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Abstract

Stripe phases are common complex phases encountered in doped nickelates and
cuprates. They are characterized by the combined spin and charge modulation,
with periodicity decreasing upon doping down to saturation. The orientation
and filling of domain walls differ from cuprates to nickelates but the microscopic
reasons of the observed differences remain unsettled. In this Thesis we show
that the stripe phases depend significantly on strong electron correlations typical
of these compounds. By determining phase diagrams of the extended one-band
Hubbard model, relevant for the cuprates, and of the two-band Hubbard model,
appropriate for the nickelates, we show that the location of the proper stripe phase
in the phase diagram corresponds in each case to the parameter regime relevant
for the studied compounds. In particular, it is shown that the filled diagonal stripe
phases observed in the nickelates are a generic feature of the model with two e,
electrons. In contrast, an adequate description of the half-filled vertical stripes
in the cuprates involves a proper treatment of strong electron correlations in the
t-t-U model.
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Chapter 1

Introduction

"Good order is the foundation of all things.’
Edmund Burke (1729 - 1797), Irish philosopher

Interest in transition-metal oxides has never been restricted to the most spec-
tacular phenomenon of the high-T, superconductivity, but also concerns, inter alia,
metal-insulator transitions, colossal magnetoresistance, and orbital ordering |1, 2|.
Recent progress in this field has been made possible by the development of various
novel experimental techniques, sophisticated theoretical methods, and new phys-
ical concepts. In particular, charge localization and the tendency of doped holes
towards self-organization into stripped patterns is one of the most interesting cur-
rent topics in the physics of strongly correlated electron systems and fascinates not
only as an exceptional phenomenon but also offers a framework for interpreting a
broad range of experimental results |3, 4].

The stripe instability was predicted on the basis of Hartree-Fock (HF) calcula-
tions before their experimental confirmation, in the two-band model for CuO,
planes of layered Lay_,Sr,Cu0O, (LSCO), including Cu(3d,2_,2) and O(2py(,))
states [5], as well as in the effective single-band Hubbard model [6-9]. These
calculations yielded solutions with a phase separation manifested in formation of
nonmagnetic lines of holes, one-dimensional (1D) domain walls or stripes, which
separate antiferromagnetic (AF) domains of opposite phases. Such states result
from the competition between the superexchange interaction, which stabilize the
AF long-range order in the parent Mott insulator, and the kinetic energy of doped
holes. Indeed, the magnetic energy is gained when electrons occupy the neighbor-
ing sites and their spins order as in the Néel state, whereas the kinetic energy is
gained when the holes can move and the AF order is suppressed along a domain
wall (DW) . Thus, a stripe phase provides the best compromise between the AF
order and the kinetic energy of doped holes.

However, the debate on the microscopic origin of the stripe instability is far
from closed. Two main scenarios, based on a Ginzburg-Landau free energy, for the
driving mechanism of the stripe phase have been discussed [10, 11]. In the first
one, stripes are charge-density waves with large periodicity arising from the Fermi
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surface instability with the transition being spin driven [5]. A general feature of
such an instability is a gap/pseudogap precisely on the Fermi surface. Hence,
the spacing between DWs is equal to 1/x, with x denoting doping level so as to
maintain a gap/pseudogap on the Fermi surface. In this scenario spin and charge
order occur at the same temperature or charge stripe order sets in only after spin
order has developed.

An alternative scenario comes from the Coulomb-frustrated phase separation
suggesting that stripe formation is commonly charge driven. Indeed, using the
Ising model, it has been shown that competition between long range Coulomb
interactions and short range attraction between holes leads to formation of stripes
[12]. In this case Ginzburg-Landau considerations lead to an onset of charge order
prior to spin order as the temperature is lowered, supported by the experimental
findings in Lay_,_,Nd,Sr,CuO4 (Nd-LSCO) [13| and Lay_,Sr,NiO4 (LSNO) [14,
15]. However, the above analysis does not take into account spin fluctuations which
might be crucial for the nature of the phase transition by precluding the spins from
ordering at the charge-order temperature [16]. Moreover, the conjecture that long
range Coulomb forces are required to stabilize stripe phases has been challenged
by the studies of the ¢-J model, in which the DW structures were obtained without
such interactions [17].

This Thesis is mainly concerned with stability and properties of stripe phases
in two-dimensional (2D) LSCO and in isostructural LSNO. With increasing doping
x, LSCO very quickly undergoes a transition from an AF insulator to a paramag-
netic (PM) metal in which a superconducting phase occurs for somewhat higher
doping at low temperatures. Conversely, LSNO remains an insulator up to large
hole concentrations x ~ 1 [1]. Therefore, it is particularly surprising that in spite
of these differences, stripe phases appear in both compounds. However, despite in-
tense theoretical studies over the last decade as well as accumulating experimental
evidence on the properties of these compounds, many questions concerning for-
mation of DWs remain unsettled. First of all, one would like to understand the
microscopic reasons of the observed differences, between the cuprates and nicke-
lates, in the filling of DWs. In Nd-LSCO [13, 18-22] and LSCO [23], one finds
the so-called half-filled stripes, with the density of one doped hole per two atoms
along DWs. In contrast, it is clear from variety of experiments that magnetic states
within doped NiO, planes of the nickelates are the filled stripes with density of
one doped hole per one atom in a DW [14, 15, 24-29].

The question of filling is not the only difference between the nickelate and
the cuprate stripes, however. Neutron diffraction measurements performed on
Nd-LSCO revealed that magnetic peaks are displaced from the AF maximum at
Qup = (m,m) to the points Q, = m(1 +2¢,1) and Q, = 7(1,1 % 2¢) and the shift
¢ depends linearly on hole doping ¢ ~ x for x < 1/8, while it is almost constant
at higher doping. These values correspond to a superposition of vertical (01) and
horizontal (10) DWs. The essentially identical modulation and doping dependence
of € was observed in superconducting crystals of LSCO with x > 0.05. Conversely,
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experiments on LSNO established that spin order is characterized by the wave
vectors Q, = m(1 £ ¢,1 £ ¢) with € ~ z for < 1/3, corresponding to a constant
charge of one hole/Ni ion along a diagonal DW, in agreement with HF predictions
made in the pioneering works [5-9].

Several methods have been employed to investigate the stripe phases which go
beyond the HF approximation, such as: Density Matrix Renormalization Group
(DMRG) [17, 30|, Slave-Boson Approximation (SBA) [31-33], variational local
ansatz approximation [34], Exact Diagonalization (ED) of finite clusters [35], ana-
lytical approach based on variational trial wave function within the string picture
[36], Dynamical Mean Field Theory (DMFT) [37], Cluster Perturbation Theory
(CPT) [38], and Quantum Monte Carlo (QMC) [39, 40]. They all address the cru-
cial role of local electron correlations in stabilizing of the half-filled stripe phases
in the cuprates. In spite of this huge effort, it remains unclear whether DWs are
centered on rows of metal atoms, hereafter named site-centered (SC) stripes, or
if they are centered on rows of oxygen atoms bridging the two neighboring metal
sites, the so-called bond-centered (BC) stripes.

Although no clear evidence was presented as yet, it seems that the degeneracy
of 3d orbitals might play a role in stabilizing filled stripes in the nickelates. In the
simplest picture for the cuprates, the Cu®* ions forming DWs are spinless, while
the Cu®" of the AF domains carry spin S = 1/2. In the nickelates, filled DWs are
formed of the Ni** ions (S = 1/2), whereas the AF domains consist of Ni** ions
(S = 1). Therefore, a realistic Hamiltonian for LSNO has to contain, besides the
|22 —y?) orbital usually included in the cuprate oxide models, the |32% —r2) orbital
at each ion, so as to account for the high spin state (S = 1) in the stoichiometric
compound.

The main purpose of the present study is to investigate formation of both
SC and BC stripe phases in either CuOy plane for the superconducting cuprates
or NiO, plane for the insulating nickelates, using a realistic effective Hamiltoni-
ans. For stable phases we determine charge and magnetization densities, dou-
ble occupancy, kinetic and magnetic energies, and investigate the role of a finite
electron-lattice coupling. The stability of stripe phases is related to their electronic
structure and it is studied within the Hartree Approximation (HA) and the SBA.
Our studies should provide the microscopic reasons for the observed differences,
between the cuprates and the nickelates as well as in the filling of the DWs in both
systems. In addition, we will also investigate the role of the second orbital for the
relative stability of stripe phases in the nickelates.

1.1 Outline of the Thesis

The structure of the Thesis is as follows. In Chapter 2 we review briefly the
current literature on stripe phases both in the cuprates and the nickelates, as well
as discuss the most prominent theoretical and experimental findings.
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Chapter 3 starts with a discussion of the so-called solitonic mechanism re-
sponsible for the robust stability of DWs. Next using the HA, we investigate
relative stability of filled stripes within the 2D Hubbard model with anisotropic
nearest-neighbor hopping ¢t. We also discuss changes in the stability of such phases
in the extended Hubbard model due to both the next-neighbor hopping ¢ and
the nearest-neighbor Coulomb interaction V', as well as to the lattice degrees of
freedom i.e., induced by the static Peierls electron-lattice coupling. Next, we at-
tempt to stabilize the half-filled stripe phase involving an on-wall spin-density
wave (SDW) in the ¢-¢-U model. Finally, we compare static hole-hole and spin-
spin correlation functions for the considered stripes.

Chapter 4 begins with an introduction to the spin-rotation-invariant slave-
boson (SRI SB) representation of the Hubbard model. We then describe recip-
rocal space representation which is based on the stripe periodicity and provides
a possibility to perform calculations on large (up to 144x144) clusters. Further,
we investigate the stability of filled and half-filled stripes in the ¢-t-U model. We
also examine the effect of a proper treatment of strong electrons correlations by
comparing the slave-boson (SB) charge and spin density profiles with the ones ob-
tained in the HA. Next, we perform systematic studies of an array of stripe phases
with a different length of the unit cell which enables us to establish the behavior
of the incommensurability €, optimal stripe filling v, the chemical potential p, as
well as the density of states (DOS) as a function of doping. Finally, we analyze
the melting of stripe phases in the overdoped regime x > 0.3 and show that the
spin and charge order disappear simultaneously.

Chapter 5 deals with systems with orbital degeneracy such as layered nickelates
or manganites. In Section 5.1 we introduce a realistic model with the e, electrons
and next, in Section 5.2, we solve exactly a two-site molecule with either e, or
tyy orbitals at quarter-filling in order to get more insight into the role of orbital
degeneracy in possible magnetic and orbital instabilities. Furthermore, in Sec-
tion 5.3, we determine a phase diagram of the model in the HA and compare our
results with the previous ED solutions. In particular, we address the occurrence of
orbitally polarized states due to the inequivalent orbitals, and their interplay with
FM and AF spin order. We also discuss the role played by the Hund’s exchange
coupling Jy and by the crystal field orbital splitting E, in stabilizing one of the
competing phases. Finally, in Section 5.4, we shall investigate the behavior of e,
v, and p in the stripe ground state, similarly as we have done in Chapter 4 within
the single-band Hubbard model for the cuprates. For this purpose we use the
HA and show that the filled diagonal BC stripes observed in the nickelates ap-
pear naturally within the effective model for the e, electrons, whereas a simplified
equivalent band model, i.e., doubly degenerated Hubbard (DDH) model, fails to
reproduce the experimental data. Finally, we summarize our results in Chapter 6
which also includes an outlook for possible future research.



Chapter 2

Experimental signatures of stripes

Experimentally, stripe phases are most clearly detected in insulating compounds
with a static stripe order, but there is growing evidence of fluctuating stripe cor-
relations in metallic and superconducting materials.

The most direct evidence for stripe phases in doped antiferromagnets has come
from neutron scattering studies in which charge and spin modulations are iden-
tified by the appearance of some extra incommensurate (IC) Bragg peaks. The
positions of such superstructure peaks provide information about the spatial pe-
riod and orientation of the modulation. In fact, neutrons do not scatter from
charge incommensurations directly, but instead are sensitive to nuclear displace-
ments induced by the charge modulation. The lattice modulation is also measur-
able with electron and x-ray diffraction. However, sometimes appropriate crystals
for such experiments are not available and one has to resort to other methods ca-
pable of probing local order. These methods include nuclear magnetic resonance
(NMR), nuclear quadruple resonance (NQR), muon spin rotation (uSR), scan-
ning tunneling microscopy (STM), and transmission electron microscopy (TEM)
[41]. Furthermore, angle-resolved photoemission spectroscopy (ARPES), angle-
integrated photoemission spectroscopy (AIPES), as well as x-ray photoemission
(XPS) and ultraviolet photoemission (UPS) spectroscopies all provide an essential
information about conspicuous changes in the electronic structure when stripes set
in [42]. Finally, a distinct imprint of the 1D spin-charge modulation on transport
properties should be detectable as the in-plane anisotropy of the resistivity and
the Hall coefficient Rp.

2.1 Cuprates

The abundance of the current evidence on various types of stripe order as well
as the recent ARPES results on the spectral weight of the cuprate superconduc-
tors is contained in a few available review articles [41, 42|. Historically, the
first compelling evidence for both magnetic and charge order in the cuprates,
was accomplished in a neodymium codoped compound La,_,_,Nd,Sr,CuO,. For

5
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Figure 2.1: IC magnetic (a,b) and charge peaks (c,d) in Lajg_,Ndg4Sr,CuOy4
at x = 0.12, after Ref. 18. Right panels show analogous IC magnetic (e) and
charge (f) peaks in Lay_,Ba,CuQO, at z = 1/8, after Ref. 47. In both compounds,
appearance of static stripes is associated with the low-temperature tetragonal
(LTT) structural distortion.

y = 0.4 and z = 0.12, Tranquada et al. [13| found that the magnetic scattering is
not characterized by the 2D AF wave vector (1/2,1/2) !, but by IC peaks at the
wave vectors (1/24¢,1/2) with e = 0.118, as depicted in Fig. 2.1 (a,b). Moreover,
inspired by the pioneering works suggesting that the staggered magnetization un-
dergoes a phase shift of 7w at the charge DWs [5-9], the authors found additional
charge order peaks that split by (£2¢,0) about a fundamental Bragg peak such as
(2,0), precisely at the expected position 2¢ = 0.236 [¢f. Fig. 2.1 (¢,d)]. Unfortu-
nately, in an early study, Tranquada et al. [19] detected only magnetic IC peaks
at higher doping levels x = 0.15 and x = 0.2. However, systematic NQR studies
of Nd-LSCO suggest indeed the presence of charge stripe order throughout the
entire superconducting region 0.07 < x < 0.25 [21]. Also in a more recent study,
both charge and spin superlattice peaks at x = 0.15 were recently found in the
neutron diffraction experiments by Wakimoto et al. [22].

In fact, the reason why static stripes could be detected in this compound is
a structural transition from the low temperature orthorhombic (LTO) to the low
temperature tetragonal (LTT) phase, induced by the substitution for La ions by
isovalent Nd ions. This, in turn, provides a pinning potential for dynamic stripes
and stabilizes the charge order. Evidence of a similar pinning potential has also

LFor convenience, throughout Chapter 2 we follow the convention used in experiments.
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been found both in the 4SR and NQR studies of Las_,_,Eu,Sr,CuO4 (Eu-LSCO)
with y ~ 0.2 [43, 44]. Moreover, the connection between the LTT phase and the
appearance of charge and spin stripe order has been clearly demonstrated both in
the neutron scattering and z-ray diffraction studies on La,_,_,Ba,Sr,CuQO, (Ba-
LSCO) with y = 1/8 |45, 46]. Finally, static IC charge (2 £ 2¢,0) and magnetic
(1/2 £ €,1/2) peaks have been detected within the LTT phase of Lay_,Ba,CuOy
(LBCO) with = 1/8 [47]. Note that the position of the peaks and the estab-
lished incommensurability e = 0.118 are exactly the same as those obtained by
Tranquada et al. [18] for Nd-LSCO. Notably, the charge order peaks always ap-
pear at somewhat higher temperature than the magnetic ones, indicating that the
stripe order is driven by the charge instability.

