suh proesses one an shift the summation over themomenta in suh a way that the self-energies are momentum independent (See also Se. 4.5.1for a similar alulation onerning the self-energies for two boson lines). Thus, these termswould not hange the qualitative feature of the alulated spetra, i.e. that the k-dependeneof the quasipartile states originates entirely from the three-site terms. Besides, one an notethat inlusion of suh terms would require going beyond the LSW and LOW approximation,i.e. one would have to inlude the interations between magnons and/or orbitons.104



where the fator 2 in front of the vertex omes from the fat that one has twokinds of magnons (and hene two distint diagrams). Fortunately, this fatoranels with one of the 2 in the denominator and we obtain that the ouplingonstant is simply (t/
√

2)2, i.e. we reover the fator 1/
√

2 whih omes outfrom the quantum double exhange. The above equations should always besupplemented by the Dyson's equations,
GAA(k, ω) =

1

ω + τεA(k) − ΣAA
, (4.65)

GBB(k, ω) =
1

ω + τεB(k) − ΣBB
. (4.66)Altogether, Eqs. (4.63)-(4.66) form a self-onsistent set of equations whih anbe solved numerially.Finally, one an alulate the spetral funtions for a hole reated in a and

b orbital:
Aa(k, ω) = − 2

π
lim
δ→0

ImGa↓(k, ω + iδ) = − 1

π
lim
δ→0

ImGAA(k, ω + iδ) , (4.67)
Ab(k, ω) = − 2

π
lim
δ→0

ImGb↑(k, ω + iδ) = − 1

π
lim
δ→0

ImGBB(k, ω + iδ) , (4.68)where we introdued a fator of 2 in front of the de�nition of the spetralfuntions Aγ(k, ω) for onveniene.4.4.3 The spetral funtions and quasipartile propertiesAnalyti alulations.� It ours that in the ase when the three-site terms areabsent (i.e. for τ ≡ 0) one an easily prove two important properties obtainedwith the SCBA Eqs. (4.63)-(4.64): (i) the self-energies are k-independent, (ii)the spetral funtions ontain the quasipartile state for �nite value of the ex-hange parameter J (equivalently JS or JO).First, we show property (i). Sine we have assumed that τ = 0 we an rewriteSCBA equations (4.63)-(4.64) together with Dyson's equations (4.65)-(4.66) inthe following manner:
ΣAA(k, ω) =

z2t2

2N2

∑

q1,q2

M2
x(k,q1,q2)

ω + JSωq1
+ JO − ΣBB(k − q1 − q2, ω + JSωq1

+ J0)
,(4.69)

ΣBB(k, ω) =
z2t2

2N2

∑

q1,q2

M2
y (k,q1,q2)

ω + JSωq1
+ JO − ΣAA(k − q1 − q2, ω + JSωq1

+ J0)
,(4.70)whih after substitution q2 → k − q2 in the sums leads to

ΣAA(k, ω) =
z2t2

2N2

∑

q1,q2

f2(q1,q2)

ω + JSωq1
+ JO − ΣBB(q2 − q1, ω + JSωq1

+ J0)
,(4.71)

ΣBB(k, ω) =
z2t2

2N2

∑

q1,q2

g2(q1,q2)

ω + JSωq1
+ JO − ΣAA(q2 − q1, ω + JSωq1

+ J0)
,(4.72)105



where we de�ned
f(q1,q2) = uq1

γq2x−q1x
+ vq1

γq2x
, g(q1,q2) = uq1

γq2y−q1y
+ vq1

γq2y
, (4.73)with γk de�ned as in Eq. (4.34). Sine the right hand side of the equationsfor the self-energies do not depend on k [see Eqs. (4.71)-(4.72)℄, one is allowedto drop the momentum dependene of the self-energies. Hene, the spetralfuntions are also momentum independent in the ase of τ = 0 and the onlydependene on k may originate from the three-site terms.Seond, using the dominant pole approximation [22℄ we show that the quasi-partile state exists [property (ii)℄ if J is �nite (i.e. JS or JO are �nite). Hene,following Kane et al. we assume that the Green's funtion an be separatedinto the part ontaining the pole and the part responsible for the inoherentproesses:

GAA(ω) =
aA

ω − ωA
+GincAA(ω) (4.74)

GBB(ω) =
aB

ω − ωB
+GincBB(ω), (4.75)where

aA =
1

1 − ∂ΣA

∂ω

∣∣
ω=ωA

, (4.76)
aB =

1

1 − ∂ΣB

∂ω

∣∣
ω=ωB

, (4.77)and the pole positions:
ωA = ΣAA(ωA), (4.78)
ωB = ΣAA(ωB), (4.79)are to be determined self-onsistently following Eqs. (4.74)-(4.75).Next, following Ref. [22℄ it is straightforward to derive the upper bound forthe residues (spetral weights) {aA, aB}:

aA ≤
{

1 +
z2t2

2N2

∑

q1,q2

f2(q1,q2)
aB

(JSωq1
+ J0)2

}−1

, (4.80)
aB ≤

{
1 +

z2t2

2N2

∑

q1,q2

g2(q1,q2)
aA

(JSωq1
+ J0)2

}−1

. (4.81)If the sums in the above equations are divergent, then the upper bounds for theresidues are equal zero and the Green's funtions do not have the quasipartilepole. Hene, one needs to hek the behaviour for small values of the momenta
q1. Then ωq1

∼ |q1| but e.g. (uq1
γq2y−q1y

+ vq1
γq2y

)2 ∼ |q1|(γq2y
− q̂1 ·∇γq2y

)2.Thus, if at least either JS or JO is �nite, then there are no divergenes in Eqs.(4.80)-(4.81). Consequently, under the same onditions the quasipartile stateexists. 106
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4.5 Disussion4.5.1 Validity of the resultsGeneral remarks.� In order to solve the t2g spin-orbital t�J model in the aseof one hole doped in the half-�lled ground state we have introdued severalapproximations. Atually, they an be ast into two distint lasses: (i) thoserelated with the introdution of the slave fermions, and (ii) those related withthe SCBA method. However, the shortomings of these two approximationswere studied in detail by many authors (f. Refs. [28, 105, 106℄ or Chapter3 of this thesis) and it ourred that none of them were severe. On the otherhand, there ould potentially be a problem with the t-J model itself: although,following suggestion in Chapter 3 or Ref. [85℄, we inluded those three-site termswhih lead to the free hole dispersion (see Se. 4.3.4) we negleted all of theothers. Thus, below we take a loser look at this problem.Negleted three-site terms.� A areful analysis leads to the onlusion thatall the three-site terms whih do not ontribute to the free hole motion wouldlead to the oupling between a hole and either two magnons or two orbitons.Sine orbitons are loal exitations, see Eq. (4.37), the latter ontribution wouldonly slightly enhane the string potential in the present model and onsequentlythe spetral funtions would bear even more signatures of the ladder spetrum.However, this e�et will be quantitatively very small as the three-site termswould ontribute to the vertex as ∝ (J/4) (see below) whereas the magnon-orbiton verties onsidered in this hapter are of the order of t. Thus, one ansafely neglet these terms.On the other hand, negleting the terms whih would lead to the interationbetween a hole and two magnons is not a priori justi�ed. One ould imagine thatit might lead to the hole motion by oupling to the quantum spin �utuations� similarly as in the standard spin ase with the oupling between a hole and asingle magnon. Thus, we investigate this problem in detail: (i) we derived therespetive three-site terms, and (ii) we performed all the transformations as inSe. 4.4.1 whih lead to the Hamiltonian written in the polaron representation.Sine all these alulations are relatively tedious we do not expliitly writedown all the steps but merely present the �nal Hamiltonian whih desribes theoupling between a hole and two magnons
Heff

2m =
1

4

ηJz

1 − 3η

1

2N

∑

k,q1,q2

{
V1y(k,q1,q2)h†kAhk̄A

× (α̃q1+
α̃q2+

+ α̃q1+
α̃q2−

− α̃q1−
α̃q2−

− α̃q1−
α̃q2+

)

+ V1x(k,q1,q2)h†kBhk̄B(α̃q1+
α̃q2+

+ α̃q1+
α̃q2−

− α̃q1−
α̃q2−

− α̃q1−
α̃q2+

) + H..}
− 1

4

Jz

1 − 3η

1

2N

∑

k,q1,q2

{
V2y(k,q1,q2)h†kAhk̄A

× (α̃q1+
α̃q2+

+ α̃q1+
α̃q2−

+ α̃q1−
α̃q2−

+ α̃q1−
α̃q2+

)

+ V2x(k,q1,q2)h†kBhk̄B(α̃q1+
α̃q2+

− α̃q1+
α̃q2−

+ α̃q1−
α̃q2−

− α̃q1−
α̃q2+

) + H..} , (4.82)110



where
V1µ(k,q1,q2) =

1

2
uq1

uq2
cos(2kµ − 2q1µ − q2µ) +

1

2
vq1

vq2
cos(2kµ − q2µ),(4.83)and

V2µ(k,q1,q2) =
1

4
uq1

vq2
cos(2kµ − 2q1µ), (4.84)with all the symbols de�ned as those in Eq. (4.43). Note that above we havenegleted all terms of the type ∝ α̃†α̃ as they would lead to the four boson linediagrams (the self-energies with two magnon lines are very small, see below, andhene the self-energies with four magnon diagrams would be even smaller).Next, we implement the proesses derived above into the SCBA method andobtain the following equations for the additional self-energies:

Σ
′

AA(k, ω) =
z2λ2

2N2

∑

q1,q2

{
ηV1y(k,q1,q2)−V2y(k,q1,q2)

}2

×GAA(k− q1− q2, ω+ JSωq1
+ JSωq2

)

+
z2λ2

2N2

∑

q1,q2

{
ηV1y(k,q1,q2) + V2y(k,q1,q2)

}2

×GAA(k− q1− q2, ω+ JSωq1
+ JSωq2

)
}
, (4.85)

Σ
′

BB(k, ω) =
z2λ2

2N2

∑

q1,q2

{
ηV1x(k,q1,q2)−V2x(k,q1,q2)

}2

×GBB(k− q1− q2, ω+ JSωq1
+ JSωq2

)

+
z2λ2

2N2

∑

q1,q2

{
ηV1x(k,q1,q2) + V2x(k,q1,q2)

}2

×GBB(k− q1− q2, ω+ JSωq1
+ JSωq2

), (4.86)where
λ =

1

1 − 3η

J

4
. (4.87)This requires that one substitutes for the self-energies:

ΣAA(k, ω) → Σ
′

AA(k, ω) + ΣAA(k, ω), (4.88)
ΣBB(k, ω) → Σ

′

BB(k, ω) + ΣBB(k, ω), (4.89)in the Dyson's equations (4.65)-(4.66) whih hanges the SCBA equations.Finally, we solve the modi�ed SCBA equations on a mesh of 16×16 points. Itours that the spetral funtions obtained with the additional self-energies Eqs.(4.85)-(4.86) are virtually similar to those obtained without them (unshown).The only small di�erene is the very small enhanement of the inoherent part.This an be understood in the following way. First, the added ontributions saleas (J/4)4 and are very small as J < t. Seond, the verties, Eqs. (4.83)-(4.84),are singular at e.g. q1 = (0, 0) and q2 = (0, 0) points. Therefore, the self-energies assoiated with these verties ould only ontribute to the inoherent111
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HS = −t
∑

〈ij〉,σ
P (c̃†iσ c̃jσ + H.c.)P + JS

∑

〈ij〉
Si · Sj, (4.90)where spin S = 1, the onstrained operators c̃†iσ = c†iσ(1−niσ̄), and the operators

P projet onto the high spin states. Note that here the superexhange energysale is JS [see Eq. (4.39)℄ and not J . Hene, it is de�ned in suh a waythat it mimis the formation of the AO order. On the other hand, the kinetienergy is blind to the AO here and Eq. (4.4) redues to the kineti part ofEq. (4.90) only if the orbitals form an orbital liquid state. This is an obviouslogial inonsisteny but the aim here is to see what happens when the jointspin-orbital dynamis in the kineti energy is entirely negleted. It is also thereason why we all model (4.90) the toy-model.Seond, we de�ne the following t-JO orbital toy-model
HO = −t

∑

i

(b̃†i b̃i+â + ã†i ãi+b̂
+ H.c.) + JO

∑

〈ij〉
T zi T

z
j , (4.91)113



with pseudospin operator T = 1/2, and the onstrained operators b̃†i = b†i (1 −
nia) and ã†i = a†i (1 − nib). Similarly as in the spin toy-model de�ned above,the superexhange energy sale is not J but JO [Eq. (4.38)℄ whih mimis theformation of the AF order. Also, the kineti energy is blind now to the AF orderand Eq. (4.4) redues to the kineti part of Eq. (4.91) only if the spins form theFM order. This again is logially inonsistent � see, however, disussion above.Next, we solve these models using the SCBA method in the ase of the onehole doped into the AF (AO) state for the spin (orbital) toy-model. We do notshow here the respetive SCBA equations as these follow from those written inRef. [23℄ (Chapter 3) in the ase of the spin (orbital) toy-model. One only hasto substitute in the respetive SCBA equations J → −JS, S → 1 and (due tothe double exhange fator) also t → t/

√
2 in Ref. [23℄ in the spin ase and

J → −JO, E0 → 0, and τ → 0 in Chapter 3 in the orbital ase. We thenalulate the respetive spetral funtions on a mesh of 16 × 16 k-points. Notethat sine τ ≡ 0 the spetral funtions for both orbital �avours are equal, i.e.
Aa(k, ω) = Ab(k, ω) ≡ A(k, ω).Finally, we ompare the results obtained for the above toy-models with thoseobtained for the spin-orbital model t-J model, Eq. (4.4)-(4.7). We show theresults for two di�erent values of J , see Figs. 4.9 and 4.10. In addition, wealulate the results for two di�erent values of the Hund's oupling η = 0 and
η = 0.15 (see left and right panels of eah �gure).Comparison between toy-models and the spin-orbital model.� Let us �rstlook at the physial regime of η = 0.15 and J = 0.2t, see Fig. 4.9(d)-4.9(f). Onesees that the spin-orbital spetral funtion [panel (d)℄ resembles qualitatively theladder spetrum found in the orbital model [panel (f)℄ although the quantitativeomparison reveals strong di�erenes between the two models. Still, the spin-orbital spetral funtion is entirely di�erent from the k-dependent spin spetralfuntion [panel (e)℄. Next, somewhat similar behaviour is found for the ase of
η = 0.15 and J = 0.6t, see Fig. 4.10(d)-4.10(f). Here, however, the spin-orbitalspetrum is qualitatively di�erent than the orbital spetrum.Even more inquiring behaviour is found in the unphysial regime of η = 0(whih, however, is an interesting limit, see also footnote 6 in this hapter).Then neither of the panels shown in Fig. 4.9(a)-4.9() or Fig. 4.10(a)-4.10()is similar to eah other. This means that even the orbital model is entirelydi�erent in this regime than the spin-orbital model. This is beause in thislimit the hole moves in the orbital model inoherently as JO = 0 for η = 0, seee.g. Fig. 4.9(). However, apparently in the spin-orbital model with JO = 0 andsmall but �nite JS the hole moves in string-like potential, see e.g. Fig. 4.9(a).This means that the onset of the ladder-like spetrum in the spin-orbital modelin this regime annot be explained easily in terms of the purely orbital model.In addition, one sees that whereas one gets similar spin-orbital spetra fordi�erent values of η but the same values of J , the spetra found for the orbitalmodel are di�erent. On the ontrary, for di�erent values of J and the samevalues of η the spin-orbital spetra are rather distint but the spin spetra donot hange muh. This is another argument whih suggests that neither thespin toy-model nor the orbital toy-model an explain the properties of the spin-orbital spetra.Conlusions.� To onlude, we note that the joint spin-orbital dynamisin the kineti part of the spin-orbital model plays a signi�ant role for the114
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Figure 4.11: Comparison between the spetral funtions of the lassial limit(dashed lines) and full quantum (solid lines) version of the spin-orbital modelat a single point in the Brillouin zone. Panel (a) shows results for J = 0.2t and
η = 0 (i.e. JS = 0.05t, JO = 0, but τ ≡ 0, see text) whereas panel (b) showsresults for J = 0.6t and η = 0 (i.e. JS = 0.15t, JO = 0, but τ ≡ 0, see text).Note that τ ≡ 0 implies (see Chapter 3) Aa(ω) = Ab(ω) ≡ A(ω). Broadening
δ = 0.01t (δ = 0.015t) in panel (a) [(b)℄ and luster size 16 × 16.oherent hole motion. The purely spin or orbital toy-models annot reproduethe spetral funtion found for the spin-orbital t-J model. Hene, indeed thespin-orbital spetral funtions resemble the orbital ones only super�ially andit is the peuliar interplay of the spins and orbitals, studied in the next setion,whih leads to the alulated spetra.4.5.3 Suppression of quantum �utuationsClassial limit.� In this setion we attempt to understand the spin-orbital spe-tra by assuming that the spins S = 1 are purely lassial objets. Hene, weskip all the spin �ip terms ∝ S+