Let us now discuss the experimental evidence of slowly fluctuating stripes in
Las_,Sr,CuQy4. The main difference between the Ba and Sr codoped system is
the fact that the latter undergoes a structural phase transition from the high-
temperature tetragonal (HTT) phase to the LTO phase. As a consequence, in
the superconducting regime x > 0.06, the LSCO system exhibits purely dynamic
magnetic correlations which give rise to IC peaks at the wave vector (1/2+¢,1/2)
specified in tetragonal lattice units 27 /aser. In seminal inelastic neutron scatter-
ing studies, Yamada et al. [23] established a remarkably simple relation € ~ x for
0.06 < z < 0.12 with a lock-in effect at € ~ 1/8 for larger z.

In contrast, in the insulating spin-glass regime of LSCO x < 0.055, quasielastic
neutron scattering experiments with the main weight at zero frequency demon-
strate that IC magnetic peaks are located at the wave vectors (1/24¢/v/2,1/2+
¢/v/2) [48-50]. This phenomenon has often been interpreted as the existence of
static diagonal stripes, even though no signatures of a charge modulation were
observed. Another possible explanation is formation of a short ranged spiral order
as its chirality also breaks the translational symmetry of the square lattice by a
clockwise or anticlockwise twist [51]. Remarkably, even though the spin modula-
tion changes from a diagonal to vertical /horizontal one to Cu-O bonds at x around
0.06, € follows the doping x reasonably well over the entire range 0.03 < x < 0.12,
as shown in Fig. 2.2. In fact, just for x = 0.06, both diagonal (¢ = 0.053) and
vertical /horizontal (e = 0.049) IC spin modulations have been found to coexist
[50]. In a stripe model this corresponds to a constant density of 0.5 (0.7) holes
per Cu atom in the DWs in the vertical /horizontal (diagonal) stripe phases, re-
spectively, because of the difference in Cu spacings in the two geometries, i.e.,
Qortho = V 20setra. In contrast, in the narrow region 0.02 < x < 0.024, IC magnetic
peaks are located at the wave vector (1/2 +¢/2,1/2 £ ¢/2) with ¢ ~ x corre-
sponding to a constant charge of one hole/Cu ion along a diagonal DW [52-54].
However, below = 0.02, this does not hold anymore and the incommensurability
gets locked with the value e ~ 0.014 [54].

Unfortunately, any concomitant charge ordering has not yet been detected in
LSCO. Nevertheless, by comparing the data based on the wipeout effect of %3Cu
NQR charge order parameter in LSCO with the ones obtained from charge stripe
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Figure 2.2: Summary of experimental data illustrating the doping dependence of
incommensurability € in the cuprates. Results have been obtained by different
groups: Nd-LSCO (Refs. 13, 18-20); LSCO (Refs. 23, 48-50, 53, and 54); LCO
(Ref. 58); Zn-LSCO (Refs. 59 and 60); YBCO (Refs. 61 and 67-69). In LSCO, €
has been defined as a distance from the IC peak position to the AF wave vector
(1/2,1/2) either in the orthorhombic (x < 0.06) or tetragonal (z > 0.06) notation,
whereas at = 0.06, both definitions are used due to the coexistence of diagonal
and parallel to the Cu-O bonds spin modulations.

compounds as (Nd,Eu,Ba)-LSCO, Hunt et al. [55] concluded that a similar stripe
instability exists in LSCO over the whole underdoped superconducting region
1/16 < x < 1/8. It is also worth mentioning that a very compiling evidence for
its existence has been established in the measurements of the in-plane resistivity
and the dynamical infrared conductivity anisotropy [56, 57].

Experimental detection of IC magnetic peaks in the LTO phase of LSCO sug-
gests that the LTT structure is not essential for the appearance of stripes. This
conjecture has been confirmed in experiments on the oxygen doped LasCuOy,s
(LCO) with the orthorhombic crystal structure [58]. It is also supported by
the evidence for static IC magnetic peaks in another orthorhombic compound
Lag_,Sr,Cu;_,Zn, 04 (Zn-LSCO) with y up to 0.03, even though attempts to ob-
serve the charge order peaks were unsuccessful [59, 60]. In fact, Zn substitution
pins the stripe fluctuations similarly to the rare-earth elements. However, in con-
trast to the latter, it does not induce a structural transition to the LTT phase,
but provides randomly distributed pinning centers that promote meandering of
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Figure 2.3: Neutron scattering measurements of: (a) static charge order and (b)-
(d) magnetic fluctuations for YBCOg 35, after Ref. 69.

stripes and correspondingly broadens IC peaks.

An important question is whether charge stripes appear solely in monolayered
lanthanum compounds or if they are a generic feature of all the cuprates. The
latter conjecture seems to be supported by inelastic neutron scattering experi-
ments on bilayered YBayCuzOg,s (YBCO) that have identified the presence of IC
spin fluctuations throughout its entire superconducting regime [61]. In fact, as
the doped charge is nontrivially distributed between the CuQOs planes and CuO
chains, it is very difficult to determine the precise doping level z in the CuOs sheet
of YBCO. One can only estimate it using either a relationship between the su-
perconducting transition temperature 7T, and z [61] or the empirical bond valence
sum rule of Tallon et al. |62], z = 0.216 — 0.023.

However, despite seminal uncertainty concerning the orientation of the IC pat-
terns at 6 = 0.6, which corresponds to an effective hole concentration x ~ 0.1
|63], subsequent studies have revealed the presence of IC magnetic peaks at the
wave vectors (1/2+0.1,1/2) and (1/2,1/240.1) [64-66]. Analogical IC magnetic
superstructure has also been found at a slightly larger doping level § = 0.7 [67]
as well as at 0 = 0.85 [68]. Moreover, systematic studies by Dai et al. [61] have
shown that the incommensurability in YBCO increases initially with doping but
it saturates faster than in LSCO, i.e., already at x ~ 0.1 with the value ¢ ~ 0.1.
Unfortunately, there is no any compelling explanation that would account for such
a different behavior of € in both systems.

Eventually, after continuous attempts, static charge order peaks have been
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Figure 2.4: Comparison between the ARPES spectra at the momentum (7, 0) and
(r/2,m/2) for LSCO, after Ref. 72. The latter were multiplied by a factor 2.

observed in YBCOg 35 at the wave vector (0.127,0,0.7) which is almost precisely
double the dynamic magnetic incommensuration e = 0.0625, as depicted in Fig. 2.3
[69]. This is 1/16, so the magnetic peaks correspond to the DWs separated by
d = 1/2¢ = 8 lattice spacings with a constant charge density 0.5 hole/Cu ion.
Therefore, an inspection of Fig. 2.2 suggests that ¢ in YBCO tends to saturate in
the low doping regime as in LSCO below x = 0.02. However, in the latter case, a
diagonal IC spin modulation with a charge of one hole/Cu ion has been observed
[54]. Finally, we note that in spite of several attempts, no static charge order could
be detected in YBCOg 5 and YBCOgg.

Furthermore, although some neutron scattering experiments have been done on
BiySryCaCuyOg.5 (BSCCO), the probe has only produced weak evidence of the IC
structure |70]. In contrast, Fourier transform of the recent STM data has revealed
some IC peaks corresponding to a four-period modulation of the local density of
states along the Cu-O bond direction, which may imply the existence of stripes
[71]. Nevertheless, definite answer pertinent to the appearance of stripes in all
the cuprates remains still unsettled and further experiments are required to reach
an unambiguous conclusion, even though the summary of the experimental data
illustrating doping dependence of the incommensurability € in cuprates, depicted
in Fig. 2.2, includes an array of compounds.

Tendency towards phase separation is also a starting point to understand dop-
ing evolution of the electronic structure in LSCO and Nd-LSCO. Fig. 2.4 illus-
trates the ARPES spectra at the X = (7,0) and S = (7/2, 7/2) points for LSCO
at different doping levels [72]. The remarkable result is that even though in the
insulating regime the data are solely characterized by a single high binding en-
ergy feature, one can also identify a second low-energy feature near the X point
for x = 0.05. Upon further doping one observes a systematic transfer of spectral
weight from the high- to the low-energy feature and finally a well-defined quasi-
particle (QP) peak develops near the optimal doping. In contrast, the intensity
near the S point remains suppressed for the entire underdoped regime so that a
QP peak is observed only for = > 0.15.

The dispersion of the LSCO spectral features for different doping levels is
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Figure 2.5: Band dispersion near the Fermi level for LSCO, measured by ARPES
(left panel), after Ref. 73; theoretical gray-scaled intensity of spectral weight
obtained using the Hubbard model within DMFT at « = 1/12 with U = 12¢,
along the main directions of the 2D Brillouin zone, with I' = (0,0), X = (m,0),
Y =(0,7), M = (m,m), and S = (7/2,7/2) (right panel), after Ref. 37,

summarized in the left panel of Fig. 2.5. One can clearly see that the ARPES
band dispersion possesses, extensively discussed in the literature, saddle point at
the X point, the so-called flat band [73]. As hole doping increases, the flat band
moves monotonically upwards and crosses the Fermi level Er at x ~ 0.2. This is
reflected in the enhancement of the DOS at the chemical potential N(u) observed
by AIPES, as shown in the left panel of Fig. 2.6 |74].

The result is compared with a theoretical spectral function obtained using the
Hubbard model with U = 12t within the DMFT for a vertical (01) SC stripe at
x = 1/12[37]. As a consequence of the stripe order, the spectra along the I'— X — M
path are not equivalent to those along the I' — Y — M one, with ' = (0,0) and
Y = (0,7) . Note that, as in the experiment, the spectral weight along the I' — X
direction is suppressed close to the I' point and becomes enhanced at the X point.
The flat QP band near the X point with a large intensity at the maximum below
the chemical potential p follows from a superposition of the dispersionless 1D
metallic band along the z direction, formed by holes propagating along the vertical
stripes, and an insulating band that stems from the AF domains. In contrast, an
AF band at the Y point is characterized by a high binding energy well below © and
consequently the spectral weight at w = p almost vanishes. Moreover, a distinct
gap for charge excitations opens at p near the S point. This gap follows indeed
from the stripe structure — while the system may be metallic along the stripes,
i.e., in the antinodal directions I' — X or I' — Y, the low-energy excitations should
be noticeably suppressed along the nodal direction I' — .S crossing all the stripes.
This conjecture is also supported either by the ED studies [35] or by the analytical
approach based on variational trial wave function within the string picture [36],
both applied to the t-t'-t"-J model, or by the CPT for the ¢-J model [38|.
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In fact, the low-energy spectral weight of Nd-LSCO at x = 0.12, a model
compound for which the evidence of spin and charge stripe order is the strongest,
is also mostly concentrated in flat regions along the I' — X and I' — Y directions,
while there is little or no spectral weight along the I' — S direction [75]. On
the other hand, ARPES spectra of both LSCO and Nd-LSCO at x = 0.15 have
revealed not only the presence of flat bands around the X and Y points but also
the existence of appreciable spectral weight at Er in the nodal region [76]. While
the observation of flat segments might be directly ascribed to 1D stripes [77],
detection of nodal spectral weight poses a formidable task to develop a theory
that would describe the electronic structure resembling the Fermi surface (FS)
of a fully 2D system because, as it was already stressed out, the nodal spectral
weight is expected to be suppressed in a static SC stripe picture [35-38]. Indeed,
the experimentally established F'S looks rather like the one arising from disorder
or from dynamic fluctuating stripes [77].

Alternatively, guided by the CPT results showing that while the SC stripes
yield little spectral weight near the nodal region, the BC ones reproduce quite
well the nodal segments [38], Zhou et al. [76] have conjectured that the experi-
mental F'S may result from the coexistence of the SC and BC stripes. Within this
framework, upon increasing doping the BC stripes are formed at the expense of the
SC ones. This scenario is particularly interesting because it has been shown that
the BC stripe, in contrast to its SC counterpart, enhances superconducting pairing
correlations |78]. The relevance of a bond order at the doping level z = 0.15 is
supported by recent studies of the ARPES spectra in a system with the BC stripes
[79]. These studies have yielded pronounced spectral weight both in the nodal and
antinodal directions, reproducing quite well the experimental results in Nd-LSCO
and LSCO [76]. Furthermore, the stripe scenario would also explain the origin of
the two components seen in the ARPES spectra at the X point near x = 0.05 (cf.
Fig. 2.4). Indeed, the response from the AF insulating regions would be pushed to
the high binding energies due to the Mott gap, whereas the charge stripes would
be responsible for the other component near Fr.

Finally, existence of DWs should give rise to the appearance of new states
inside the charge-transfer gap that would pin the chemical potential u. Doping
dependence of p in LSCO deduced from XPS is depicted in the right panel of
Fig. 2.6 [80]. This figure shows the suppression of the shift in the underdoped
regime x < 1/8 where ¢ increases linearly (¢f. Fig. 2.2). In contrast, in the
overdoped region with a lock-in effect of €, the number of stripes saturates, doped
holes overflow into the AF domains, and p moves fast with doping. The picture
of broadened stripes and holes spreading out all over the AF domains is also
indicated by the doping dependence of the resistivity and the Hall coefficient Ry
in Nd-LSCO. Namely, a rapid decrease in the magnitude of Ry for doping level
x < 1/8 at low temperature provides evidence for the 1D charge transport, whereas
for x > 1/8, relatively large Ry suggests a crossover from the 1D to 2D charge
transport [81]. Altogether, it appears that the metallic stripe picture does capture
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Figure 2.6: Doping dependence of: (a) DOS at the chemical potential u, N(u),
after Ref. 74; (b) chemical potential shift Ay in LSCO, after Ref. 80.

the essence of the low-lying physics for Nd-LSCO and LSCO systems.

Conversely, it is important to note that so far no evidence of IC peaks has been
detected in any electron-doped cuprates superconductors. Instead, the neutron
scattering experiments have established only commensurate spin fluctuations as
in Ndy_,Ce,CuO,4 (NCCO), both in the superconducting and in normal state [82].
Moreover, observation of such peaks is consistent with the XPS measurements in
NCCO showing that the chemical potential monotonously increases with electron
doping [83].

2.2 Nickelates

Stripe order has also been observed in a number of nonsuperconducting doped anti-
ferromagnets, such as layered manganites (La,Nd);_,Sr;,MnO, [84, 85]. Among
them, LSNO and LayNiOy4, s (LNO) play plausibly the most prominent role. In-
deed, neutron scattering measurements have revealed static stripe order in the
LNO samples with § = 0.105, 0.125, as well as 0.133 [86-92|, and even over a
wider hole doping region 0.135 < z < 0.5 in the case of LSNO [14, 15, 24-29|.
Moreover, the IC stripe order persists up to x = 0.7 in the Ndy_,Sr,NiO4 (NSNO)
system [95], in which the LTO phase seems to extend to a higher doping region
x < 0.45 as compared to the La compounds where the HT'T phase is stabilized
at the expense of the LTO structure already at z ~ 0.22 [14]. Indications of a
charge order in doped LayNiO,4 were also found in electron [96] and x-ray diffrac-
tion studies [97-99|. Quite recently, the 1D nature of the stripe modulation within
NiO, planes has been directly confirmed in the TEM studies of charge stripes in
LSNO [100]. In addition, careful examination of the TEM images has shown that
at a low temperature stripes are mainly centered on rows of Ni atoms. However, a
mixture of the SC and BC stripes was also observed in some small regions of the
sample.

In contrast to LSCO, charge and spin order in LSNO is characterized by the
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Figure 2.7: Summary of the results for Lay_,Sr,NiOy (filled circles), Ndy_,Sr,NiOy4
(diamonds), and Lay_,Sr,NiO,s (empty circles) for different net dopant induced
hole concentration n, = = + 2§ dependence of: (a) transition temperature for a
checkerboard-type charge order (TS,) as well as a stripe-type charge (T53) and
spin (Tx) order, and (b) incommensurability €, after Ref. 29.

wave vectors (€, €) and (1/2+¢€/2,1/2+¢/2), respectively, with € ~ x corresponding
to a constant charge density of one hole/Ni ion along the diagonal stripe. Note that
the behavior of € is exactly the same as that found in the seminal HF calculations
within the Hubbard model [5-9|. Later on, using the same approach applied to
a more realistic four-band Peierls-Hubbard model for NiO, planes, Zaanen and
Littlewood have shown that doped holes prone to form diagonal DWs, centered on
rows of Ni atoms, with a tendency to have a ferromagnetic (FM) alignment of the
reduced Ni spins at a DW [101]. In fact, subsequent multiband HF calculations
have shown that depending on strength of the electron-lattice coupling, one can
obtain either metal- or oxygen-centered structures [102]. Therefore, it appears
that the semiclassical theory describes well the essence of stripe physics in the
nickelates, even though recent inelastic neutron scattering in LSNO at =z = 1/3
has revealed the existence of 1D AF correlations parallel to the stripe direction
[93] instead of FM ones predicted in Ref. 101.

We proceed now to discuss a summary of the results concerning Las_,Sr,NiOy,
Ndy_,Sr,NiOy4, and Las_,Sr,;NiO4s shown in Fig. 2.7. Fig. 2.7(a) depicts the
transition temperature for a checkerboard-type charge order (T5,) as well as for
a stripe-type charge (T4g) and spin (Ty) order, as a function of the net dopant
induced hole concentration n;, = x+29, which accounts for the fact that each excess
oxygen dopes two holes into NiO, planes. The data give a clear evidence that the
stripe order is most stable at n, = 1/3. Indeed, TLG and Ty increase linearly
with ny,, take a maximum at n, = 1/3 with 240 and 180 K, respectively, and then
decrease monotonously upon further doping. The particularly robust stability of
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stripes at n, = € = 1/3 stems from the coincidence of the spin superlattice peaks
at the wave vectors (1/2+¢/2,1/24¢/2) with those of the charge order, given by
(€,€). One should also note that, as illustrated in Fig. 2.7(b), € starts to gradually
deviate above n, = 1/3 from the value given by the ¢ ~ n;, law. In fact, the
charge order is even more stable than the stripe order at n, = 1/2 and forms a
checkerboard pattern below the transition temperature TS, ~ 480 K. Remarkably,
with decreasing temperature, a stripe charge order sets in below T ~ 180 K and
its incommensurability is twice as large as that of the spin order with the much
lower onset temperature Ty ~ 80 K [28, 29]. The low temperature competition
of the checkerboard and stripe order at n, = 1/2 has also been clearly indicated
by the measurements of Raman and optical conductivity [103, 104]. Interestingly,
above this doping, incommensurability tends to saturate rapidly with the value
e ~ (.44 [95].

The unique stability of charge and spin order at x = 1/3 in LSNO has been
the subject of intense studies that led to the discovery of distinct anomalies of
transport, optical, and thermodynamic properties observed in an array of mea-
surements. Here we only briefly discuss the most prominent results, summarized
in Figs. 2.8 and 2.9. Fig. 2.8(a) illustrates the so-called commensurability effect
[26]. Namely, one can clearly recognize that at x = 1/3, € is almost temperature
independent with the value e = 1/3. Moreover, incommensurability of two sam-
ples with a doping level slightly below and above x = 1/3, is a function of 7" with
a tendency to approach 1/3 near TG at the expense of deviation from the e ~ x
law. Apparently, charge order itself induces commensurate values of ¢ and such a
commensurability effect seems to be an intrinsic property of the stripe order. On
the other hand, concomitant tuning the hole density at the DWs suppresses the
superexchange energy gain, best optimized when all the holes are accommodated
within stripes. Therefore, it is the AF order that drives € to approach the value
given by the linear relation € ~ x below Ty. Obviously, when x = 1/3, both effects
cooperate which results in the locked-in value of € ~ 1/3 over the whole T' < TG,
range.

Next, let us focus on the phonon thermal conductivity £ in LSNO with x = 1/3
and z = 1 shown in Fig. 2.8(b). In the former case, the temperature dependence
of k exhibits a typical behavior for insulators, i.e., it possesses a clear maximum at
low T" and then decreases monotonously with increasing 7' [105]. The maximum
originates from two competing effects. On the one hand, at very low 7', x increases
owing to an increasing number of phonons, as in this case the mean free path is
temperature independent. On the other hand, an exponentially growing number
of scattering processes results in the suppression of x at higher 7. However, at
T = 240 K a distinct kink occurs in the thermal conductivity. This peculiarity
might be easily interpreted in the stripe framework. Indeed, fluctuating charge
stripes might induce lattice fluctuations and such an additional scattering channel
for phonons naturally explains the suppression of x at Ty, whereas static stripes
justify the typical insulating behavior of x below TLG. In contrast, the thermal
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Figure 2.8: Temperature dependence of: (a) incommensurability ¢ (z = 0.289,
0.339, and 0.39), after Ref. 26; (b) phonon thermal conductivity x, (z = 1/3
and 1.0), after Ref. 105; (c) specific heat C' (z = 1/3), after Ref. 106, and (d)
logarithmic resistivity logp (z = 0.2, 0.3, 0.4, 0.5, and 0.6), after Ref. 107 in
LSNO. The inset in panel (d) shows the temperature dependence of the optical
conductivity spectra o(w) in LSNO at z = 1/3, after Ref. 108.

conductivity of metallic sample with z = 1 differs remarkably from that of the
insulating one and increases continously with 7" over the whole measured region.

Further, temperature dependence of the specific heat C, depicted in Fig. 2.8(c),
shows a distinct anomaly at the same temperature Tg = 240 K suggesting a
charge-order transition [106]. This conjecture is supported by the temperature
dependence of the logarithmic resistivity log p shown in Fig. 2.8(d). Indeed, as
expected for this transition, logp of the sample with x = 0.3 exhibits a steep
increase precisely at 240 K [107]. Charge fluctuations around TG = 240 K also
lead to conspicuous changes in the optical conductivity spectra o(w) [108], as
displayed in the inset of Fig. 2.8(d). Namely, at a high temperature T > Tg3),
only a broad peak is observed with a finite low-energy spectral weight. However,
when T is decreased down to T2y, the low-energy weight below 0.4 eV is gradually
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Figure 2.9: Doping dependence of: (a) the magnetic susceptibility y and the log-
arithmic resistivity log p at 200 K, after Ref. 107; (b) Hall coefficient Ry (circles)
and Seebeck coefficient S (triangles) at T' > TS, (empty symbols) and at T' < TEE
(filled symbols); (c) the optical conductivity spectra at 10 K, and (d) the chemical
potential shift Ay deduced either from XPS (filled circles) or UPS (empty circles),
after Ref. 110 in LSNO. Panels (b) and (c) are after Ref. 109.

transferred to higher energy so that opening of the charge gap is clearly observed.

A special character of x = 1/3 as well as © = 1/2 doping, is best seen in
the magnetic susceptibility y and logarithmic resistivity log p, recorded at 200 K,
showing distinct anomalies at these doping levels, as depicted in Fig. 2.9(a) [107].
In this context it is important to discuss a peculiar behavior of the Hall coefficient
Ry (circles) and the Seebeck coefficient S (triangles) at two representative values
of T below and above TG = 240 K, i.e., 300 K (empty symbols) and 210 K (filled
symbols), shown in Fig. 2.9(b). The Hall coefficient at 300 K is almost independent
of doping and takes a small positive value corresponding to the order of one hole
carrier per Ni site [109]. The Seebeck coefficient shows a similar nearly constant
behavior taking, however, a negative value. In contrast, below T, (Ij%, both Ry and
S change their signs from negative to positive at x = 1/3 and their absolute values
are larger than those at 300 K. In addition, for samples with = = 0.3 and 0.33,
Ry keeps decreasing with decreasing 7', so that the number of carriers per Ni site
gets reduced even down to 0.01.

These results indicate that the deviation of x from 1/3 can be considered as
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an electronlike (x < 1/3) or holelike (z > 1/3) carrier doping into the ¢ = 1/3
charge-ordered insulator with three Ni sites in the unit cell. Hence, for the doping
level x = 1/3 there is exactly one hole per unit cell and such a state is robust and
may be considered as a half-filled state. Moreover, it would certainly retain this
feature if the incommensurability followed precisely the relation e = x. However,
as shown in Fig. 2.7(b), € has a tendency to shift towards 1/3, for both sides of
the z = 1/3 point, which has important implications for the sign of Ry. On the
one hand, when z is less than 1/3, the number of holes is insufficient for filling up
the mid-gap states entirely, i.e., the states inside the charge-transfer gap induced
by stripe order, and in this case the mid-gap states contain some electrons which
become carriers. On the other hand, for x larger than 1/3, the number of electrons
is insufficient for entirely filling up the lower Hubbard band which contains holes.
Consequently, Ry is expected to have an opposite sign to the x < 1/3 case (hole
carriers).

Next, the unique stability of the 2 = 1/3 point induced by the stripe order
should strongly affect the electronic structure. Indeed, as we have already seen
in the inset of Fig. 2.8(d), the optical conductivity spectra o(w) below T3, with
the suppressed intensity in the low-energy region, imply that LSNO is an insulator
with a finite charge gap. Remarkably, as illustrated in Fig. 2.8(c), for both z = 0.3
and 0.39 doping levels, the low-energy spectral weight is enhanced as compared
to x = 1/3, demonstrating distinct anomalies in the electronic structure around
r=1/3.

Finally, Fig. 2.9(d) depicts the suppression of the chemical potential shift Ay in
LSNO for x < 1/3 deduced either from XPS (filled circles) or UPS (empty circles)
[110]. Certainly, this phenomenon cannot be explained within a simple rigid-band
framework in which p is expected to shift downwards with hole doping. In fact,
an increase of x in a system with a spatially uniform hole distribution should
enhance the average hole-hole repulsion which, in turn, would result in a higher
energy required to add one hole to the system, i.e., in a larger |u|. Therefore,
the absence of Ap implies that the average hole-hole repulsion remains nearly
unaltered upon doping. Such a behavior might be easily explained within a stripe
picture in which a constant hole density at the DWs is realized in the regime where
€ increases linearly with increasing x. Moreover, as we have already pointed out,
a similar suppression of the shift has been found below =z < 1/8 in LSCO [cf.
Fig. 2.6(b)|, suggesting that an inhomogeneous charge distribution is a common
feature of both systems.

Let us finish this Section off with another prominent neutron scattering ex-
periment that sheds some light on the question concerning the SC or BC nature
of the stripes. We refer here to a magnetic-field induced effect suggesting that
the stripes in LNO are O-centered at high 7" with a tendency to formation of the
Ni-centered ones at low 7' [91, 92]. Indeed, on cooling the sample with § = 0.133,
charge order was found at T8 ~ 220 K with a locked-in value of ¢ = 1/3. On

further cooling, the magnetic order was detected below Ty ~ 111 K, accompanied
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Figure 2.10: Schematic picture of the two possible stripe phases at high 7" in LNO
with § = 0.133, as discussed in Refs. 91 and 92: (a) site-centered (SC), and (b)
bond-centered (BC) domain walls with e = 1/3. The arrows indicate spins at Ni
sites, open (shaded) circles stand for the excess charge density at O (Ni) atoms,
respectively. The size of arrows (circles) is proportional to the magnetization
(charge) density.

by a discontinuous jump in € down to 0.295. Moreover, the incommensurability
kept on decreasing and finally reached the value e = 0.278 at T = 10 K. Hence,
one can conjecture that at low 7', the measured incommensurability approaches
the HF value e = 20 = 0.266.

Consider finally the e = 1/3 phase with two possible stripe arrangements: (i)
with the SC stripes separating the AF domains comprising a pair of antiparallel
spins, as shown in Fig. 2.10(a) or (4i) BC stripes, with the AF domains consisting
of two T-spins and one |-spin, as depicted in Fig. 2.10(b). By looking at the
magnetic structure it becomes clear that only the latter configuration might show
a ferrimagnetic response, induced by a uniform magnetic field, in the PM phase
at T' > Ty. Indeed, such a magnetization peak has been detected in a field of 6 T
[91]. Therefore, assuming that the DWs are bond-centered in the high temperature
regime, it has been concluded, based on the temperature dependence of ¢, that
cooling promotes the SC stripes.






Chapter 3

Semiclassical properties
of filled stripes

As we already stated, the phenomenon of phase separation, manifesting itself
in formation of nonmagnetic 1D domain walls, which separate AF domains of
opposite phases is the most pronounced in Nd-LSCO around hole doping z = 1/8
[13, 18], where stripes are aligned along one of two equivalent lattice directions x
(y), to which we refer as the horizontal (vertical) stripes. This is in contrast to
the diagonal stripes inferred in the insulating nickelates LSNO [14, 15, 24-29] and
LNO [86-92].

Even though the multiband HF calculations of Zaanen and Littlewood [101] are
consistent with the observation of filled stripes in nickelates, by which is meant one
doped hole per stripe unit cell, this approximation does not predict the half-filled
stripes (one hole per every two atoms in a DW) observed in the cuprates [111].
In addition, charge transport is not possible in idealized filled stripes. Both these
features indicate that it is necessary to go beyond the HF treatment of stripes by
including local electron correlations which further influence the charge and spin
distributions.

However, significant qualitative statements remain possible within the frame-
work of the unrestricted mean-field theory. Indeed, early HF calculations for the
2D Hubbard model found that vertical stripes were favored for U/t < 4 and diag-
onal stripes formed at larger values of U [6-9]. Here, we extend these studies and
determine a phase diagram of the Hubbard model with an anisotropic nearest-
neighbor hopping ¢, by varying the on-site Coulomb repulsion U and investigating
locally stable structures for representative hole doping levels z = 1/8 and x = 1/6.
We also report the changes in stability of the stripe structures in the extended
Hubbard model due to the next-neighbor hopping ¢ and to the nearest-neighbor
Coulomb interaction V. Next, in order to gain a comprehensive understanding of
the competition between different types of stripes in a realistic model, we include
lattice degrees of freedom induced by a static Peierls electron-lattice coupling. Fur-
ther, guided by the observation that negative ¢’ (¢'/t < 0) yields a positive kinetic
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energy contribution and hence it is suppressed by expelling holes from the AF do-
mains and reinforcing the stripe order, we attempt to stabilize a half-filled stripe
phase involving an on-wall spin-density wave as in Ref. 111. We argue that such
a phase not only easily accommodates holes, but also redistributes them around
domain walls so that the kinetic energy associated with next-neighbor hopping
becomes negative despite negative t'. Consequently, it takes over in the regime
of t'/t ~ —0.3 appropriate for YBCO. Finally, we investigate and compare static
hole-hole and spin-spin correlation functions of the considered stripes.

3.1 Solitonic mechanism of stripe formation

In what follows we describe the essential mechanism which favors stripe phases
at finite doping, by considering only a small cluster consisting of three atoms
filled by two electrons and one hole (with respect to half-filling with the electron
density n = 1 per site). For simplicity we assume that the electrons are confined
to the considered cluster owing to large Coulomb interaction U > ¢, and we do
not take into account any interactions with the AF background. There are two
possible candidates for the ground state. The first one corresponds to a hole
added to three atoms of a single AF domain in which, if we suppose that a |-spin
electron is replaced by a hole, the two remaining T-spin electrons can be found
in one of three allowed configurations: {1,0,71}, {1,7,0}, and {0, 7,71} (the other
configurations are excluded by the Pauli principle). Hence, this polaronic state
gives the total energy,

Ep = —V2t, (3.1)

and the Coulomb interaction U does not contribute.

A different situation is obtained when a hole occupies instead a DW separating
two AF domains. Delocalization leads then to similar three configurations to
those obtained above: {71,0,]}, {1,l,0}, and {0,7,]}, but in addition, three
configurations with one doubly occupied site {1/,0,0}, {0,7/,0}, and {0,0, 1|},
can be reached as excited states which cost Coulomb energy U. Moreover, three
other configurations with interchanged T- and |- spins are then also accessible via
the decay of double occupancies: {|,0,1}, {[, 1,0}, and {0, |, T}. In the regime of
large U, the total energy in the ground state can be found in a perturbative way
and as a result one obtains,

4t?

Eg=—V2t — —. (3.2)
U

Therefore, the Hilbert space for the latter solitonic solution is larger and one

finds that this solution is always more stable than the polaronic one [111]. The

argument applies also to 2D systems, where the DWs are more stable than the

lines of polarons in an AF background.
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3.2 Vertical versus diagonal stripes

In this Section we attempt a systematic investigation of the properties and relative
stability of filled vertical and diagonal stripes. We shall see that in spite of difficulty
to stabilize the ground state with a half-filled DW, the mean-field framework
is useful as providing a generic microscopic description of filled inhomogeneous
structures.