i S
−
j in the Hamiltonian Eq. (4.7), we rewriteSCBA equations (4.63)-(4.64) in this ase, and �nally try to ompare the spe-tral funtions alulated in this regime with the ones obtained for the full model,Eq. (4.3). In addition, we not only assume τ ≡ 0 as in the previous setion butwe also take η = 0 (whih implies JO = 0 in partiular), see also footnote 6 inthis hapter. In the end of this setion we disuss the impat of the �nite valueof these parameters on the results obtained here.Sine uq1

= 1, vq1
= 0, and ωq1

= 4 for the S = 1 lassial spins [23℄ we anrewrite self-energy equations (4.69)-(4.70),
ΣAA(k, ω) =

z2t2

2N2

∑

q1,q2

γ2
q1x

ω + JSzS − ΣBB(q1, ω + JSzS)
, (4.92)

ΣBB(k, ω) =
z2t2

2N2

∑

q1,q2

γ2
q1y

ω + JSzS − ΣAA(q1, ω + JSzS)
, (4.93)where we already substituted q1 → k − q1 − q2 in the sums. Then the above115



self-onsistent equations are momentum independent and one obtains
ΣAA(ω) =

( t√
2

)2 z/2

ω + JSzS − ΣBB(ω + JSzS)
, (4.94)

ΣBB(ω) =
( t√

2

)2 z/2

ω + JSzS − ΣAA(ω + JSzS)
, (4.95)sine 1/N

∑
q1
γ2
q1ν

= 1/2z, where ν = x, y.Classial and quantum limits oinide.�We solve Eqs. (4.94)-(4.95) selfon-sistently. The respetive spetral funtions are shown in Fig. 4.11 for J = 0.2t(i.e. JS = 0.05t) and J = 0.6t (i.e. JS = 0.15t). As expeted, one obtains atypial ladder spetrum. However, one sees that the results resemble those ob-tained for the full spin-orbital model Eq. (4.3) with η = 0 and τ = 0: Althoughthe spetrum of the full spin-orbital model ontains some inoherent part, theladder peaks of the full spin-orbital model and of its lassial version almostoinide. In addition, the inoherent bandwidth in the J = 0 limit is W = 4tin the lassial ase whereas it is only slightly redued in the quantum model(W ∼ 3.7t). 7 For �nite J this results in the small shift of the peaks in the fullspin-orbital model with respet to its lassial ounterpart. This all suggeststhat the lassial and the full (quantum) versions of the spin-orbital models areto a large extent equivalent.Interpretation of the lassial limit.� On the other hand, Eqs. (4.94)-(4.95)are almost idential to the SCBA equations for the hole moving in the S = 1/2spin Ising model [f. Eq. (20) in Ref. [23℄℄. The only di�erenes are: theself-onsistent dependene of the self-energies on two di�erent sublatties, theredution of the nearest neighbours by a fator 1/2 (in the numerator), a fator
1/

√
2 in the hopping element, and the inrease of the magnon exitation energyby a fator of 2. Whereas the �rst two imply the zig-zag hole motion in theordered state (see Chapter 3) the two others merely mean that the hole moves inthe spin S = 1 system. Thus altogether, the hole motion in the full spin-orbitalmodel with η = 0 and τ = 0 an be quite well approximated by the zig-zag holemotion in the S = 1 spin Ising model.Orbitally indued spin strings.� The whole analysis written above leads usto onlusion that in the limit of JO = 0 and τ = 0 the hole moves in the spinand orbitally ordered plane in the following way: (i) the orbitals fore the holeto move along the zig-zag paths even in the limit of JO = 0, (ii) the orbitals forethe hole to retrae its path again even in the limit of JO = 0 � this is similar tothe situation disussed by Brinkman and Rie [67℄ where the hole in the Isingspin model with J = 0 always has to retrae its path, (iii) the oherent holemotion by oupling to the spin �utuations is impossible in the ground state asthen the hole would not retrae its path, (iv) instead the hole reates stringsin the spin setor whih are erased when the hole retraes its path. Thus, one7The obtained value of the inoherent bandwidth W = 4t in the lassial limit well agreeswith the retraebale path approximation formula W = 4teff

√
l, where the e�etive hopping

teff = t/
√

2 due to the double exhange and l = 2 is the number of possible forward goingsteps in the lassial spin-orbital model, f. disussion in Chapter 3.4.3. Note also that thenarrowing of the bandwidth in the quantum ase is due to the fat that the e�etive numberof forward going steps, whih the hole an make so that the spins beome misaligned (whihis the essene of retraeable path approximation), is slightly redued. This is beause someof the spins are already overturned due to the quantum spin �utuations in the full quantummodel. 116



notes here a omplex interplay of spins and orbitals. In partiular, due to point(ii) the orbitals onstrain the spin dynamis and fore the spins to e�etivelyat on the hole as the lassial objets.Subtle issues.� Finally, there are only two subtle issues. First, the modelof the zig-zag hole motion in the S = 1 spin Ising model does not explain theappearane of the small momentum independent inoherent part in the exitedpart of the spetrum in the quantum spin-orbital model. This an be understoodin the following way: although the hole has to return to the original site (dueto the orbitals) the magnons present in the exited states an travel freely inthe system. Hene, the energies of the exited states an no longer be lassi�edmerely by the length of the retraeable paths (as it would be the ase in thelassial model with no dispersion in the magnon spetrum). This results inthe small inoherent spetrum whih surrounds eah of the peak of the ladderspetrum, f. Fig. 4.11. Furthermore, this inoherent spetrum grows withinreasing JS as then the veloity of the magnons inreases.Seond, one may wonder how to extend the above understanding of thespin-orbital polarons to the ase of �nite values of orbital exhange interation
η (whih results in the �nite value of JO, see Fig. 3.4) or �nite three-sitehopping term τ . Atually, inluding the nonzero value of JO merely leads tothe substitution of JSzS → JSzS + JO in Eqs. (4.92)-(4.93) and onsequently(4.94)-(4.95); this means that an additional string-like potential, oming thistime from the orbital setor, ats on the hole. On the other hand, inludingthe three-site term results in the shift ω → ω + εA(k) and ω → ω + εB(k) inEqs. (4.92)-(4.93) whih means that these equations annot be redued to themomentum-independent equations (4.94)-(4.95). However, one an still solvethe model. The results (not shown) resemble those found in Figs. 4.6 and4.7: it is again only the inoherent part whih is slightly enhaned in the fullspin-orbital model (4.3) whereas in its lassial ounterpart it is suppressed.Furthermore, all of the quasipartile properties of the full spin-orbital modelshown in Fig. 4.8 are almost perfetly reprodued by the lassial spin-orbitalmodel (not shown) � with the only slight disrepany being in the region of theslight deviation from the t(J/t)2/3 law for the pseudogap of the full spin-orbitalmodel.Conlusions.� To onlude, one should note that the quantum spin �utu-ations are to a large extent suppressed in the spin-orbital model by the simul-taneous oupling of the hole to both spin and orbital exitations. In partiular,they do not a�et the quasipartile state and merely add as a small inoherentspetrum in the inoherent high-energy part of the ladder spetrum. This isdue to the lassial harater of the orbitals whih on�ne the hole motion andprohibit its oherent motion by the oupling to the quantum spin �utuations.On the other hand, the hole still ouples to the spin degrees of freedom, mostly,in a lassial way, i.e. by generating string potential due to defets reated byhole motion. Thus, the string whih ats on the hole moving in the plane withAO and AF order is of the omposite orbital and spin harater. This not onlyexplains the peuliar orrespondene between the orbital and spin-orbital modelbut also explains that the spins `do not hide behind the orbitals' but play anative role in the lightly doped spin-orbital system.117