3.2.1 Extended single-band Hubbard model

Starting point for the analysis of stripe structures is the extended single-band
Hubbard model, which is widely accepted as the generic model for a microscopic
description of the cuprate superconductors [112],

H=-— Z tijc;racjg +U Z ngng +V ; n;n;, (3.3)
1 i

ijo

where the operator czg (cj,) creates (annihilates) an electron with spin o on lattice
site ¢ (j), and n; = c;rTciT + CleCil gives the electron density. The hopping ¢;; is ¢ on
the bonds connecting nearest neighbors sites (i, j) and ¢’ for second-neighbor sites,
while the on-site and nearest-neighbor Coulomb interactions are, respectively, U
and V.

The model can be solved self-consistently in real space within the HA, where
the interactions are decoupled into products of one-particle terms becoming effec-
tive mean fields that act on each electron with the same strength. This approxima-
tion involves basically solving an eigenvalue problem. The obtained wavefunctions
form a new potential and hence the Hamiltonian for a new eigenvalue problem.
Typically, the new potential is chosen as some linear combination of the current
and preceding potential. The iterations are continued until the input and output
charge density and energy do not change within some prescribed accuracy. The
most significant drawback of this method is that it neglects correlations. Electron
correlation changes the system properties and manifests itself in the decrease of
the ground state energy. The difference between the energy of the exact ground
state and the energy obtained within the HA is thus called the correlation energy.
It arises from the fact that an electron’s movement is correlated with the electrons
around it, and accounting for this effect lowers further the energy, beyond the
independent electron approximation.

We do not consider noncollinear spin configurations, and use the most straight-
forward version of the HA with a product of two separate Slater determinants for
up and down spins, whence,

Nty = N (nag) + (nip)nig — (i) (nay).- (3.4)

A similar decoupling is performed for the nearest-neighbor Coulomb interaction.
Calculations were performed on 12 x 12 (16 x 16) clusters for z = 1/6 (z = 1/8)
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Figure 3.1: Vertical site-centered (VSC) and diagonal site-centered (DSC) stripe
phases as found for U/t = 5 at hole doping x = 1/8. The length of arrows is
proportional to the magnetization (S?) and the hole density (ny;) is scaled by the
diameter of black circles.

with periodic boundary conditions, and we obtain stable stripe structures with AF
domains of width five atoms for z = 1/6 and seven atoms for x = 1/8. Typical
solutions at = = 1/8 are shown in Fig. 3.1 with the local hole density,

(i) = 1 — (nip +nqy), (3.5)

scaled by the diameter of the black circles and the length of the arrows being
proportional to the amplitude of local magnetization density,

(S7) = 3l(nay — nay)l. (36)

These structures possess nonmagnetic DWs with enhanced hole density which
separate AF domains having hole density almost unchanged with respect to the
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Figure 3.2: Vertical bond-centered (VBC) and diagonal bond-centered (DBC)
stripe phases as found for U/t = 5 at hole doping x = 1/8. The meaning of the
arrows and black circles as in Fig. 3.1.

undoped case. Note that the AF sites on each side of the DWs have a phase
shift of = due to the solitonic mechanism described in Section 3.1. We compare
the stability of such nonmagnetic SC domain walls with the BC stripe phases
in which DWs are formed by pairs of magnetic atoms, as obtained by White and
Scalapino [17] (¢f. Fig. 3.2). In the three-band model, SC (BC) stripes correspond
to DWs centered at metal (oxygen) sites, respectively [102, 113-116].

We begin by setting ¢ = 0 and V' = 0 with a goal of elucidating the effects
of hopping anisotropy on the stripes. This is motivated by the fact that the first
detection of static stripes in both charge and spin sectors was accomplished in
Nd-LSCO [13] indicating that rare-earth elements doping is in some way helpful
for pinning of the stripe structure. Indeed, it produces a structural transition in
the system from the LTO to LTT phase [117]. Both phases involve a distortion
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of the CuO, plane by rotation of the CuOg octahedra. In the LTO phase the
tilt axis runs diagonally within the copper plane, such that all the oxygen atoms
are displaced out of the plane. Conversely, in the LTT phase this rotation takes
place around an axis oriented along the planar Cu—O bonds. Therefore, oxygen
atoms on the tilt axis remain in the plane, while the ones in the perpendicular
direction are displaced out of the plane. This provides a microscopic origin for
in-plane anisotropies — the Cu—Cu hopping amplitude ¢t depends on the Cu—O
bond and it is isotropic in the LTO phase and anisotropic in the LTT one. For
a physical tilt angle of order 5°, the relative anisotropy €; = |t, — t,|/t, ~ 1.5%
is weak [118, 119]. The direction with a larger hopping amplitude coincides with
the direction of a stronger superexchange coupling J.

The possible relationship between this anisotropy and the onset of stripe phases
has been intensively studied within anisotropic Hubbard (¢, # t,) or t-J (t, # t,,
J # J,) models by means of various techniques: unrestricted HF approach [118],
DMRG [119], and QMC method [39]. The in-plane anisotropies might also be
represented theoretically by on-site potentials as in the QMC study by Riera [40].
All these studies have shown an enhanced tendency to forming stripe phases clearly
seen either by the reduction their energy [118, 119| or by the appearance of IC
peaks in the spin and charge structure factor [39, 40|. It appears that a finite
anisotropy of the next-nearest hopping term ¢’ might play a role in stabilizing
diagonal incommensurate peaks observed in a spin-glass phase of LSCO (0.02 <
x < 0.06) [48-50, 52-54|. Indeed, although the LTO phase is usually considered
as isotropic, which is the case for nearest-neighbor hopping and interaction, a
different length of the orthorhombic axes implies the need for an anisotropic t’
parameter. Exact diagonalization studies incorporating such anisotropy found
that it strongly strengthens hole correlations in one direction and suppresses them
along the other, resulting in a 1D pattern of holes [120].

It turns out, however, that the variation of the ¢; anisotropy have only a little
visible effect on the local hole density,

nu(lz) =1 = (ng, 0. + nw..0)1) (3.7)

shown in Fig. 3.3 as a function of the z-direction coordinate [, for a given y-
direction coordinate [, = 0, even at the unrealistically large 22% anisotropy level
corresponding to ¢,/t = 1.1 and t,/t = 0.9. Similarly, the anisotropy does not
modify the modulated magnetization density,

Se(le) = (=1)"* 2 (n, 001 — N1a0),1) (3.8)

with a site dependent factor (—1)* compensating modulation of the staggered
magnetization density within a single AF domain.

In contrast, the strong effect of finite anisotropy ¢, is clearly demonstrated by
variation of the expectation values of the bond hopping terms along the z- and
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Figure 3.3: Local hole n, (I,) (top) and magnetization S, (l,) (second row) density;
kinetic energy E7(l,) (third row) and EY(l,) (bottom) projected on the bonds in
the z-(y)-directions, respectively, of the VSC (left) and DSC (right) stripe phases
shown in Fig. 3.1 (open circles) as well as of the ones obtained in the anisotropic
model with ¢,/t, = 1.22 (filled circles). For clarity, the latter are shifted by one
lattice constant from the origin of the coordinate system.
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Figure 3.4: The same as in Fig. 3.3 but for the BC stripe phases.

y-directions,

Ef(lx) = —1z Z<szz,o),ac(lx+1,0),a + h.C>, (39)

EY(l,) = —t, Z@Lbowc@z,lw + h.c). (3.10)
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Bijt_ BVt Eojt Bt
VB(S)C —0.6753 —0.6147 0.4900 —0.8000
DBC —0.6375 —0.6375 0.4726 —0.8024
DSC —0.6368 —0.6368 0.4696 —0.8040

Table 3.1: Site-normalized ground-state energy FE., kinetic energy (E¥, EY), and
potential energy FEy in the isotropic Hubbard model with U/t = 5 and =z =
1/8 as obtained for different stripe phases: vertical site-centered (VSC), diagonal
site-centered (DSC), vertical bond-centered (VBC) and diagonal bond-centered
(DBC). In the HA, both types of vertical stripes are degenerate.

As we have learnt in Section 3.1, stripes are stabilized not by charge motion along
them but by the transverse hopping. This was concluded from the previous HF
studies which have clarified that the largest kinetic energy gains are obtained
due to the hopping perpendicular to the stripes [111, 118|. These features are
seen in Fig. 3.3. For the VSC stripes one finds a large anisotropy in the values
of the kinetic energies (3.9) and (3.10), which becomes especially pronounced
beside the stripes, and is strongly reinforced by the hopping anisotropy. Therefore,
taking into account that the hopping between two different charge densities is
favored over motion between equal densities, one should expect that transverse
charge fluctuations will always tune the direction of DWs along the weaker hopping
direction in the anisotropic model. Analogous conclusion based on Fig. 3.4 might
be drawn concerning the orientation of the VBC stripes.

Regarding diagonal stripes, although a finite anisotropy in hopping is also re-
flected in the kinetic energy anisotropy, a system with either the DSC or DBC
stripe pattern becomes topologically frustrated and consequently gains less en-
ergy compared to a system with vertical stripes, taking a full advantage of the
anisotropy (cf. Tables 3.1 and 3.2). However, we shall see later on that the uni-
versal character of the solitonic mechanism which also applies to diagonal stripes
stabilizes them in the Hubbard model with the next-neighbor hopping ¢ across
the stripes.

The effect of an increasing anisotropy illustrates a phase diagram shown in
Fig. 3.5 determined by varying U and the ratio ¢,/t, of the nearest-neighbor

Bijt_ EVji Eojt Bl
DBC —0.8143 —0.4807 0.4815 —0.8135
DSC —0.8098 —0.4836 0.4793 —0.8141
VB(S)C —0.8304 —0.4776 0.4938 —0.8142

Table 3.2: The same as in Table 3.1 but with the hopping anisotropy ¢, = 22%.
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Figure 3.5: Phase diagrams for stable site-centered (a) and bond-centered (b)
stripe structures obtained in the anisotropic Hubbard model (# =0, V' =0) on a
16x16 cluster for doping x = 1/8 (solid lines) and on a 12x12 cluster for x = 1/6
(dashed lines).

hoppings in the z- and y-directions, while maintaining constant ¢ = %(tz + ).
We observe the generic crossover from vertical to diagonal stripes with increasing
Coulomb interaction reported in early HF studies [6, 7, 9]. The transition from the
VSC to DSC stripes appears in the isotropic case at U/t ~ 4.1 for x = 1/8, and
at a higher value U/t ~ 4.6 for x = 1/6 |¢f. Fig. 3.5(a)|. The corresponding phase
boundary between the VBC and DBC stripes is shifted towards stronger Coulomb
interaction and occurs at U/t ~ 4.4 (5.0) for x = 1/8 (z = 1/6), respectively |cf.
Fig. 3.5(b)].

The results shown in Fig. 3.5 have a simple physical interpretation. Stripe
phases occur as a compromise between, on the one hand, the AF interactions
between magnetic ions and the local Coulomb interactions which favor charge
localization, and the kinetic energy of doped holes which favors charge delocal-
ization on the other hand. The kinetic energies in Table 3.1 show further that
the vertical stripes are more favorable for charge dynamics. This result, which is
not immediately obvious, has however a straightforward origin. Namely, the HA
always leads to a large spin polarization since it is the only way to minimize the
on-site Coulomb repulsion. Indeed, removal of a |-spin electron at site i leads to
relaxation of the T-spin electron energy level at this site. As a consequence, an
alternating on-site level shift develops yielding an energetical motivation for the
symmetry breaking and forming the AF order. However, the renormalization of
the double-occupancy energy involves a strong reduction of the kinetic energy in
the |-spin channel between site ¢ and its neighboring sites, as an electron incoming
into this site encounters a high energy potential U(n;;). Therefore, in the HA we
shall be able to identify dynamically favorable stripe patterns only by comparing
appropriate local magnetization densities.

For example, charge fluctuations occur more readily in the VSC stripe geom-
etry presumably due to their greater overall width indicating weaker correlation
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i 1 2 3 1 5
(n,) 0364 0234 0067 0014 0.006
VSC (0.378) (0.234) (0.060) (0.013) (0.006)
(S2) 0.000 0.222 0348 0381  0.384
(0.000) (0.234) (0.357) (0.382) (0.384)
(n,) 038 0193 0070 0032  0.020
DSC (0.405) (0.195) (0.066) (0.028) (0.017)
(S?) 0.000 0.262 0352 0373  0.380
(0.000) (0.272) (0.360) (0.377) (0.382)

Table 3.3: Local hole (n,,) and magnetization (S?) density of the site-centered
stripes shown in Fig. 3.1, all labeled by decreasing hole density in the z-direction.
In parenthesis the values for the extended model with ¢/t = —0.15 are given.

effects (¢f. Fig. 3.3). This explains their stability at small U where the conse-
quent cost in potential energy Ey becomes less relevant. By contrast, the DSC
stripes are narrower having larger hole density along nonmagnetic DWs. More-
over, magnetization density of their nearest neighbor sites is markedly enhanced as
compared to the corresponding VSC stripe magnetization as shown in Fig. 3.3 and
Table 3.3. The former also illustrates that the bonds connecting DWs with their
nearest neighboring sites perpendicularly to the walls, have the main contribution
to the kinetic energy gain, in fact suppressed here by larger spin polarization.
Taken together, the above features are reflected in a more localized character of
the DSC stripes, with a lower net double occupancy and hence a more favorable
on-site energy Fy (c¢f. Table 3.1). This clarifies the mechanism of the transition
from the VSC to DSC stripes with increasing U.

Turning now to the analogous crossover between the BC stripes, we shall again
compare local hole and magnetization densities on and around their DWs. In
contrast to the SC case, a VBC stripe phase possesses larger hole density along
DWs as illustrated in Fig. 3.2 and Table 3.4, suggesting that it is more localized
than the DBC one. Nevertheless, a better renormalization of the double occupancy
energy Fy by the latter (¢f. Table 3.1) follows from a stronger spin polarization
not only of the DW atoms but also their nearest neighbors (c¢f. Fig. 3.2 and
Table 3.4). This enhancement is directly responsible for a great reduction of the
kinetic energy along bonds joining these atoms. Correspondingly, it accounts for
a crossover from the DBC to VBC stripes in the small U regime when the larger
kinetic gain becomes crucial.

We would like to emphasize that the above transition between different types
of stripe phases is not an artefact of the HA and occurs also between filled stripes
obtained within more realistic approaches including local electron correlations.
Indeed, slave-boson studies of the Hubbard model at the doping x = 1/9 have
established that the transition from the filled VSC to DSC stripe phase appears
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i 1 2 3 1
VBC (n,) 0326 0.136 0.030 0.007
(S7) 0.118  0.301  0.371  0.384
(n,) 0314 0.115 0.047 0.023
DBC (0.323) (0.110) (0.046) (0.021)
(S2) 0.145  0.322  0.365  0.378
(0.155) (0.333) (0.368) (0.380)

Table 3.4: The same as in Table 3.3 but for the bond-centered stripes. VBC stripe
is not stable in the extended hopping model with ¢/t = —0.15.

at the value U/t ~ 5.7, being much higher than that predicted by the HA yielding
U/t ~ 3.8 [31]. In this method, enhanced stability of the VSC stripes follows
from an additional variational parameter per each site d;, reducing the on-site
energy without a strong suppression of the kinetic energy. Remarkably, the total
energy difference between the vertical SC and BC stripes at both doping level is
comparable to the accuracy of the present calculation. Such degeneracy was also
reported in the HF studies of the charge-transfer model [113].

We have also considered the effect of a next-neighbor hopping ' on the relative
stability of the stripes. There are numerous experimental and theoretical results
which support the presence of finite ¢’ in the cuprates. For example, recent slave-
boson studies have revealed that the phenomena of the half-filled vertical stripes in
LSCO requires a finite next-neighbor hopping '/t ~ —0.2 [33]. We shall however
not pursue here this result as the influence of ¢’ on the stripe phases within the
SBA is extensively reported in Chapter 4. Instead, let us pause for a moment
to clarify the influence of ¢ on the DOS as well as on the FS using a simple
tight-binding model,

E(k) = —2t(cos k, + cosk,) — 4t cos k; cos k. (3.11)

By reduction from the CuO, multiband model to an effective single-band model
it has been found that ¢ > 0 and ¢ < 0 for a hole doped system, and t < 0
and ¢" > 0 in an electron doped system [112|. Although an accidental cancella-
tion of the various contributions results in almost perfect electron-hole symmetry
of the nearest-neighbor hopping ¢, the next-neighbor hopping ¢ asymmetry ap-
pears owing to the fact that the dominant contribution to the latter comes from
a direct O-O hopping ?,, in the case of a hole hopping. On the contrary, an elec-
tron hopping follows from a third order Cu—0O—0O—Cu process, being therefore
dominated by the Cu-O t,4 hopping.

In the noninteracting limit the role of ¢’ is to shift the van Hove singularity
away from the middle of the band either to higher or to lower energy depending
on its sign. Fig. 3.6 shows the tight-binding DOS, centered at w = 0 with the
condition | N(w)wdw = 0, and the occupied states at the doping z = 1/4. In
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Figure 3.6: Effect of the next-neighbor hopping t'/t = —0.3 on the noninteracting
2D DOS at the doping © = 1/4: (a) hole doping (t = 1); (b) electron doping
(t = —1). Dotted line shows the Fermi energy in the undoped case, whereas the
gray area shows the states occupied by either electrons (a) or holes (b).

the hole-doped case, with the vacuum as the zero electron state, the van Hove
singularity lies in the lower part of the band. Conversely, in the case of electron
doping, with the vacuum as the zero hole state, the van Hove singularity is shifted
towards higher energy part of the band, unoccupied by holes.

Apart from breaking the electron-hole symmetry, the extra parameter ¢ modi-
fies the geometry of the F'S of the free electrons so that it becomes more consistent
with the FS topology seen by ARPES [73, 121, 122]. In the electron-doped system
NCCO, the low-energy spectral weight at the doping = = 0.04 is concentrated in
a small electron pocket around the (+m,0) and (0,+7) points. Upon increasing
doping, one observes both the modification of the hole pockets and the emergence
of new low-lying spectral weights around (£7/2,+7/2). Finally, at x = 0.15
the F'S pieces evolve into a large holelike curve centered at M = (7w, 7), as illus-
trated in Figs. 3.7(a)-(c). In contrast, it is clearly observed in LSCO that in the
lightly doped regime x = 0.03 doped holes enter into the (£7/2,4+7/2) points
[123|, implying that the FS is holelike and centered at the M point. However,
Figs. 3.7(d)-(f) depict that in the heavy overdoped regime x = 0.3 it converts into
the electronlike F'S around the I" = (0, 0) point.

Fig. 3.8(a) shows that the model (3.11) with ¢ = 0 has a nested square FS at
half-filling which becomes electronlike and shrinks around the I' point upon hole
doping. However, addition of the negative ' = —0.3 removes the half-filled nesting
and consequently the FS expands in the (+k,0) and (0,+k) directions, while
contracting along the nodal (k,+k) and (%k, k) directions due to a large gradient
dE/dk along the latter. Indeed, the eigenenergy map, illustrated in Fig. 3.9(a),
has in this case a valleylike character with a minimum at the I' point. Therefore
the F'S turns into a holelike one with experimentally observed arcs [cf. Fig. 3.8(a)].
In contrast, the nearest neighbor hopping ¢’ with the same sign as ¢ interchanges
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Figure 3.7: Fermi surface plots obtained from the ARPES experiments: (a)-(c)
NCCO, after Ref. 122; (d)-(f) LSCO, after Ref. 73.

the expansion- and contraction directions which results in the electronlike F'S.
Regarding the electron doped case with ¢ = —1, shown in Fig. 3.8(b), positive

t'" = 0.3 (dark solid line) also leads to the appearance of arc segments of the

FS and makes it closer to experimental observations. In this case, however, the
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Figure 3.8: Tight-binding FS plots at the doping z = 1/4: (a) hole doping with
t =1 and: ¢ = —0.3 (black solid line), ' = 0.3 (gray solid line), and t' =

(dashed line); (b) electron doping with ¢t = —1 and: ¢ = 0.3 (black solid line),
t' = —0.3 (gray solid line), and ¢ = 0 (dashed line). The long-dashed line in both
panels corresponds to the undoped case with ¢/ = 0. The excessively large value
of [t'| = 0.3 as compared to LSCO was chosen only for more clarity of the figure.
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Figure 3.9: Eigenenergy maps of the tight-binding model (3.11) with ¢/t = —0.3;
(a) hole doping (t = 1); (b) electron doping (t = —1).

minimum energy is centered at the M point, as illustrated in Fig. 3.9(b). In
passing, it should be noted that this F'S describes the same situation as the one
obtained with ¢ = 1 and ¢' = 0.3, indicated by the gray solid line in Fig. 3.8(a).
Indeed, the sign of ¢ is less important being entirely equivalent to the (7, ) shift
of the momentum without changing the corresponding eigenvalues. Consequently,
in order to imitate the effect of hole and electron doping it is enough to study the
Hamiltonian (3.3) only below half-filling and the alternation between two regimes
is possible by the particle-hole transform,

(3.12)

mapping the model (3.11) with ¢ < 0 in the one with ¢’ > 0. Therefore, in order
to avoid any further confusion concerning the signs of ¢ and ¢’ in Eq. (3.11), we set
hereafter ¢ to be positive; then a negative ¢’ (#'/t < 0) corresponds to hole doping,
whereas a positive one (t'/t > 0) indicates electron doping.

The remarkable differences of the electronic structure due to the broken hole-
electron symmetry by ¢, result in different phase diagrams of LSCO and NCCO.
In the former the long-range AF order is already suppressed in the lightly doped
regime x ~ 0.03, while in the latter the antiferromagnetism is known to be robust
against electron doping, hence only commensurate spin fluctuations are observed
at © = 0.15 [82]. The robustness of the commensurate spin fluctuations in the
electron doped regime is consistent with the ED studies of the ¢-t'-J [124, 125]
and ¢-t'-t"-J [126, 127] models. It is also supported by the conclusion that a
negative ¢’ promotes incommensuration at a lower doping level than a positive
one, reached using the QMC technique applied to the extended Hubbard model
[128]. Finally, the XPS measurements in NCCO show that the chemical potential
monotonously increases with electron doping [83|, whereas its shift is suppressed
in the underdoped region of LSCO [80]. These data have been nicely reproduced
in Ref. 126 for both compounds, except for the low doping regime of LSCO where
stripes are expected. All these numerical and experimental results indicate that
doped electrons might self-organize in a different way than holes that form DWs.
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Figure 3.10: Phase boundaries for: (a) site-centered, and (b) bond-centered stripes
as obtained in the extended Hubbard model with the next-neighbor hopping ¢’ for
doping = = 1/8 (solid line) and z = 1/6 (dashed line).

Nevertheless, stabile diagonal stripes with one doped electron per site in a DW
have been obtained in the slave-boson studies of a more realistic extended three-
band model [115], so the problem is still open.

Turning back to the competition between stripes in a doped system, Fig. 3.10(a)
shows that negative t' stabilizes the DSC stripes, whereas positive ¢’ favors the
VSC ones, within the parameter range where ¢’ does not drive a stripe melting.
Analogous crossover from vertical stripes at small |#'| to more complex in shape
diagonal ones at ¢'/t = —0.1 and ¢'/t = —0.2 has been found in other HF studies
[129]. The explanation is contained in Table 3.5: negative t' gives a positive ki-
netic energy contribution, which is much more readily minimized by the diagonal
charge configuration. Indeed, despite the solitonic mechanism yielding a notice-
able kinetic energy loss due to the transverse hopping t'/t = —0.15, the overall
kinetic energy loss in the case of DSC stripes along the diagonal (11) and antidi-
agonal (11) directions is smaller than the corresponding one for the VSC stripe.
A more careful analysis shows that hole propagation along the DSC stripe results
in a contribution having the same sign as t’. However, it is entirely canceled by
the ones coming from diagonal bonds of the AF domains so that £, = 0.

One observes further that positive ¢’ reduces the anisotropy between the kinetic
energy gains in the x- and y-directions for the VSC stripes, and makes their sum
more favorable, while negative ¢’ has the opposite effect. For the DSC stripes
the total kinetic energy also follows the same trend. The explanation of these
results can be found in the reinforcement of stripe order by a negative ¢’ (cf.
values in parenthesis in Table 3.3), which suppresses the hopping contributions,
and its smearing out by positive ¢’ where hopping is enhanced. These trends
agree with the earlier finding within the DMFT that the VSC stripe phase is
destabilized by kink fluctuations [130]. However, this stripe (dis)ordering tendency
also leads to a considerably greater change in the Coulomb energy FEj, listed in
Table 3.5, for the DSC than for VSC stripes, which contributes significantly to



3.2. Vertical versus diagonal stripes 37

t'/t Er/t E/t  EV/t Bt Eyft B/t
VSC  —0.15 —0.6876 —0.5886  0.0140  0.0140 0.4778 —0.7704
DBC —0.15 —0.6279 —0.6279  0.0000  0.0183 0.4562 —0.7813
DSC  —0.15 —0.6275 —0.6275 0.0000 0.0188 0.4533 —0.7829
DBC 0.15 —0.6442 —0.6442  0.0000 —0.0282 0.4883 —0.8283
DSC 0.15 —0.6437 —0.6437  0.0000 —0.0279 0.4855 —0.8298
VB(S)C  0.15 —0.6612 —0.6372 —0.0169 —0.0169 0.4997 —0.8325

Table 3.5: Energies per site: ground-state energy Fi., kinetic energy contributions
for the bonds along (10) EF, (01) EY, (11) E5 ¥ and (11) E5™Y directions, as well
as the potential energy Fy, all site-normalized, in the extended hopping Hubbard
model with U/t =5 and z = 1/8. VBC stripe is not stable at t'/t = —0.15.

the predominance of the former structure for negative t'. In fact, it follows from
the increase of hole density within the nonmagnetic stripes and the magnetization
density enhancement within the AF domains (¢f. Table 3.3).

Like their SC counterparts, DBC stripes are also stabilized by negative t’ re-
sulting in a phase diagram shown in Fig. 3.10(b). In this case, expelling holes
from the AF domains enhances not only magnetization of their atoms but also
increases magnetic moment of the hole rich DWs, as illustrated in Table 3.4. This
enhancement must, however, strongly suppress the dominant transverse kinetic
energy gain of the VBC stripes. Therefore, the latter are already unstable at
t'/t = —0.15.

It is worth noting that a finite diagonal hopping ¢’ should directly affect the
competition between the d-wave pairing correlations and stripes. Indeed, a sys-
tematic comparison of stripe and pairing instabilities within the DMRG frame-
work has shown that when the stripes are weakened by positive ¢/, the latter are
strongly enhanced due to increasing pair mobility [30]. This effect is accompanied
by a simultaneous enhancement of the AF correlations [127|. Conversely, nega-
tive ¢’ reinforcing a static stripe order results in the suppression of pair formation
in the underdoped region, both in the DMRG technique and Variational Monte
Carlo (VMCQ) [131]. However, the enhanced pairing correlation, attributed to the
change of the F'S topology in LSCO, has been found in the optimally doped and
overdoped regimes [132].

Finally, we investigate the changes in the stripe stability due to repulsive (V' >
0) and attractive (V' < 0) nearest-neighbor Coulomb interactions, which give the
phase boundaries between the VSC and DSC stripe phases shown in Fig. 3.11(a).
We have found that realistic repulsive V' favors the latter. The tendency towards
the DSC stripe formation at V' > 0 is primarily due to a large difference between
charge densities at the atoms of the DW itself and at all their nearest-neighbor
sites, a situation which is avoided in the case of VSC stripe phases (c¢f. Fig. 3.1).
Consequently, the former better optimize the repulsive potential energy component
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Figure 3.11: Phase diagrams for the site-centered (a) and bond-centered (b) stripes
obtained in the extended Hubbard model with the nearest-neighbor Coulomb in-
teraction V for doping = = 1/8 (solid line) and = = 1/6 (dashed line).

Ey, as shown by the data reported in Table 3.6. Similarly, the fact that the
nearest-neighbor interaction V' is well minimized only by inhomogeneous charge
densities makes the DBC stripe phase more favorable than the VBC one, as shown
in Fig 3.11(b). While this is also the leading mechanism for both diagonal stripe
suppression at V' < 0, the asymmetry of the curve in Fig. 3.11 arises from the
fact that the lower U values at the transition favor the higher kinetic energy
contributions available for the vertical stripes.

However, it has been argued based on the SBA that an increasing repulsive in-
teraction V favors half-filled vertical stripes, hence the latter take over at V/t ~ 0.1
in the parameter regime of x = 1/8 and U/t = 10 [32]. This finding could natu-
rally explain the appearance of filled diagonal stripes in the nickelates, provided
that they were characterized by a small V' term, and the stability of the half-filled
vertical ones in the Nd-codoped cuprates due to possibly larger V. It is also worth
mentioning other HF [133| and variational [134] studies in which a variety of in-

Vit EPJt E{jt  Ey/t  Ey/t Eioi /1
DBC —04 —0.6322 —0.6322 0.4626 —0.6194 —1.4212
DSC —0.4 —-0.6319 —-0.6319 0.4602 —0.6193 —1.4229
VB(S)C —-04 -0.6655 —0.6083 0.4749 —0.6251 —1.4240
VB(S)C 0.4 —-0.6838 —0.6214 0.5063 0.6207 —0.1782
DBC 0.4 —0.6424 —0.6424 0.4829 0.6176 —0.1843
DSC 0.4 —-0.6412 —-0.6412 0.4789 0.6171 —0.1864

Table 3.6: Energies per sites: ground-state energy Ei., kinetic energy (EY, EY)
and potential energy (Ey, Fy) components in the extended Hubbard model with
the nearest-neighbor Coulomb interaction V for U/t =5 and = = 1/8.
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triguing stripe phases, coexisting at V/t ~ 1.5 with charge order, has been found
in a broad doping region.

In summary, we have shown that a competition between vertical (horizontal)
and diagonal stripes dominates the behavior of the charge structures formed on
doping the Hubbard model in the physically interesting regime of 3.5 < U/t < 6
within the HA. The detailed charge distribution and the type of stripe order
depend on the ratio U/t, on the value of the next-neighbor hopping ¢, and on the
nearest-neighbor Coulomb interaction V.

3.2.2 Single-band Peierls-Hubbard Hamiltonian

In the preceding Section, we have demonstrated that a finite anisotropy of the
transfer integral ¢ can tip the balance between vertical and diagonal stripes. Here
we will show that such anisotropy naturally emerges in a doped system with DWs,
described by a single-band Peierls-Hubbard Hamiltonian,

H=— Ztij(uij)cjgcja + UZ”iTnz‘i + %KZufj (3.13)
(i5)

ijo i

In this model we keep only the leading term and assume a linear dependence of
the nearest neighbor hopping element ¢,; on the lattice displacements wu,;,

tii(ug) = to(1 4 auy;). (3.14)

Furthermore, we include the elastic energy o« K which allows to investigate the
stability of the system with respect to a given lattice deformation and to determine
the equilibrium configuration. For convenience, we parametrize the electron-lattice
coupling with a single quantity, A = a?ty/K, with the parameter values K/t, =
1842 and a = 3A~" assumed following the earlier HF studies [111], but we note
that a different choice could also give the same value of a. As previously, we focus
on the doping z = 1/8 (x = 1/6) and perform the calculations on 16 x 16 (12 x 12)
clusters, respectively, with periodic boundary conditions. Our calculations have
shown that such clusters give the most stable filled stripe solutions for the selected
doping levels. The model (3.13) was solved self-consistently in real space within
the HA (3.4). Thereby, we used an approximate saddle-point formula for the
equilibrium relation between the actual deformation u;; of a given bond and the
;racja>7

0 at
ugj) r~ ?0 Z(c;rgcja + h.c.), (3.15)

bond-charge density (c

being a consequence of the linearity assumption in Eq. (3.14).