4.6 ConlusionsPurpose of this hapter.� The purpose of this hapter was to study the motionof a single hole doped into the Mott insulating AF and AO ordered plane ofLaVO3 [83℄, shown shematially in Fig. 4.2. In what follows we will answerthis problem by disussing in subsequent paragraphs the answers to the fourtasks posed in the introdution to this hapter.Form of the proper model.� First, in Se. 4.3 we showed that suh a holemotion is governed by the respetive t�J model [100℄ with S = 1 spin and t2gorbital degrees of freedom supplemented by the required here three-site terms,see Ref. [85℄ or Chapter 3 (whih were derived in Se. 4.3.4 and 4.5.1) and weused this model as the starting point of the analysis. Similarly as in Chapter 2and 3 one had to be very areful while studying the newly derived extended t�Jmodel. As disussed in detail in Se. 4.2 due to the violation of the Goodenough-Kanamori rules [93℄ we had to take into aount the spin and orbital dynamison equal footing. This was expliitly showed in Se. 4.4.1 where we reduedthis model to the polaron-type model and showed that indeed the hole ouplessimultaneously to the olletive exitations of both the AF state (magnons) andthe AO state (orbitons).Coherent hole motion in LaVO3.� Seond, we solved the model using theSCBA method and alulated both analytially using the dominant pole approx-imation and numerially using the SCBA equations that the spetral funtionsontain a stable quasipartile peak, provided the value of the superexhange Jwas �nite (see Se. 4.4.2-4.4.3. Thus, the added hole an move oherently inLaVO3. Let us note that this was not a trivial result as it was not a priori learwhether a oupling between a hole and two exitations would lead to a stablequasipartile state � e.g. the oupling between hole and two magnons does notlead to the stable quasipartile peak, f. Ref. [80℄ and Se. 4.5.1. However,sine the orbitons are massive exitations the hole does not satter too muh onthe exitations and the quasipartile solution exists.In�uene of the spin and orbital dynamis on the hole motion.� Further-more, apart from verifying all the approximations leading to the obtained results(Se. 4.5.1) we studied in detail the properties of the quasipartile states (seeseond part of Se. 4.4.3). In partiular, we looked at the di�erenes betweenthe well-known spin [23℄ or the t2g orbital (see Chapter 3 or Refs. [82, 85℄) po-larons and the obtained here spin-orbital polarons. We heked that all of thetypial quasipartile properties of the spin-orbital polarons suh as the band-width, the quasipartile spetral weight, and the pseudogap (the distane be-tween the quasipartile peak and the next exited state) are qualitatively similarto those of the t2g orbital polarons and it is the string piture whih dominatesin the quasipartile properties. For example the bandwidth sales as t(J/t)2and arises solely due to the renormalization of the three-site terms, similarly asin the purely orbital t2g model, see hapter 3. 8However, a more detailed investigation (Ses. 4.5.2- 4.5.3) led to the on-lusion that mirosopially the spin-orbital polarons are muh more omplexand resemble the orbital polarons only super�ially. Atually, we showed thatthe spin degrees of freedom also play a signi�ant role in the formation of the8Note that the ourrene of the small but still �nite bandwidth on�rms the idea of theabsene of hole on�nement in transition metal oxides with orbital degeneray presented inChapter 3 or Ref. [85℄. 118



spin-orbital polarons although they are fored by the orbitals to at on the holeas the lassial Ising spins. This is beause the orbitals on�ne the hole motionby foring the hole to retrae its path whih means that the hole motion by ou-pling to the quantum spin �utuations is prohibited. Thus, the string piturewhih dominates in the spin-orbital polarons is enfored by the orbitals but itis of a joint spin-orbital nature. Lastly, it ourred that it is only in the exitedspetrum that the quantum spin �utuations ontribute and are responsible fora small inoherent dome in the spetral funtion.Let us also make a side but important remark: atually, the suppressionof quantum spin �utuations by orbitals ould be understood as a topologiale�et. This is due to the fat that it happens even if the energy of the orbitalexitations is turned to zero, i.e. when the hole an move in the orbital setorfreely. Hene, the mere presene of orbitals is enough to obtain the (almost)lassial behaviour of a hole doped into the ground state with AF and AO order.Extensions to �nite doping.� Certainly, the extension of the one-hole resultto the �nite doping is always `shaky' and, thus, to further verify the problemwhy the orbital dynamis seems to drive the hole motion in the lightly hole-doped La1−xSrxVO3 more theoretial studies on the doped ubi vanadates areneeded. Still, the results presented here seem to apture the generi role of theorbital and spin dynamis in the lightly doped ubi vanadates.Final remarks.� An important predition of this hapter is that if a pho-toemission spetrum was measured on the leaved LaVO3 sample, then it wouldlook as the one obtained in Fig. 4.6. The reader may wonder whether (apartfrom the matrix-elements e�ets responsible for ertain redistribution of spetralintensity) any other proesses, suh as for example the eletron-phonon inter-ation, would a�et hole motion to suh an extent that the spetral funtionsalulated here would hange qualitatively. Although we have not made anyalulations for suh a more omplex ase so far, we suggest that they wouldonly enhane the ladder spetrum obtained here, sine typially the studiedmehanisms are only responsible for further loalization of the hole.94.7 Postsriptum: spin, orbital and spin-orbitalpolaronsGeneral onsiderations.� In this setion we intend to give a brief overview ofwhat happens when a single hole is doped to one of the following magnetiallyand/or orbitally ordered ground states: (i) the AF-type of order, (ii) the AO-type of order with eg alternating orbitals, (iii) the AO-type of order with t2galternating orbitals, (iv) the oexisting AF and t2g AO ordered state. Atually,the last two ases were thoroughly disussed in the previous and this hapter(respetively) while the �rst two ases were studied in Ref. [23℄ and Ref. [82℄(respetively). Thus, here we only repeat the results already obtained� in orderto get a better insight into various proesses whih lead to the hole motion inthe spin and/or magnetially ordered states.Spin polaron.� A single hole doped into the half-�lled Mott insulatingground state with AF order (whih ould orrespond to the undoped planes9Apart from onsidered here proesses onneted with the hopping t (string formation)other oupling mehanisms, e.g. due to the eletron-phonon interation, may ontribute toorbital polaron formation, see e.g. Ref. [90℄.119
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Figure 4.12: Panel (a): Artist's view of the defets reated by a single holedoped into the spin AF ordered state. Red arrows denote the AF ordered groundstate at half-�lling, while blak arrows denote overturned spins due to the holepropagation from the point where it was originally doped (dashed empty irle)to the arbitrarily hosen point at the upper-left orner (full irle). Note thatthe quantum spin �utuations an �ip the spins and (pairwise) erase the defetsreated by the hole (therefore, in the �gure, the overturned blak spins havethe red arrows as well). Panel (b): spetral density A(k, ω) (independent of thespin of the removed eletron) of the spin t�J model [23℄ with J = 0.4t along thepartiular diretions of the 2D Brillouin zone.of the high-Tc uprates suh as e.g. La2CuO4 or Sr2CuO2Cl2 [20℄) does notmove freely as its motion disturbs the spin order [21℄. Instead, it ouples to theolletive (deloalized) exitations of the AF ordered phase (magnons), and itpropagates through the lattie together with a `loud' of magnons [22℄. Therebythe energy sale of the `oherent' hole propagation is strongly renormalized andis given by the AF superexhange onstant J . In this way a quasipartile isformed whih is frequently alled in the literature a spin polaron [23℄. Figure4.12 shows in more detail the most haratersti type of motion here [i.e. howthe hole moves by oupling to the spin �utuations, see panel (a)℄ and what theorresponding spetral funtion looks like [panel (b)℄.
eg orbital polaron.� A slightly di�erent behaviour an be found in the planeswith FM spin order and eg AO orbital order (as in the ab planes of LaMnO3,see Ref. [76℄). It has been shown [82℄ that although the hole introdued intosuh a state does not disturb the FM spin order, it ouples to the olletiveexitations of the AO state (orbitons). Here again a quasipartile is formedwhih is alled this time an eg orbital polaron. It should be noted, however,that the orbital polaron has an even smaller bandwidth than the spin polaron[82℄, as the orbitons are in general muh less mobile than the magnons (oreven immobile) due to the lak of the SU(2) symmetry in the orbital systems[107℄ and almost diretional Ising-like superexhange [76, 84℄. Atually, one anunderstand the hole motion in this ase in terms of the string piture:10 Thehardly mobile orbitons annot repair the string of the misaligned orbitals inthe AO state, whih arises due to the hole propagation on the orrespondingpath. Thus, it is the hole whih has to return to the original site and ure10Note that although the string piture alone annot explain the previously mentioned holemotion in the AF ordered state, it may serve as a perfet starting point for the investigationof the behaviour of holes doped into the AF phase, see Ref. [108℄.120
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Figure 4.13: Panel (a): Artist's view of the defets reated by a single hole dopedinto the eg AO state (with alternating d3z2−r2 and dx2−y2 orbitals. Blak or-bitals denote the AO ordered ground state at half-�lling. The hole moves fromthe point where it was originally doped (dashed empty irle) to the arbitrarilyhosen point at the upper-left orner (full irle). Note that the AO order athalf-�lling an in priniple stay unhanged due to the possibility of the verysmall interorbital hopping (shown) although the hole also moves by reatingdefets in the AO state whih an be `sometimes' ured by the very small quan-tum pseudospin �utuations (not shown). Panel (b): spetral density A(k, ω)(independent on the orbital �avour of the removed eletron) of the eg orbital
t�J model [82℄ with J = 0.1t (i.e. J = 0.4t in the onvention used in this thesis)along the partiular diretions of the 2D Brillouin zone.the defets by retraing its path, unless it propagated due to small o�-diagonalhopping in an eg system [82℄ and no defets were reated on its path (the latterproess also ontributes to the above mentioned very small bandwidth of theorbital polaron). Figure 4.13 shows in more detail the most harateristi typeof motion here [i.e. how the the hole moves by the small interorbital hopping,see panel (a)℄ and what the orresponding spetral funtion looks like [panel(b)℄.