Quite generally, it is a widely held belief in a strong sensitivity of inhomoge-
neous doping states to small changes of A, supported both by the HF [135, 136] and
ED studies [137]|. Further, it has been shown that the electron-lattice interaction
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favors DW solutions over other possible phases like isolated polarons or bipolarons
[101, 111]. Finally, in Chapter 2 we have discussed some experiments suggest-
ing that the nickel-centered stripes are favored at low temperature, whereas the
oxygen-centered ones are stabilized at higher temperature [91, 92|. The transition
might be easily explained by considering models with a temperature-dependent
electron-lattice coupling. Indeed, an increasing elastic constant «, which modifies
the nearest-neighbor Ni-O hopping, gradually changes oxygen-centered stripes into
the nickel-centered ones, as in the HF studies of the four-band Peierls-Hubbard
model. Such a Hamiltonian contains, besides the |22 —y?) orbitals usually included
in the cuprate oxide models, the |3z% — r?) orbitals, that are necessary to account
for the high spin state (S = 1) in the undoped nickel oxides [102]|. Certainly, with
a stronger electron-lattice coupling, the system gains more kinetic energy owing
to larger lattice distortions. However, as it was discussed in the preceding Section,
the largest kinetic energy contributions are released on bonds around the DWs.
Consequently, in the strong electron-lattice coupling regime (elastic constant o
should be stiffer at lower temperatures), the diagonal metal-centered stripes with
four oxygens neighboring each metal site are promoted over the oxygen-centered
ones with two metal-oxygen bonds at the DWs (¢f. Fig. 2.10). Therefore, a com-
plete discussion of the stripe phase stability in correlated oxides has to include
coupling to the lattice.

We turn now to the most important aspect of this Section. Figs. 3.12 and 3.13
illustrate the effect of the finite electron-lattice coupling A = 0.5 on the SC and
BC stripes, respectively. Both figures give a clear demonstration that, in contrast
to the hopping anisotropy ¢; discussed above, finite A markedly modifies both the
local hole density (3.7) and modulated magnetization (3.8) [c¢f. also Table 3.3 with
3.7 (SC stripes) and Table 3.4 with 3.8 (BC stripes)|. Basically, the influence of A
resembles the effect of positive ¢/, smearing out the stripe order by ejecting holes
from the DWs, being however much stronger. In fact, hole delocalization not only
suppresses the magnetization within the AF domains, but also noticeably quenches
magnetic moments of the BC domain walls. These trends can be understood by
considering energy increments: the kinetic F;, on-site £y, and elastic energy Ey,
as explained below.

In general, a system described by the Hamiltonian (3.13) might be unstable
towards lattice deformations only if the covalency increase is large enough to com-
pensate both the Ey and Ey energy cost. Without the electron-lattice coupling,
a compromise solution is mainly reached by developing a strong magnetic order in
the AF domains, where a possible kinetic energy gain is irrelevant, and by forming
nonmagnetic or weakly magnetic DWs with large hole density. As we have already
shown, transverse charge fluctuations around the DWs yield the main kinetic en-
ergy contribution. However, enhanced covalency and mixing of the lower ~ ¢; and
higher ~ €; + U energy states between a DW and the surrounding sites generate
some not negligible amount of double occupancy,

D(l:) = (n@,,0),170..0).1)- (3.16)
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Figure 3.12: Local hole ny () (top) and magnetization Sy (l,) (second row) density;
fractional change of the length for the bonds to the right nearest-neighbor along
the z-direction u” (circles) and double occupancy D(I,) (squares) (third row),
as well as the kinetic energy FEY(l,) projected on the bonds in the z-direction
(bottom) of the VSC (left) and DSC (right) stripe phases, as obtained in the
Peierls-Hubbard model (3.13) with U/t = 5, A\ = 0.5 and = = 1/8 (filled symbols).
For comparison the result obtained with A = 0 are shown by open symbols.
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Figure 3.13: The same as in Fig. 3.12 but for the bond-centered stripes.

Indeed, in the A = 0 case, double occupancy D(l,) reaches its maximum at the
DWs, as illustrated in Figs. 3.12 and 3.13. The only exception is the DSC stripe
phase (right panels of Fig. 3.12) with the largest D(l,) in the AF domains. As a
consequence, the latter is the most localized one with the smallest kinetic energy
gain (c¢f. Table 3.1).

The situation changes upon turning on the electron-lattice coupling. When
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i 1 2 3 1 5
VSC (n,) 0270 0212 0.103 0.038 0.022
(S7)  0.000 0.146 0.259 0.310 0.321
DSC (n,;) 0292 0.179 0.094 0.058 0.046
(S7)  0.000 0193 0.277 0.305 0.314

Table 3.7: Local hole (n,,) and magnetization (S7?) density of the SC stripe phases,
all labeled by decreasing hole density in the z-direction, in the Peierls-Hubbard
model on a 16 x 16 cluster with U/t =5, A = 0.5 and = = 1/8.

the electrons couple to the lattice (A # 0), the bonds contract, and the saddle
point values of the distortions (3.15): W = (u;;) along (10) and (01) direction,

4]
respectively, are finite. However, a nonuniform charge distribution results in a
different bondlength in the cluster. This is illustrated in Figs. 3.12 and 3.13
showing a fractional change of the length for the bonds to the right nearest-

neighbor along the x-direction ul (third row). Although the values of ug?) in the
AF domains are also substantial, the largest lattice deformations ~ <c;-racja> appear
either on the bonds connecting atoms of the DWs with their nearest neighbors (cf.
Fig. 3.12), or on the bonds which join two atoms of the bond-centered DWs (cf.
Fig. 3.13). Accordingly, a strengthening nearest neighbor hopping (3.14) enables
a larger kinetic energy gain on these bonds (¢f. bottom of Figs. 3.12 and 3.13).
In fact, the effect of increasing covalency is accompanied by partial quenching
of magnetic moments. In order to appreciate this tendency, let us consider a site
in the AF domain with larger density of T-spin electrons. Once the magnetization
is reduced, it pushes up the corresponding T-spin energy level, forming the Lower
Hubbard Band (LHB), and lowers that for the |-spin level, constituting originally
the Upper Hubbard Band (UHB). As a result, the locally raised 1-spin state
becomes more mixed with the surrounding |-spin states, increasing simultaneously
bond-charge density. At the same time, electrons, jumping forth and back between
the central site occupied by the T-spin and its nearest neighbors filled by the |-
spin, enhance considerably double occupancy D(l,), as shown in Figs. 3.12 and
3.13. Such weaker stripe order results in a more uniform distribution of D(l,).

i 1 2 3 1
VBC (n,) 0255 0.156 0.063 0.026
(S} 0.074 0.209 0.291 0.319
DBC (n,) 0248 0.130 0.073 0.049
(S3) 0103 0.243 0.294 0.312

Table 3.8: The same as in Table 3.7 but for the BC stripe phases.
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Eijt  E'Jt Eyjt Exjt B/t
DBC  —0.9679 —0.9679 0.6478 0.2548 —1.0332
DSC  —0.9670 —0.9670 0.6450 0.2544 —1.0346
VB(S)C —1.0496 —0.9248 0.6719 0.2638 —1.0387

Table 3.9: Site-normalized ground-state energy Ei, kinetic energy (E¥, E}) and
potential energy (Ey, Ex) components, as obtained in the Peierls-Hubbard model
with U/t =5, A =0.5 and x = 1/8.

Nevertheless, the increase of the elastic energy and concomitant enhancement of
the on-site energy, both owing to finite bond contractions (3.15), is compensated
by the kinetic energy gain (cf. Tables 3.1 and 3.9).

We close this section with phase diagrams shown in Fig. 3.14. They were
obtained by varying U and the coefficient «, while maintaining constant K/t, =
18A-2. The increased stability of vertical stripes follows from the relative stronger
enhancement of the local hopping elements (3.14) (and consequently larger gain of
the kinetic energy), especially on the bonds in the direction perpendicular to the
DWs itself. However, although the arguments were given that Sr-doped LayNiOy4
is stronger localized than its cuprate counterpart Las_,Sr,CuQOy, primarily due to
the large effect of the electron-phonon coupling [138], neutron scattering studies
revealed appearance of diagonal stripes within the NiOy planes [14]. In fact, the
HF calculations of Zaanen and Littlewood, based on the four-band model with
a finite electron-lattice coupling, have yielded a narrow charge stripe centered on
a diagonal row of Ni atoms [101]. Hence, our result remains in contradiction
both with the experimental data and with theory, so one may conclude that the
single-band Hubbard model describes quite well CuO, planes but is insufficient to
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Figure 3.14: Phase diagrams for site-centered (a) and bond-centered (b) stripe
structures as calculated from the Peierls-Hubbard model for doping = 1/8 (solid
line) and = = 1/6 (dashed line).
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model a physical situation within NiOy ones. We shall return to this problem in
Chapter 5 discussing stability of stripe phases obtained in a more appropriate for
the nickelates two-band model.

3.3 Stability of half-filled stripes

So far we have only been concerned with the filled stripes. However, neutron ex-
periments on the Nd-codoped LSCO cuprates reveal that the observed stripes are
filled by one hole per two DWs, corresponding to the so-called half-filled stripes
[13]. Unfortunately, the latter are only locally stable within the HF approxima-
tion. Even though some additional Hamiltonian terms like the nearest-neighbor
Coulomb repulsion V' may slightly enhance their stability, filled stripes remain
always better solutions [111]. Nonetheless, we will show that under some cir-
cumstances, half-filled vertical site-centered (HVSC) stripes become energetically
favored over the filled ones even in the HA.

The first important proviso involves a modulation in a charge or longitudinal
spin channel, i.e., the period on the stripe should become four times the lattice
constant [111]. Such a stripe with a quadrupling of the period due to the on-
wall SDW is shown in the upper panel of Fig. 3.16. In order to understand this
condition, let us discuss briefly how stripes modify the band structure of a simple
antiferromagnet. In general, each filled DW induces formation of two unoccupied
bands, i.e., one for the T-spin and another one for the |-spin, lying within the
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Figure 3.15: Band structure as a function of parallel momentum £k,, calculated
from a unit cell of width N, = 16 in the Hubbard model with U/t = 5, with a
doubled (a) or quadrupled (b) Brillouin zone. Black (gray) line corresponds to the
bulk (mid-gap) bands, respectively, whereas the dashed line indicates the Fermi
level. (a) VSC stripe; (b) HVSC stripe.
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Figure 3.16: Half-filled vertical site-centered (HVSC) and filled diagonal site-
centered (DSC) stripe phase as found for U/t =5 and '/t = —0.3 at hole doping
x = 1/8. The length of arrows is proportional to the magnetization (S?) and the
hole density (ny;) is scaled by the diameter of black circles.

Mott-Hubbard gap, as illustrated in Fig. 3.15(a). Consequently, their special
stability rests on a gap that opens in the symmetry broken state between the
highest occupied state of the LHB and the bottom of the mid-gap band. One
may ask what happens now if one decreases the doping level so as to get half-
filled stripes without a period quadrupling? Certainly, the twofold degenerate
mid-gap states become quarter filled, as there is only half a hole per one DW.
Hence, any stringent reason for such a symmetry breaking with the Fermi level in
the middle of the lower mid-gap band is absent. Therefore, one needs to lower the
symmetry by a period quadrupling. This might be accomplished by introducing
a SDW modulation along the DWs which leads to the band structure shown in
Fig. 3.15(b), with a gap that opens up exactly at the Fermi energy.
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t'/t  ErJt E/t  EV/t BVt Eyft B/t
HVSC 0.0 -0.5846 —0.6585 0.0000  0.0000 0.4627 —0.7804
VSC 0.0 —0.6753 —0.6147  0.0000  0.0000 0.4900 —0.8000
DSC 0.0 -0.6368 —0.6368  0.0000  0.0000 0.4696 —0.8040
DSC 0.3 —0.6152 —0.6152 0.0000 0.0257 0.4379 —0.7668
HVSC -0.3 -0.5786 —0.6198 —0.0080 —0.0080 0.4322 —0.7678

Table 3.10: Energies per site: ground-state energy FEi., kinetic energy contribu-
tions for the bonds along (10) EF, (01) EY, (11) E Y and (11) E5™ directions, as
well as the potential energy Ey; of the HVSC, VSC and DSC stripe phases in the
t-t'-U model with U/t =5 and x = 1/8. VSC stripe is not stable at ¢'/t = —0.3.

However, in spite of better optimizing the potential energy Ey, the HVSC
stripe phase represents only a local minimum of energy, being less stable than the
filled V(D)SC one (¢f. Table 3.10). Thus, guided by the observation that finite
negative t’ expels holes from the AF domains and reinforces the stripe order, we
investigate whether this mechanism suffices to stabilize the former structure in the
t-t'-U model.

In order to establish the role of ¢, let us first discuss Fig. 3.17 showing how the
charge and spin configuration around the HVSC stripe is altered in the presence
of increasing |t'|. In Fig. 3.17(a), which depicts the ¢’ = 0 case, we label all
inequivalent bond kinetic energies along the (10) (A.,...,D.), (01) (A,,....G,),
(11) (A,...,H), and (11) (in parenthesis) directions. The corresponding values are
listed in Table 3.12. The most striking feature of the HVSC stripe phase is that
the main kinetic energy gain is released not by transverse charge fluctuations but
by on-wall hopping processes on the bonds C, (F,) connecting ferromagnetically
(antiferromagnetically) coupled sites, respectively. Another interesting property

e 1 1 2 3 4 5
0.00 (ny) 0.040 0.116  0.265  0.080 0.040
(S7)  —0.369 0.325 —0.199 —0.348 0.369
—0.15  (ny,) 0.040 0.10I  0.268  0.092 0.040
(S7)  —0.372 0.340 —0.199 —0.346 0.372
—0.30 (ny,) 0.039 0.086  0.269  0.106 0.039
(S7)  —0.375 0.355 —0.206 —0.344 0.375
—0.45 (ny) 0.036 0.072 0270 0.122 0.036
)

-0.377 0372 —-0.221 -0.339 0.377

Table 3.11: Local hole (n,,) and magnetization (S7) density of the HVSC stripe
phase, all labeled by | = (,,0) (¢f. Fig. 3.17).
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Figure 3.17: Rearrangement of the HVSC stripe order with increasing next-
neighbor hopping |¢'|: (a) t//t = 0; (b) |¢/|/t = 0.15; (¢) |[¢'|/t = 0.30; (d)
|t'|/t = 0.45. Capital letters label bond kinetic energies along the (10) (A,,...,D.),
(01) (A,,...,G,), (11) (A,....H), and (11) (in parenthesis) directions, listed in
Table 3.12, while 4+ (—) correspond to the bond kinetic energy gain (lost), respec-
tively, with respect to the ¢ = 0 case (U/t=5, x = 1/8). Shadow circles indicate
two crossing zigzag lines along and between which moving holes gain the kinetic
energy.

is that the system tries to regain some of the kinetic energy in the transverse
direction by developing a charge-density wave (CDW) on nearest-neighbor sites
to the DW itself. Indeed, although the charge distribution along the stripe is
uniform, the on-wall SDW causes the CDW on both sides of the DW. This clearly
promotes the hopping between the AF sites (bonds B,) over the FM ones (bonds
D,).

Further, as reported in Table 3.11, the CDW is strongly influenced by finite ¢/,
being first almost entirely quenched when ¢’ = —0.15 [¢f. Fig. 3.17(b)] and then it
is gradually restored [cf. Fig. 3.17(c)-(d)]. These trends are fully consistent with
the DMFT studies of the effect of a single kink along the HVSC stripe [130]. It
has been established that the energy cost of forming a kink increases slightly with
increasing |t'| up to |#’|/t < 0.1. However, further increase leads to the opposite
effect and finally a wall with a kink becomes favored at ||/t ~ 0.3.
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'/t
bond 0 —0.15  —0.30 —045
A, —06081 —0.6098 —0.6128 —0.6141
B, —0.6652 —0.6322 —0.5964 —0.5482
C, —0.6277 —0.6290 —0.6285 —0.6257
D, —04377 —0.4590 —0.4769 —0.4885
A, —0.6057 —0.5945 —0.5863 —0.5822
B, —0.6003 —0.5859 —0.5616 —0.5281
C, —0.8505 —0.8216 —0.7802 —0.7234
D, —0.5759 —0.5681 —0.5628 —0.5623
E, —0.6515 —0.6175 —0.5781 —0.5299
F, —0.7206 —0.7223 —0.6933 —0.6364
G, —0.6635 —0.6533 —0.6344 —0.6046
A 0.0000  0.0022 —0.0002 —0.0053
B 0.0000  0.0068  0.0164  0.0262
C 0.0000 —0.0343 —0.0761 —0.1300
D 0.0000  0.0252  0.0310  0.0128
E 0.0000  0.0039  0.0055  0.0033
F 0.0000  0.0046 —0.0071 —0.0367
G 0.0000  0.0180  0.0248  0.0164
H 0.0000 —0.0010 —0.0007  0.0020

Table 3.12: Bond kinetic energies along the (10) (A,,...,D,), (01) (A,,....G,),
(11) and (11) (A,...,H) directions around the HVSC stripe phase shown in
Fig. 3.17.

Note, however, that although the overall shape of the brought back CDW is
the same as of the initial one, the physical situation is fundamentally different.
Namely, in the ¢’ = 0 limit, it is energetically advantageous for the system to
equalize hole density between sites connected by the bonds B, (AF coupling),
whereas in the large |#'| limit, it rather tries to equalize hole density between sites
connected by the bonds D, (FM coupling). Accordingly, such a charge redis-
tribution results in two crossing zigzag lines, which facilitate the propagation of
holes. Indeed, each path consists of a -C-F- bond pattern along the (11) direc-
tion and analogous sequence in the (11) direction. Even though a moving hole
gains kinetic energy on both type of bonds, a more significant gain is achieved on
the FM bond C', being the driving force in the formation of zigzag pattern. It is
also supported by a systematically growing kinetic energy gain with increasing |t/|
on the FM bond D, connecting the zigzag paths (¢f. Table 3.12). Finally, it is
worth pointing out that a tendency towards the formation of zigzag chains with
ferromagnetically ordered ty, spins, has been widely observed in the CE phase of
doped manganites such as Lag 5CagsMnO3 and Ndg5SrgsMnOs3 [139].
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Figure 3.18: Average kinetic energy Ey per diagonal bond as a function of in-
creasing next-neighbor hopping |¢'| for U/t = 4 (solid line), U/t = 5 (dashed line),
U/t = 6 (long-dashed line), and U/t = 7 (dot-dashed line): (a) HVSC stripe
phase; (b) DSC stripe phase.

The effect of increasing |t'| on the kinetic energy per diagonal bond Ej of the
HVSC stripe phase illustrates Fig. 3.18(a). One observes that in the small |t/
regime next-neighbor hopping processes cost energy and therefore they are sup-
pressed by quenching the CDW order on sites next to the DW. However, towards
larger |t'|, the kinetic energy associated with next-neighbor hopping becomes neg-
ative despite the negative sign of ¢. This is possible by a change in coefficients of
the Slater determinant such that on average the sign of the diagonal bond hop-
ping term is negative. Consequently, the system develops a new CDW so as to
optimize the Ey gain. In contrast, Ey of the filled DSC stripe phase remains

'0.15 i 1 I 1 I 1 I 1 I 1 I 1 ]
-0.20 _— DSC —_
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030 —
0351 HVSC _
oL T A R AP PR

35 40 45 50 55 6.0 65
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Figure 3.19: Phase boundary between filled diagonal site-centered (DSC) stripe
phase and half-filled vertical site-centered (HVSC) one as obtained in the ¢-t'-U
Hubbard model with doping z = 1/8.
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positive even in the large |t'| = 0.4¢ regime, as shown in Fig. 3.18(b). Moreover,
increasing Coulomb repulsion U yields in this case only a small suppression of
Ey, whereas the same increase of U is reflected in much larger Ey gain of the
HVSC stripe phase. This, together with a better on-site energy FEy, explains a
broader region of their stability in the strongly correlated regime, as illustrated in
Fig. 3.19. We interprete their enhanced stability in the small U regime as following
from the melting of both stripe phases. Indeed, increased mobility of the holes
released from the DSC stripes results in a faster, as compared to the HVSC case,
enhancement of the Ey energy cost upon increasing [t'|.

In conclusion, we have found that the next-neighbor hopping ¢ plays an im-
portant role in affecting the relative stability between filled and half-filled stripe
phases. However, the established value |t'|/t ~ 0.3 opening a window for the sta-
bility of the HVSC stripe phase, is excessively large as compared to the model
parameter t'/t ~ —0.1 of LSCO compounds. This indicates that it is necessary
to go beyond the HF treatment of the cuprate stripes by including local electron
correlations, which will be the subject of Chapter 4. However, '/t ~ —0.3 cor-
responds to the value appropriate for YBayCu3zOgys [140] and indeed half-filled
vertical stripe phase has been reported in YBayCuzOg35 [69], whereas only IC
magnetic fluctuations have been observed at larger doping level region [61].

3.4 Static correlation functions

In order to make a direct comparison with experimental findings, we calculate a
Fourier transform of the static hole-hole (spin-spin) correlation function, which
gives the charge (magnetic) structure factor,

1

Clk) =+ Z HRTR () () (3.17)
S (k) = %Z MR (62)(57), (3.18)

where the summations include all pairs {ij} in a considered cluster with NV sites.
Let us first discuss the charge and spin response of the filled SC stripe phase,
shown in Fig. 3.1, at the doping x = 1/8. The local hole (magnetization) density
(nn;) ((S7)), respectively, of nonequivalent atoms used in Eqgs. (3.17) and (3.18)
are given in Table 3.3. In fact, the BC stripe phase shown in Fig. 3.2 has the same
size of the magnetic unit cell. As a consequence, it gives practically the same neu-
tron scattering pattern and, unfortunately, both structures are not distinguishable
experimentally.

We observe, in both panels of Fig. 3.20, the dominating weight of C'(k) at
the I' = (0,0) point, as it is usually found for a uniform distribution. However,
periodically spaced with the distance d = 8 DWs give rise to additional charge
Bragg peaks at QU = (£2me, 0) (VSC stripe phase) and Q¢ = +(2me, 2me) (DSC
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Figure 3.20: Reciprocal space pattern of the VSC (left panel) and DSC stripe
phases (right panel) shown in Fig. 3.1 separated by d = 8 lattice spacings. Filled
(open) circles correspond to the magnetic (charge) peaks, respectively. Bond-
centered structures shown in Fig. 3.2 give practically the same patterns.

stripe phase) with e = 1/8. Moreover, instead of a single maximum at the M =
(m, ) point, characteristic of the AF phase, one finds for the VSC stripe phase a
high intensity of the magnetic structure factor S*(k) at Q¥ = m(1=+e, 1). Similarly,
in the case of DSC stripe phase, the main weight of S*(k) is shifted towards
Q¢ = 7(1 £¢,1 % ¢). Certainly, a twice larger value of the charge Bragg wave
vector as compared to the magnetic one, follows from the fact that the staggered
magnetization undergoes a phase-shift of 7 when crossing a DW. Consequently,
due to antiphase AF domains, magnetic unit cell is twice as long as the charge unit
cell. Note that maxima around the I' (M) point in the charge (magnetic) structure
factor, respectively, are accompanied by some higher harmonics (¢f. Figs. 3.20 and
3.21). The appearance of similar weak satellites was also reported in Ref. 34.

Fig. 3.21 depicts reciprocal space pattern of the separated by d = 6 lattice
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Figure 3.21: The same as in Fig. 3.21 but for doping x = 1/6. The stripes are
separated by d = 6 lattice spacings.
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Figure 3.22: Reciprocal space pattern of the HVSC (left panel) and DSC stripe
phases (right panel) shown in Fig. 3.16. The former (latter) are separated by d = 4
(d = 8) lattice spacings, respectively.

spacings stripes obtained at the higher doping # = 1/6. A smaller distance be-
tween the DWs results in a larger splitting o« € = 1/6 of the charge (magnetic)
structure factor maxima around the T' (M), respectively. Correspondingly, even
though the intensity of C'(k) at the I" point is noticeably enhanced, the intensity of
first harmonics at the wave vector Qg(d) is nearly unaltered, meaning that average
hole density at the DWs remains the same. In contrast, the intensity of the main
magnetic peaks at Qg(d) is strongly suppressed owing to a smaller magnetization
density of the central AF domain atoms.

Experimentally, a diagonal stripe order with € being approximately linear in x
has been established up to x = 1/2 in doped NiOy planes of LSNO [14, 15, 24—
26, 29]. In contrast, neutron diffraction measurements on Nd-LSCO have demon-
strated the existence of two kinds of IC magnetic maxima Q; = m(1 £ 2¢,1) and
Qs = 7(1,1 £ 2¢) corresponding to equally probable modulations along the (10)
and (01) direction [13, 18, 19]. In this case, providing the evidence for charge or-
der, Bragg peaks are distributed symmetrically around the I' point at wave vectors
Q. = (+4me, 0) and Q. = (0, +4me). Similar magnetic Bragg peaks Qg have been
resolved in LSCO with incommensurability e that follows the relation € ~ x for
0.06 < x < 0.125 |23]. Note, however, that the experimentally determined peri-
odicity d = 4 for x = 1/8, corresponding to the half-filled stripes, differs from the
HF prediction by a factor of 2 (¢f. left panel of Fig. 3.20). One possibility of such
a stripe order at x = 1/8 that possesses both magnetic and charge Bragg peaks
precisely at the experimentally reported wave vectors Qg and Q. for the cuprates
is shown in Fig. 3.16 (Fig. 3.22) in real (reciprocal) space, respectively. However,
the on-wall SDW results in some extra magnetic harmonics at Q), = (+7/4, £7/2)
and Q) = (£7/4,Fn/2). Unfortunately, we are not aware of any experimental
data that confirm the appearance of such Bragg peaks.

Finally, for comparative purposes we present, in the right panel of Fig. 3.22,
reciprocal space pattern of the filled DSC stripe phase obtained in the ¢-t-U model
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with ' = —0.3. Here, reinforcement of the stripe order by t' is best seen in the
enhancement of C(k) intensity at Q¢ = (&7 /4, +7/4) (larger hole density at the
DWs) as well as in the larger weight of S(k) at Q? = (£7/8,+m/8) (stronger
magnetization of the AF domains) (c¢f. Figs. 3.20 and 3.22).



Chapter 4

The slave-boson approach

In this Chapter we shall examine the role of strong electron correlations in stabi-
lization of various stripe phases. A good starting point for a proper approximate
treatment of strong correlations is the representation of the Hubbard model in
terms of auxiliary fermions and bosons due to Kotliar and Ruckenstein (KR)
[141]. The SBA has been applied successfully to a whole range of problems with
local Coulomb interaction and is known to provide a realistic mean-field descrip-
tion of strongly correlated systems. It is quite encouraging that the ground state
phase diagram obtained using KR approach for the 2D Hubbard model with ho-
mogeneous spiral, AF, FM, and PM phases shows a good agreement both with
QMC simulations and the ED method [142]. The SBA was also used to investi-
gate magnetic and charge correlations of the ¢-t-U model [143], ground state of
the Anderson lattice model [144, 145|, and systems with orbital degeneracy [146—
150]. Moreover, the unrestricted SBA has turned out to be a powerful tool in the
description of inhomogeneous states, i.e., spin polarons and stripe phases both in
the single- [31, 33] and three-band model [116] for the cuprates.

This Chapter is organized as follows. First, we present briefly the SRI SB
representation of the Hubbard model and the saddle-point equations. Then, we
introduce, based on stripe periodicity, reciprocal space representation, which pro-
vides a possibility to perform calculations on larger (up to 144x144) clusters than
those studied in Ref. 33 and to a large extent eliminates the role of finite-size
effects. Moreover, it allows one to obtain unbiased results at low temperature
Gt = 100. Further, we investigate stability of filled and half-filled stripes in the
t-t'-U model at the doping = = 1/8 and show that negative next-neighbor hopping
(t'/t < 0) favors the latter. We also compare the SB charge and spin density
profiles with the ones obtained in the HA. Next, we perform a systematic study
of an array of stripes separated by d = 2, ..., 11 lattice constants which allows us
to establish the behavior of the incommensurability €, optimal stripe filling v, the
chemical potential u, as well as density of states N(w) as a function of doping.
Finally, we analyze the melting of stripe phases in the overdoped regime x > 0.3
and show that the spin and charge order disappear simultaneously.

35
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4.1 Spin-rotation-invariant representation
of the Hubbard model

In the SB SRI representation of the Hubbard model,

H= Z tijczgcja +U Z M) (4.1)

ij,0

one enlarges the Hilbert space of the Hamiltonian (4.1) by introducing auxiliary
boson operators: e and d, which act as projection operators on empty and doubly
occupied sites, and p__, boson fields, which accompany single fermions and thus
represent projections on singly occupied sites [151],

o) =Y pl, flIvac), (4.2)

where fI are pseudofermion operators with a spin 1/2 replacing physical fermion
operators. Taking into account that the states |o) transform as spinor states, it is
obvious that the p__, boson field must be given by a 2 x 2 spin matrix operator,
which can be represented in terms of its projections onto the Pauli matrices 7,,
including the unit matrix (u = 0),

3
1
[ ]
e = g 2 e (4.3

It follows that the matrix elements of the p:rm, operator satisfy the commutation

relation,
1

[p01027p3304} = 550104602037 (44)

provided the bosons p, obey [p,,p}] = d,,. Apart from that, the choice of the
p!_, matrix with the factor 1/2 guarantees normalization of the states |o) to unity,
unlike the SRI formalism introduced in Ref. 152 with (o|o) = 2. Further, since
the singly occupied states (4.2) consist of the operator product which is supposed
to create a particle with a spin 1/2, the boson fields pfm, can either form a spin
singlet pg (S = 0), which represents the charge degrees of freedom, or a spin
triplet pt = (p!. pl, pl) (S = 1) describing the spin degrees of freedom. Finally,
two operators p}r and pI introduced originally in Ref. 141 are the eigenvalues of

pla, for two spin states.

The main advantage of the SBA is that the electron configurations are con-
trolled by the bosons and one can thus write the Hubbard interaction as a bosonic
occupation number operator. In contrast, the operator for the kinetic energy
becomes much more involved since the motion of a physical electron changes oc-
cupation numbers in the SB space on both lattice sites involved in the hopping
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process. Hence, one needs to introduce additional operators z,/, in the hopping
term of the model (4.1) [151],

Co = ng’za’aa (45)

Zolo = eTpa’U +]5j7’0d7 (46)

where p_,, is the time reversed operator p,,, with the following transformation
properties: po = TpoT" = po and p = TpT~' = —p.

The operator (4.6) describes the sum of the two possible transition channels,
either of which may accompany an electron hopping process: (singly occupied site)
— (empty site) and (doubly occupied site) — (singly occupied site with a time-
reversed spin). Unfortunately, the renormalization of the hopping amplitude (4.6)
by the boson fields does not lead to the correct mean-field result, i.e., <§;r§j> =T,
(hereafter, the underline denotes 2 x 2 spin matrices) in the noninteracting half-
filled limit U = 0 with ¢* = 1, d* = 1, p3 = 1, and p = 0, where p is a modulus
of the vector field p. This might be adjusted by making use of the fact that the
representation of any operator in terms of slave particles is not unique due to
the freedom of choice of additional operator factors whose eigenvalue is unity in
the physical subspace. Therefore, the spin matrix operator z is modified by the
normalization factors in the following way,

z=¢'LMRp+ p'LMR, (4.7)
with,
L=[(1- d'd)r, — QBT?Z] 71/2’
R=[(1-cle)r, —25Tp] ", (4.8)
M = [1 +efe +dfd + Zpru} 2

w

However, such enlargement of the Hilbert space introduces unphysical states
which should be now eliminated so as to recover the original Hilbert space. There-
fore, the SB operators have to fulfill the following constraints at each site,

I
dedz + ijy,pzy, = Z fiLfia? (410)
I o
phips + Plpg — 1Pl X Dy = > To i fio (4.11)

The constraint (4.9) imposes recovering the correct anticommutation relation for
the c operators (4.5). The two additional constraints (4.10) and (4.11) follow from
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the fact that the number of electrons must match the number of p and d bosons in
the physical subspace, i.e., the relation between charge and spin density expressed
in terms of pseudofermionic operators f and expressed by using the singlet py and
triplet p components of p must be preserved.

In terms of the above SB operators, the Hubbard model (4.1) takes now the

form,
HSB - Z Z tl] wla z ]0‘ ]0‘ o1 + Uzd (412)

ij oo'oq

supplemented by the constraints (4.9)-(4.11), which are enforced by time-dependent
Lagrange multipliers )\gl), /\é?, and )\52). The constrains are conveniently handled

in a path integral formulation. The partition function may be written down as a
functional integral over coherent states of Fermi and Bose fields (5 = 1/kgT),

B
— [dr[LB(T)+Lp(T)]
7 =27 = /D[bosons]D[f, FDe 8 TerHerml (4.13)

with the bosonic and fermionic Lagrangians defined by,
Lo =D {el (@, +irx")e, + 3wl (0, + N =i )p,
i M
- )‘52) (p(T)z‘pi + p;rpm - ip} X Pi)
+di (0, + Y =20 + U)d, — i) + b Si} : (4.14)

and,

EF - Z fzty [(a’r o Uy 2.)\((Jgi))éaa’ + ZAEQ) ' TU’U] fia’

1,00’

+Z Z tU io10 z ]a Riolor (4.15)

ij ooloy

Here, p is the chemical potential, h is an external magnetic field, whereas S; is
the spin operator given by,

_ E T _
- Taa’piacn pial o

oo’oq

(pb:P; + Plpo; — iD} X D), (4.16)

Do | =

with p = (p1, —p2, p3).