t2g orbital polaron.� In the previous hapter an even more extreme situationof the system with orbital order was investigated: The ase of a hole doped intothe plane with FM spin order aompanied by the t2g AO order (whih ouldorrespond not only to the hole introdued into the ordered ground state ofSr2VO4 with t2g orbitals but also, surprisingly, to those of K2CuF4 or Cs2AgF4with dz2−y2 and dx2−z2 ative orbitals). Also here a quasipartile (t2g orbitalpolaron) is formed due to the dressing of a hole by the olletive exitations of theground state with AO order. However, due to the spei� t2g orbital symmetriesthe orbitons are not mobile at all, the o�-diagonal hopping is prohibited, and thequasipartile aquires a �nite bandwidth only due to the frequently negletedthree-site terms. Thus, the string piture dominates the harater of the t2gorbital polarons even more than in the ase of systems with eg orbital degreesof freedom. Figure 4.14 shows in more detail a representative path arising dueto hole propagation [i.e. the hole trapping due to the reation of strings by thehole motion, see a representative path on panel (a)℄ and what the orrespondingspetral funtion looks like [panel (b)℄.
t2g spin-orbital polaron.� Finally, in this hapter we investigated what hap-pens when a hole is introdued into the plane with both t2g AO order and AF121
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Figure 4.14: Panel (a): Artist's view of the defets reated by a single holedoped into the t2g AO state. Blue orbitals denote the AO ordered ground stateat half-�lling, while blak orbitals denote overturned pseudospins due to the holemotion from the point where it was originally doped (dashed empty irle) tothe arbitrarily hosen point at the upper-left orner (full irle). Note that thereare no quantum pseudospin �utuations whih an erase the defets reated bythe hole. Panel (b): spetral density Aa(k, ω) of the t2g orbital t�J model (3.5)with J = 0.4t along the partiular diretions of the 2D Brillouin zone.
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Figure 4.15: Panel (a): Artist's view of the defets reated by a single holedoped into the t2g AO and S = 1 spin AF ordered state. Red arrows andblue orbitals denote the AF and AO ordered ground state at half-�lling, whileblak arrows and blak orbitals denote overturned spins and pseudospins dueto the hole motion from the point where it was originally doped (dashed emptyirle) to the arbitrarily hosen point at the upper-left orner (full irle). Notethat there are no quantum pseudospin �utuations whih an erase the defetsreated by the hole while the quantum spin �utuations are suppressed by theorbitals. Panel (b): spetral density Aa(k, ω) of the t2g spin-orbital t�J model(4.3) with J = 0.2t and η = 0.15 along the partiular diretions of the 2DBrillouin zone.spin order (whih orresponds to the hole introdued into the ab planes of u-bi vanadates suh as e.g. LaVO3). Here, the quasipartile is also formed (t2gspin-orbital polaron) but unlike in all of the above ases the hole is dressed hereby two types of bosons: orbitons and magnons. Surprisingly, it ours that theorbital physis dominates here and the spin-orbital polaron resembles the or-122



bital polaron to a large extent. This is due to the fat that the orbitals fore thehole to retrae its path and hole motion by oupling quantum spin �utuationsis here bloked. Figure 4.15 shows in more detail a representative path arisingdue to hole propagation [i.e. the hole trapping due to the reation of strings bythe hole motion, see panel (a)℄ ℄ and what the orresponding spetral funtionlooks like [panel (b)℄.Conlusions.� The ommon feature of all these four polarons (quasiparti-les) is that all of them have rather large spetral weights (i.e. the inoherentproesses are rather small for hole doped into the spin/orbitally ordered states)and small dispersion. However, it is easily visible that the dispersion is signi�-antly larger for the spin polaron than for all of the orbital-type polarons. Thisis due to the fat that it is muh harder for the hole to move in the orbitallyordered state as the latter one is more lassial (robust).
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SummaryMain result.� The main result of this thesis is the solution of the three stronglyorrelated eletron problems posed in the Prefae, whih was done using threedistint extended versions of the standard t�J model of Chapter 1 or Refs.[1, 2, 3℄. More preisely we studied in three onseutive Chapters of the thesisthe following problems:1. Explaining harge order in Sr14−xCaxCu24O41.� Sine the Cu2O5 ou-pled ladder plane in Sr14−xCaxCu24O41[4℄ is a harge-transfer system [41℄, oneneeds to use the Zhang-Rie sheme [26℄ to derive the t�J model whih woulddesribe the low-energy physis. However, the obtained model (whih merely isa t�J model on a single ladder) did not reprodue the harge order observed ex-perimentally in Sr14−xCaxCu24O41 [5, 6, 7, 8℄. The reason was that this modelomits the repulsion between holes at the same oxygen sites but on di�erent or-bitals belonging to two di�erent ladders. Inluding this term in the Zhang-Riesheme is ruial � it led to adding the e�etive interladder interation betweenholes in two neighbouring ladders in the new t�J model for oupled ladders.The new extended spin t�J model was then solved, using the slave-bosonapproah [20℄, in the mean-�eld approximation. The results showed that due tothe interladder Coulomb interation between holes the harge density wave ofthe peuliar odd period (λ = 3, 5) ould indeed be stable in the Cu2O5 oupledladders in Sr14−xCaxCu24O41 in agreement with the experiment [7, 8℄.2. Verifying the idea of orbitally indued hole loalization.� When onehooses a 2D strongly orrelated eletron system with t2g degenerate orbitalswith the dxy orbital having higher energy, then one is left with a system wherealong eah diretion in the ab plane only eletrons with one orbital �avour anhop [72, 71℄. Therefore, the obtained orbital t�J model did not ontain pseu-dospin quantum �utuation, its J part was purely of the Ising-type, and themodel ould be regarded as a prototypial example where the orbitals induehole loalization [21, 67℄. However, one an have some doubts onerning thisresult sine for instane if the SU(2) symmetry is absent in the system (as isthe ase here), then one should be more areful with all approximations used(see Se. 2.2 for more detailed disussion). One of the approximations used inthis orbital t�J model was the ommitane of the three-site terms whih shouldalways be present in any t�J model [1, 2℄ but sine their ontribution to the totalenergy is small, one often neglets them. Adding the properly derived three-siteterms to the model led to the new t2g orbital t�J model with three-site terms.The new extended orbital t�J model was then solved, using the slave-fermionapproah [20℄, in the SCBA approximation [23℄. The results showed that thehole added to the half-�lled AO ordered ground state of the orbital model movedoherently through the lattie due to the three-site terms. Thus, in the simplest125



model, in whih the orbitally indued hole loalization naively would be possible,the added hole was not loalized.3. Understanding hole motion in LaVO3.� Due to the t2g orbital degenerayin the vanadium ions in La1−xSrxVO3, the proper t�J model for the ab planesof ubi vanadates had to inlude not only the spin but also orbital degreesof freedom. Furthermore, it should also ontain the three-site terms whih arerequired for a faithful represention of the low energy physis in the t�J modelswith the Ising-type interation between pseudospins (f. the problem disussedin point 2.). This led to the new t2g spin-orbital t�J model with three-site terms.The new extended spin-orbital t�J model was then solved, using the slave-fermion approah [20℄, in the SCBA approximation [23℄. This, however, was notso straightforward sine one had to take the spin and orbital degrees of freedomon equal footing. The reason for that was that the Goodenough-Kanamori rules[55, 56℄ are violated in the planes of ubi vanadates [93℄ and both the orbitalsand spins should be treated as dynamial variables. Therefore, the SCBA [23℄had to be modi�ed to inlude the oupling between the added hole and theorbital as well as spin exitations simultaneously. The results showed that thehole added to the half-�lled AO ordered ground state of the spin-orbital modelwas not loalized but ould move merely due to the three-site terms. Sinethis result resembled the one obtained in point 2. (purely orbital problem, seeabove), one ould easily explain the onjeture from the experiment [19℄ thatthe orbital dynamis played a signi�ant role in the doped ubi vanadates.On the other hand, a detailed investigation showed that the spin dynamis wasquenhed and the spins were fored to at on the hole like orbital pseudospins(i.e. more lassial) merely by the orbitals.Careful approah needed.� It is visible from the above disussion that oneindeed had to go `beyond the standard t�J model' to obtain reasonable expla-nations of the problems. However, as just disussed this had to be done ratherarefully. First, one had to take into aount the harge transfer regime (in the�rst ase) or the orbital degrees of freedom (in two other ases) in the derivationof the respetive t�J model. Notably, in all three ases this did not turn outto be the `full story'. Therefore, in order to get physial insights into thesesituations, one also had to inlude additional interations due to the spei� ge-ometry of oupled ladders (in the �rst ase), the three-site terms (in two otherases) or develop a new theoretial approah to solve the model (in the thirdase).`Powerfulness' of the t�J onept.� A `side' but perhaps very importantresult of the thesis is that it shows how powerful the onept of the t�J modelis based either on the anonial perturbation expansion [1, 2℄ or on the Zhang-Rie sheme [26℄. Although all of these three problems ould have been solved(and at least the �rst two of them were solved) using the Hubbard-like model, itwas demonstrated that the extended t�J models gave a better insight into them� the problems of Chapter 2 and 3 were solved also using the Hubbard-likemodel but it was muh harder to dedue from these solutions the mirosopipiture. For example: (i) to study the role of the interladder interation in theHubbard-like model one had to introdue rather ompliated order parametersin Chapter 2, or (ii) from the Hubbard-like model it was hard to reveal thepeuliar (`three-site-term-type') nature of the hole motion in the AO orderedstate in Chapter 3.The natural question whih arises in this ontext is whether there is a deeper126



reason for this `powerfulness'. Why the onept of the t�J model is so suessful?Some �rst hints were already given in Chapter 1 where we stated that any t�Jmodel is easier to solve than the Hubbard model as it spans a smaller Hilbertspae [28℄. Obviously suh a feature helps a lot but there is still some deeper(i.e. qualitative) reason � the fermioni systems an be best understood: (i) ifthey are not interating (Fermi gas) or (ii) if they are transformed to some kindof bosoni/lassial matter [109℄. Otherwise the fermion sign problem meansthat is is hard to obtain reasonable solutions [110℄ and merely the Fermi liquidphenomenology an be applied [109℄.Here, this seond possibility needs some lari�ation and therefore let us givesome examples of suh transformations `available on the market' [33, 109, 111,112℄: (a) the weak-oupling sheme in whih one introdues (using the mean-�eld deoupling or the variational Ansatz) the lassial ground state whih is notthe eigenstate of the Hamiltonian at the ost of introduing olletive bosoniexitations of the system; then these two together desribe the quantum groundstate (e.g. BCS theory of superondutivity, spin- or harge- density waves in theHubbard-like model) [33, 111℄; (b) the strong-oupling sheme in whih one per-forms the anonial perturbation expansion [1, 2℄ or the Zhang-Rie sheme [26℄to redue the dimension of the Hilbert spae by introduing spin/pseudospinsand then one performs all the steps as in point (a) (e.g. antiferromagnetism inthe Hubbard model or muh of this thesis) [33, 111℄; () the true bosonizationproedure, valid only for 1D systems [113℄; or (d) redution of the fermioniinterating problem to the Kondo-type impurity problems (the fundament ofthe dynamial mean-�eld theory) [114℄. Hene, if one wants to understand theinterating fermions, one is anyway bound to introdue some kind of the trans-formation to lassial and/or bosoni matter. It is then a matter of onvenienewhih way to hoose and it merely ours that for example the strong-ouplingsheme is more onvenient than the weak-oupling sheme. This is beause thetransformation suggested in point (a) is more ompliated in the momentum-spae (in the weak oupling regime) than in the real spae (in the strong ouplingregime) [33℄. Here lies the suess of the t�J model onept.Thus, summarizing, this thesis is just a anonial example of the paradigmthat to explain peuliar phenomena found in the strongly interating fermions(eletrons) one needs to somehow `get rid as muh as possible' of the Fermistatistis. It is the t�J model that does it in one of the easiest and mosttransparent possible ways.Postsriptum.� Let us note that for the detailed disussion of the peuliaronnetions between the problems studied in Chapter 3 and Chapter 4 we referto Se. 4.7. There we ompare four distint types of spin and orbital polarons� the well-known spin polaron [23℄, the eg orbital polaron [82℄, and the twopolarons disussed in this thesis. The latter ones are: (i) the t2g orbital polaronwhih is formed when a single hole is doped into the plane with the dzx/dyzalternating orbitals and whih is dressed with the exitations of the AO orderedground state (Chapter 3), and (ii) the t2g spin-orbital polaron whih is formedwhen a single hole is doped into the plane with the dzx/dyz alternating orbitalsand the AF order spins and whih is dressed with the exitations of the AO andAF ordered ground state (Chapter 4). It is shown there that the dispersion forthe spin polarons is signi�antly larger than for all of the orbital-type polarons.This is beause the orbital order is more lassial (robust) and it is muh harderfor the hole to move in suh a state. 127
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Appendix AThe ontinued frationmethod for the 1D orbitalmodelPurpose of the appendix.� This appendix shows how to alulate the Green'sfuntion for the hole doped into the immobile b orbital in the 1D AO groundstate (3.16) of the model Eq. (3.46) of Se. 3.5.2.Choie of onvenient basis.� When one attempts to alulate the Green'sfuntion for a hole doped in the immobile b orbital
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, (A.1)one �nds immediately that the state
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eikjbj|Φ1D
0 〉 , (A.2)is not an eigenstate of the Hamiltonian H1D. Here a hole is doped in eahFourier omponent in an oupied b orbital at site j in the ground state |Φ1D

0 〉with AO order (3.16). When a hole is doped, it an deloalize to its neighboursin the 1D hain, as depited in Fig. 3.9(b), so one has to introdue appropriatebasis of states obtained when the single hole deloalizes along the 1D hain.The hopping term ∝ t ating on |ψ(1)
k 〉 generates the state
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0 〉 , (A.3)with the hole deloalized to the neighbouring j − 1 (j + 1) sites of the A sub-lattie, i.e. to the the left (right) from the initial hole position j in eah Fourieromponent bj |Φ1D
0 〉 inluded in Eq. (A.2). The remaining states {|ψ(n)

k 〉} with
n > 2, whih our in the ontinued fration expansion needed to evaluate theGreen's funtion G1D

b (k, ω) (see below), are generated by ating (n − 2) timeson |ψ(2)
k 〉 with the three-site hopping term ∝ τ . In this way one �nds the set ofsymmetri states, with a superposition of the hole propagating forward (either129



to the left or to the right from the initial defet), i.e. along the same diretion asthat given by the �rst hop whih leads to |ψ(2)
k 〉, f. Fig. 3.9(). This strutureof the basis set explains the absene of the k dependene in the Green's funtionfor b orbitals, so we adopt the simpli�ed notation G1D

b (ω) below.Continued fration method.� In the in�nite basis generated by the abovedesribed proedure, the Hamiltonian matrix of the Hamiltonian (3.46) reads:
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. (A.4)In order to obtain the relevant Green's funtion G1D

b (ω), it su�es to alulatethe (1, 1) element of the inverse of this matrix.1 Due to the tridiagonal formof the Hamiltonian, this an be done even for an in�nite Hilbert spae and onearrives at a ontinued fration result:
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, (A.5)where the whole self-similar part an be summed up to the self-energy whihdoes not depend on k [67℄:
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. (A.6)This, together with Eq. (A.10), leads to a quadrati equation for Σ(ω) with twosolutions:
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. (A.9)1This relation holds up to a onstant due to the fat that the basis {|ψ(n)
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〉} is not normal-ized � however, we take are of this problem.130



Finally, one arrives at the general result for τ > 0:
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, (A.10)where the sign onvention is �xed by omparing this result with the Green'sfuntion G1D(0)
b (ω) (A.8) � this implies that one has to selet − (+) sign for

ω < −J (ω > −J), respetively.

131



132



Appendix BThe e�etive polaron modelfor �uoridesPurpose of the appendix.� Here we show that the e�etive polaron model de-veloped in Chapter 3 (see Eq. 3.32) may also be applied to ertain �uorideswith FM planes and eg AO order. Thus, we will prove that the experimentalpreditions onerning the photoemission spetra of ertain vanadates (see Se.3.7) are also valid for a partiular lass of �uorides.Dependene of eg AO order on the rystal �eld.� In ontrast to the t2gorbitally degenerate systems, in the systems with eg orbital degeneray thelattie distortions in the ubi phases are usually quite large. In partiular,the stati distortions may ounterat to some extent the AO order favoured bythe superexhange interations as e.g. in undoped manganites RMnO3 [76℄ or�uorides Cs2AgF4 [92℄. However, the rystal �eld does not suppress the orbitalorder present in these systems but instead it only modi�es the oupied orbitalswhih form the AO state. They have to be optimized in a mirosopi modelby hoosing partiular linear ombinations of the eg orbitals, whih form theAO order, in order to �t best to the superposition of the superexhange andthe Jahn-Teller terms generated by ligand �elds [100℄. In ertain situations this`modi�ation' ould be quite substantial and ould even lead to suh a seletionof eg orbitals that the resulting state is modi�ed towards a FO-type order [84℄.At �nite rystal �eld splitting ∝ Ez , it is onvenient to desribe the hangesin the oupied orbital states by making two omplementary transformations atboth sublatties [84℄, rotating the orbitals by an angle θ = π
4 −φ on sublattie A,and by an angle θ = π

4 +φ on sublattie B, so that the relative angle between theoupied orbitals is π
2 − 2φ and dereases with inreasing φ, i.e. with inreasing
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, (B.2)where the `old' orthogonal (basis) orbitals are de�ned as |x〉i = 1√
2
|x2−y2〉i and

|z〉i = 1√
6
|3z2− r2〉i for every sublattie site i. Due to the above transformationthe AO order is formed now by |µ〉i and |ν〉j oupied orbitals at sublatties, i ∈133



A and j ∈ B, respetively. Let us stress that although the transformation de�nedby Eqs. (B.1�B.2) is orthogonal, this does not imply that orbitals on di�erentsublatties, suh as e.g. the oupied orbitals |µ〉i and |ν〉j are orthogonal � infat they would be orthogonal only for ertain disrete values of φ, for instanefor φ = π/4.For the 2D FM systems with ative eg orbitals whih are onsidered here,the relation between the rystal �eld Ez and the optimal orbital on�gurationde�ned by the angle φ [see Eqs. (12) and (13) of Ref. [84℄℄ is given by:
Ez = 4J sin 2φ, (B.3)where J is the superexhange onstant. In the ase of �uorides suh as Cs2AgF4(Ref. [92℄) or K2CuF4 (Ref. [115℄) disussed here, the �lling is one eg eletronper site and the rystal �eld would selet the angle φ = π/12 (for the reason oflooking at this angle see below) sine the onvenient basis adapted to the atualAO order looks as follows:
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|x2 − z2〉j ≡ |x〉j , (B.4)where the oupied (empty) orbitals for this type of AO order are denoted as

|x〉 (|z〉) on both sublatties.`Partiular' eg AO order similar to t2g AO order.� The reason why thesepartiular pairs of basis orbitals (B.4) are interesting here is that this is theonly hoie of oupied eg �avours whih forms a two-sublattie AO order withthe interorbital hopping between oupied orbitals vanishing by symmetry andwhere the interations desribed by pseudospin operators do not allow for anyquantum �utuations. This resembles the t2g ase disussed in Chapter 3. Thereis, however, one subtle di�erene: two oupied {|x〉i, |x〉j} orbitals on sublat-ties A and B are not orthogonal and do not form the global basis in the egorbital spae. The hoie made in Eq. (B.4) means that one onsiders twodi�erent pairs of orbitals for both sublatties and the interorbital hopping be-tween the unoupied orbitals is also rather small but remains �nite.1 Hene,the respetive t�J Hamiltonian is riher than the one for the t2g ase and weneed to hek under whih onditions it an be redued to a similar polaronHamiltonian as the one given by Eq. (3.32).
t�J model for `partiular' eg orbitals.� The eg orbital t�J Hamiltonian forthe FM planes without the three-site terms but inluding the rystal �eld is givene.g. in Ref. [116℄. Here we rewrite the kineti term in a slightly di�erent form(there it is already written in the slave-fermion representation) and substitute

φ = π/12 to obtain:
Heg

= Ht +HJ +Hz , (B.5)1The physial reason for this is just that the rystal �eld does not fully prohibit interorbitalhopping. 134
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(
T zi T

z
j +

√
3T zi T

x
j

)
+

1

2
J

∑

〈ij〉||b̂

(
T zi T

z
j −

√
3T xi T

z
j

)
, (B.7)

Hz = − 1

4
J

∑

i∈A
(T zi +

√
3T xi ) +

1

4
J

∑

i∈B
(T zi −

√
3T xi ) . (B.8)Here T zi = 1

2 (ñiz − ñix) for i ∈ A, T zj = 1
2 (ñjx − ñjz) for j ∈ B, and T xi =

1
2 (x̃†i z̃i + z̃†i x̃i) for every site i, see Ref. [84℄. As before, a tilde above a fermionoperator indiates that the Hilbert spae is restrited to unoupied and singlyoupied sites, e.g. x̃†i = x†i (1 − niz). The last term Hz represents the abovementioned rystal �eld with the strength of the interation written aording toEq. (B.3) with φ = π/12.Three-site terms for `partiular' eg orbitals.� As far as we know, the three-site terms have not been derived for the eg orbital systems. Thus, we use againthe anonial perturbation theory of Chapter 1 applied to the Hubbard modelfor spinless eg eletrons in a FM plane [107℄ with the basis rotated by φ = π/12,following Eqs. (12) and (13) of Ref. [84℄. This leads to the following three-siteterms for the eg orbital t�J model with φ = π/12:
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3z̃†i±âx̃
†
i z̃iz̃i±b̂

+ z̃†i±âñixz̃i∓b̂
− 3x̃†i±âx̃

†
i z̃iz̃i∓b̂

+
√

3x̃†i±âñixz̃i∓b̂
−
√

3z̃†i±âx̃
†
i z̃iz̃i∓b̂

]

− 1

4
τ

∑

i∈B

[
z̃†i±âñixz̃i±b̂

− 3z̃†i±âz̃
†
i x̃ix̃i±b̂

+
√

3z̃†i±âñixx̃i±b̂
−
√

3z̃†i±âz̃
†
i x̃iz̃i±b̂

+ z̃†i±âñixz̃i∓b̂
− 3z̃†i±âz̃

†
i x̃ix̃i∓b̂

+
√

3z̃†i±âñixx̃i∓b̂
−
√

3z̃†i±âz̃
†
i x̃iz̃i∓b̂

]

+ H.. . (B.12)Here we underline (doubly underline) terms whih do not require orbital exi-tations (require orbital exitations), respetively, i.e.
H3s(0) = H3s, H3s(1) = H3s. (B.13)The physial reason for this is just that the rystal �eld does not fully prohibitinterorbital hopping.E�etive polaron model.� Next, we perform the same standard transforma-tion to obtain the polaron Hamiltonian from the t�J model [23℄ for the lightlydoped ordered states as done in Chapter 3, i.e. we introdue Shwinger bosonoperators {t†ia, t†ib} and fermion operators hi (holons) whih are related to the

x̃†i and z̃†i operators in the following way:
x̃†i ≡ t†iahi, z̃†i ≡ t†ibhi. (B.14)Please note, however, that here we do not have to perform rotation of thepseudospins sine we de�ne distint eletron operators for the oupied andempty orbitals, f. Eq. (B.4).Again, as in Chapter 3, we introdue the Holstein-Primako� bosons β andskip higher-order terms in the Hamiltonian (the LOW approximation for bosonsand only three-partile interation in the mixed boson-holon terms). This meansthat e.g. the three-site terms are redued only to the terms whih were eitherunderlined or doubly underlined in Eqs. (B.10)�(B.12), i.e. to either H3s(0) or

H3s(1). Here, however, we have to use yet another approximation whih wasunneessary for the t2g model: as these terms were absent in Chapter 3 we skip
H3s(1). This approximation is allowed sine these terms ontribute to the vertexas ∝ τ and not as ∝ t, resulting typially in muh redued energy sale for thenew vertex ontributions. Furthermore, we showed in Se. 3.7 that suh terms[f. Eq. (3.59) and Fig. 3.13℄ did not hange the energy of the quasipartile andmerely modify the inoherent spetrum. Eventually, one arrives at the polaronHamiltonian for the holes doped into the eg orbitals of the �uorides with thehopping terms:

Heff
t =

√
3t

1√
N

∑

k,q

{
cos(kx − qx)h

†
kAhk−q,BβqA

+ cos(ky−qy)h†kBhk−q,AβqB + H.c.
}
, (B.15)

Heff
3s =

3

2
τ

∑

k

{
cos(2ky)h

†
kAhkA + cos(2kx)h

†
kBhkB

}
, (B.16)136



and the remaining terms resulting in the energy renormalization
Heff
J +Heff

z =
3

4
J

∑

k

(
β†
kAβkA + β†

kBβkB

)
. (B.17)Therefore, the Hamiltonian given by Eqs. (B.15)�(B.17) redues to the polaronHamiltonian (3.32) after substituting √

3t/2 → t, and onsequently 3J/4 → Jand 3τ/4 → τ . This substitution stems from the di�erent de�nitions of thehopping t in the eg and in the t2g systems � in the former ase it is the (ddσ)hopping between the 3z2 − r2 orbitals along the c diretion, whereas in thelatter ase it is the hopping element between a pair of ative t2g orbitals, e.g.
yz orbitals in the (a, b) plane.Conlusions.� In summary, we have shown that the Hamiltonian given byEqs. (B.15)�(B.17) provides the framework to analyse the behaviour of ertainlightly doped eg systems with FM planes and AO order whih suppresses theinterorbital hopping between oupied orbitals. Its equivalene to the polaronmodel (3.32) demonstrates that the results obtained and disussed in Chapter3 should also apply to the ase of a hole doped into the �uoride plane with theAO order of eg orbitals.
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StreszzenieW niniejszej pray zostaªy poruszone trzy problemy dotyz¡e silnie oddzia-ªujayh elektronów w tlenkah metali przej±iowyh. Pierwszy z nih doty-zyª wyja±nienia obeno±i fali g�sto±i ªadunku o nieparzystym okresie (3 oraz5) w pªaszzyznie zªo»onej z zahodz¡yh na siebie drabin Cu2O5 w zwi¡zkuSr14−xCaxCu24O41 (przy domieszkowaniu odpowiadaj¡ym zwi¡zkom x = 0oraz x = 11). Drugie zagadnienie, poruszone w niniejszej pray, dotyzyªo (po-tenjalnej) mo»liwo±i lokalizaji pojedynzej dziury w tlenkah metali przej-±iowyh z degeneraj¡ orbitaln¡. Trzei problem to podanie odpowiedzi napytanie w jaki sposób mo»e porusza¢ si� pojedynza dziura w pªaszzynie abze wsóªistniej¡ym uporz¡dkowaniem spinowym (antyferromagnetyznym) orazorbitalnym (z alternuj¡ymi orbitalami) w zwi¡zku LaVO3.W elu rozwi¡zanie wy»ej wymienionyh problemów zostaªy wyprowadzonerozszerzone wersje modelu t�J dla ka»dej z tyh sytuaji: dla pierwszego za-gadnienia � model t�J dla zahodz¡yh na siebie drabin, dla drugiego pro-blemu � orbitalny model t�J z oddziaªywaniem typu Isinga pomi�dzy orbital-nymi pseudospinami oraz z wyrazami trójw�zªowymi, dla trzeiego zagadnienia� spinowo-orbitalny model t�J z wyrazami trójw�zªowymi. Okazaªo si�, »e roz-wi¡zania powy»szyh modeli w formalizmie niewolnizyh z¡stek oraz w przy-bli»eniu ±redniego pola lub samozgodnym przybli»eniu Borna doprowadziªo dowyja±nienia problemów postawionyh w niniejszej pray: (1) na skutek efek-tywnego odpyhania pomi�dzy dziurami znajduj¡ymi si� na s¡siaduj¡yh zesob¡ miejsah w zahodz¡yh na siebie dwóh s¡siednih drabinah fala g�-sto±i ªadunku o nieparzystym okresie okazaªa si� stanem podstawym ukªadu;(2) wª¡zenie wyrazów trójw�zªowyh do orbitalnego modelu t�J pokazaªo, »emo»liwy jest koherentny ruh dziury w tlenkah metali przej±iowyh z degene-raj¡ orbitaln¡; oraz (3) szzegóªowa analiza oddziaªywania pomi�dzy dziur¡ akolektywnymi wzbudzeniami (w porz¡dku antyferromagnetyznym oraz z alter-nuj¡ymi orbitalami) pokazaªa, »e dziura w pªaszzyznie ab w LaVO3 zahowujesi� podobnie jak dziura dodana do pªaszzyzny jedynie z porz¡dkiem orbital-nym ale bez porz¡dku spinowego. �aznie w niniejszej pray zostaªo pokazane,»e pewne niewielkie rozszerzenia modelu t�J prowadz¡ do wyja±nienia szerokiejklasy zjawisk w tlenkah metali przej±iowyh z silnie oddziaªuj¡ymi elektro-nami.
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