However, the partition function (4.13) is still not well defined due to the in-
tegration over complex Bose fields, which may cause it to be infinite. A possible
remedy is to remove bosonic phases by using the representation with modulus and
phase, at the cost of adding gauge terms involving time derivatives of the Bose
fields phases [151]. It turns out that, these terms can be absorbed together with
the previous Lagrange multipliers into the new constraint fields «;, 3, and 3,.
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However, there are only five such fields, so one phase has to remain arbitrary. In
what follows the Bose field d; is left as a complex variable with dynamics. Complex
d-field, whose propagator has a pole at w,, = U corresponding to the UHB, makes
the present approach capable of capturing the physical properties of this band in
the large U limit. Further, since the bosons e; and p;, are taken to be real, one can
drop out all their time derivatives by imposing the periodic boundary conditions,
ie., e;(8) =€;(0) and p;,(B) = pin(0), which eliminate their own dynamics.
The effective bosonic functional integral can be rewritten now as,

t 7?dTﬁB(7)
Zb = D[€7p07 p]D[d, d ]D[OéaﬁONB]e 0 ) (417)

with,

Ln =" {dllo, +a, 26, + Uld, + ay(e? — 1)

i

+ (a; = By;) ZP?M —2B; - Pipy; +h- piPOi}’ (4.18)
o
while the fermionic term takes the form,
fd Lrp(T)
Zy :/D[f,fT]e o (4.19)

where the corresponding Lagrangian is given by,

‘cF = Z fZL’[(aT —H + ﬁOi)éaa’ + ﬁz ’ Ta/a:|fia’
+ Z Z tijz,;‘l-o_lo.fi“;ffjo./z‘jo./o.l. (4.20)
ij oo'ol

The five real SB fields e, pg, and p are real valued and are integrated like radial
parts of complex fields, whereas «, 3y, and 3 are integrated along the imaginary

axis.
In order to complete the derivation of the functional integral for the Hubbard
model (4.12) one can exactly integrate out the fermionic degrees of freedom, which
yields the familiar partition function for a system of noninteracting particles [153],

Z; =T (1 + e ), (4.21)
qo
where 4, are quasiparticle energies of the fermionic Lagrangian (4.20), and its
grand canonical potential €2,

In the following Section we shall derive the saddle-point solutions that follows from
(4.17) and (4.19) and find real values for the boson field d. However, a correct
treatment of the fluctuations has to keep track of its phase.
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4.2 Slave-boson saddle-point equations

The mean-field solution of the partition functions (4.17) and (4.19) is a good
starting point of their loop expansion. In this approximation one replaces the
Bose and chemical potential fields by their time-independent averages, i.e., d; =
(di(7)) = (d,(7)), and so on. Hence, the bosonic Lagrangian becomes,

Lo =3 {458 + 97+ & = 1) = B0, + 2 + 2
+ Uid? —2B; - Pipy; +h- f’ipoz}- (4.23)
The above expression can be easily simplified by introducing polar coordinates for
the amplitudes of boson operators in the following way,
Poi = cosb;,
p; = sin 0; cos ¢;,
d; = sin 6; sin ¢; cos Y,
e; = sin 6; sin ¢; sin 1);. (4.24)

Such parametrization automatically satisfies the constraint (4.9), so that the re-
sulting bosonic Lagrangian does not include the a-field,

Ly = Z{—ﬁm(pé +p? +2d7) + Uyd; — 28, - pypy; +h - f)ipm}. (4.25)
The SB mean-field free energy,
F :Lb_'_Qf_'_,UNela (426)

where N, is the number of particles, follows as,
= Z{_ﬁm(pgi +p7 +2d7) + U} — 2B, - pipg; +h- piPOi}

— T In(l4e ) + Ny, (4.27)
qo
The equilibrium values of the classical field amplitudes have to be determined
from the saddle-point equations VF = 0, where the partial derivatives are taken
with respect to fy;, 3;, and ¥; € {6;, ¢;,1;} separately for each inequivalent site i
within an elementary unit cell,

aF 2 2 2
= n; — (p?, + p? + 2d?), 4.28
OF
= m; — 2poip: 4.2
aﬁz m; PoiPi» ( 9)
F Q
OF _ 0Ly | o (4.30)

ov, oV, o,
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where we have defined the electron density,

O0€qo
= fr(eqo) 722, (4.31)
aﬁoi
qo
and the amplitude of the spin density wave,
0fqo
mi=>_ fp(eqa)a—g. (4.32)
ac ¢
Here,
1

fr(eqe) = (4.33)

exp(feqo) + 1’
is the Fermi-Dirac distribution function for the states with energy e4,. FEach
bosonic Lagrangian derivative with respect to the angles ¥; in Eq. (4.30) can be
easily found by the analytical differentiation of Eq. (4.25), whereas derivatives of
the grand canonical potential are computed with Eqgs. (4.19) and (4.22) as follows,

of) kgT 0Z
3\1/2 - Z 6\1}f Z Z tﬂ“aqj (zk‘o o1 1010) <fj0'fk‘0'>

oo'oq

aT

- Z Z tl yi+6 |:( - Jl) z+5 glg<fz+5 o-fw’> + zi+5,a’al ( WIU) <f fz+50' >:| ’

§ ooloq
(4.34)

where § labels all the neighbors of the site i connected by the hopping ¢;,4s.
The last unknown quantity, the chemical potential u, is determined to satisfy the
condition for the total electron density,

Na =Y frleqs). (4.35)

4.3 Reciprocal space representation

In order to obtain unbiased results one should carry out calculations on large
clusters. This can be accomplished by taking into account periodicity of a stripe
phase which allows to cover the entire lattice by small unit cells. Let us consider
the fermionic matrix in the momentum representation,

H = Z Z flia Kk’ fk/ (4.36)
kk’ oo’

Its elements are found as follows. Each position vector R; of an arbitrary atom
in a periodic cluster can be decomposed into a sum of periodicity vectors g,
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and g,, such that f2+ng1+mg2 — fI for each {n,m}, and a vector d,; labeling all
inequivalent sites ¢ within the unit cell:

R;, =ng, + mgy, + . (4.37)

Therefore, for the local (3, term one gets

cells O

Furthermore, any allowed wave vector k can be decomposed into a sum,
k=K+G, (4.39)

with a certain vector G that yields a plane wave with periodicity of a given Bravais
lattice by satisfying the following conditions,

Gt =1 98 =, (4.40)

whereas an appropriate vector K is chosen to generate a complete set of vectors k.
Now, Eq. (4.38) can be rewritten by taking into account Egs. (4.39) and (4.40),

kk/ BO N Z 6 Z(KfK/JrGfG/)(SM Z ei(KfK’)(nglergQ). (441)

cells

However,
A , N
Z oK —K)(ng,+mg,) _ N—(;KK/’ (4.42)
cells ¢
where N¢ is a number of atoms in the unit cell, so that the ratio N/N¢ gives the

number of unit cells needed to cover a whole cluster with /N sites. This reduces
the initial matrix M7 (8,) down into a block-diagonal one with the blocks,

Kk’
aa'(Po Ze (G=GDoM i, (4.43)

Analogously, the off-diagonal in spin indices matrix lelf, (B) takes a similar block-
diagonal shape,

oo’ 1 (G—G'
Za(B) = N—C Z H(G-G )5M/65M N (4.44)

L34

Finally, the kinetic energy term reads,

_ ikR,; —ik’'R;
kk/ - N E :6 Ztl]zuna jo Jle 7

ij,01
T

1 . NR . ik’
- = Z pilk—K R, Ze Kot s (zH&z;-r) o (4.45)

i 5 7
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and after decompositions (4.37) and (4.39) and subsequent simplifications that
follow from Egs. (4.40) and (4.42) one obtains,

oo’ 1 i(G-G')§
GG’(K):N—CZG( o

Snr
T

X Z o—i(K+G )5755M’5M+5 <25M+52}M>J/0 . (4.46)
[

Hence, we have reduced the kinetic energy matrix T)77, " into decoupled blocks
labeled by vectors K. Due to this transformation, one can split a large 2N x 2N
fermionic matrix MZ7,, which consists of Mé‘a,(ﬁo) MZ7.(8), and TZ terms,
into N/N¢ smaller 2N¢ x 2N matrices (factor two enters owing to the spin
degeneracy). This simplification gives a considerable time gain during numerical
calculations. Indeed, as the usual workload in a diagonalization algorithm is ~ N3
[154], the number of operation needed for diagonalization of smaller matrices is

~ Nic N2 = NNZ. This means that the symmetry reduction makes the execution

time of a program (N/N¢)? times more efficient as compared to a straightforward
"brute force’ diagonalization of the N x N matrix.

We finish this Section off by evaluating the local electron and magnetization
density,

Z ol Q) fr(€qo), (4.47)
Y T fi) ZZ\IJ (@) fr(cqo), (4.48)

oo’

where ¢, are eigenvalues of the Hamiltonian (4.36) and \Ifzg(q) are the correspond-
ing real space eigenvectors. In order to, evaluate these averages we introduce first
a certain unitary transform,

= Z (I):r]kafkm (4.49)

which diagonalizes the matrix M "", so that,

D MY feg = hofarIar (4.50)
qo

kk! oo’

Now, using the Fourier transform,
1 KR
= —— e ¢ N — U . 451
fka /—N EZ : i EZ szw ( )

and Eq. (4.49), one can express a real space operator f;, in terms of the Fourier
transformed operator gqc,

fa = Z Uz‘Tk(I)kqagqa‘ (452)
kq
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Hence the local electron and magnetization density read,

Z (I)qkonz Zk’q)k’qafF (5010)7 (453)
kk'q
Z(fw oo’ fw - Z Z qukaUkz oo’ Uzk’ék’qo/ fF(gqU)7 (454)
oo’ oo’ kk'q

Equivalently, after reduction of the matrix MZ?, k, into decoupled blocks labeled by
K., one obtains,

K
(o fio) = Y PhaUkailUlkc o P fr(e5s). (4.55)
K
GG
Z< za T oo fw’ Z Z @qGJUKJrG i! oo’ UZ JK+G’ G/qg/fF( ) (456)
oo’ oo’ Kq
GG’

4.4 Stripe unit cells

Here we show how to determine the set of wave vectors {G} for the vertical and
diagonal SC stripes, whereas the {G} set for the BC stripes can be found in a
similar fashion.

4.4.1 Vertical stripes

Consider as a first example an 8 x 8 cluster with vertical SC domain walls sepa-
rated by d = 4 lattice spacings as shown in Fig. 4.1(a). The smallest unit cell in
this case consists of a row of eight atoms perpendicular to the stripes. One im-
mediately finds two periodicity vectors g, = (1) and g, = ( ) which satisfy the
condition f itng, tmeg, = f1 and constitute a Bravais lattice. Its reciprocal lattice
is characterized by wave vectors {G} satisfying requirements (4.40). In fact one
obtains two independent sets of solutions,

27 (21, 2w (2(l, + 1) .
Gl—g(o)’ GQ_K( ) ) with  0<l <3 (457

The next step is to find appropriate vectors K that are necessary to recover in
Eq. (4.39) a complete set of the allowed momenta given by,

2T

k=" (gz‘) where 0 < imy) < 7. (4.58)

Certainly, there is only one required value of the z-component of K vector, i.e.,
K, = 0, whereas the number of needed values K, is given by the ratio of a linear
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Figure 4.1: (a) Vertical SC stripe phase, its unit cell, and two periodicity vectors
g, = (4, 1) and g, = (0, 2). (b) Diagonal SC stripe phase, its unit cell, and two
periodicity vectors g, = (1, 1) and g, = (4, —4).

dimension along the y direction of the cluster and the corresponding size of the
unit cell, i.e, one needs eight values. Altogether, one finds,

2
K->"(%)  with o0<n <7 (4.59)
8 \n,

It is easy to verify that the sets (4.57) and (4.59) generate all the allowed momenta
k given by Eq. (4.58).

4.4.2 Diagonal stripes

We shall now discuss how one can take advantage of the periodicity of an analogous
8x8 cluster with a diagonal stripe phase depicted in Fig. 4.1(b). As previously, the
smallest unit cell consists of a row of eight atoms along the z-direction. However,
the periodicity vectors are now given by g, = (%) and g, = (fx)- Hence, from

Eq. (4.40), one finds the following reciprocal lattice vectors,

0 21 l .

whereas appropriate vectors K, necessary in Eq. (4.39), are precisely the same as
those for the VSC stripe, as both structures have the same unit cell.



66 CHAPTER 4. THE SLAVE-BOSON APPROACH

4.5 Influence of electron correlations

An important feature of the HA is that it overestimates by far the tendency
towards symmetry breaking states since this method utterly ignores electron cor-
relations. Therefore, one should expect that inclusion of the correlation effects
modifies considerably the distribution of charge and spin density in a stripe phase,
especially around nonmagnetic DWs where the correlation corrections are large.

To illustrate this point, we compare in Fig. 4.2 the local hole n, (l,) (3.7) and
magnetization S;(l,) (3.8) density as well as double occupancy D(l,) (3.16) of
the filled VSC (left) and DSC (right) stripe phases found either in the HA (open
circles) or SBA (filled circles) in the Hubbard model with U = 6t at x = 1/8.
The calculations have been carried out on a large 128 x 128 cluster which allows
one to obtain unbiased result at the low temperature Gt = 100. In agreement
with the calculations of Ref. 31, we note that the hole density n; at nonmagnetic
DWs is reduced nearly twice in the SBA as compared to the corresponding HA
value, regardless of the stripe direction. Such a strong modification follows directly
from the fact that the only possibility of double occupancy reduction in the HA is
to suppress the electron density locally at the sites with vanishing magnetization
(DWs). In contrast, the SBA offers a possibility to optimize the on-site interaction
by an additional variational parameter, i.e., the boson field d;. Indeed, double
occupancy D shows a distinct minimum at the DWs leading to a more spread
out charge and spin density profiles with respect to the ones found in the HA.
In contrast, both approximation yield a narrow diagonal stripe revealing its more
localized character, as compared to the vertical one, with lower double occupancy
D and hence a more favorable average on-site energy which stabilizes the former
stripe phase in the strong coupling regime as discussed below.

Remarkably, in contrast to studies within the HA of Chapter 3, the present
calculations performed on large clusters yield locally stable half-filled stripes both
in the HA and SBA without any necessity of quadrupling of the period along the
stripes by an additional on-wall SDW. The obtained HVSC and its diagonal site-
centered (HDSC) counterpart stripe structures are shown in Fig. 4.3. Again, one
finds a smaller SB charge modulation and a stronger spin polarization of the AF
domains in the HA. Note, however, that contrary to the filled case, a narrower
charge and spin profile, found in both methods, of the vertical stripe with respect
to the diagonal one is apparent. Moreover, both approximations indicate that the
HVSC structure stronger reduces the double occupancy D. Therefore, based on
Figs. 4.2 and 4.3, one can conjecture that there are two possible ground states
for doped Hubbard model, in the realistic strong coupling regime, i.e., a filled
diagonal stripe phase and a half-filled vertical one. In fact, both structures have
been observed in LSCO; the former was found around x = 0.02 [52-54], whereas
the latter — at a higher 0.06 < z < 0.125 doping level [23]. Hence it appears that
the filling and orientation of DWs are indeed closely related in the cuprates. In
other words, a half-filled DWs tend to be aligned vertically /horizontally, whereas
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Figure 4.2: Local hole n, () (top) and magnetization S;(l,) (second row) density
as well as double occupancy D(l,) (bottom) of the filled VSC (left) and DSC
(right) stripe phases found at temperature ¢ = 100 in the Hubbard model on a
128 x 128 cluster with U = 6t and = = 1/8. Open (filled) circles show the results

obtained in the HA (SBA), respectively.

filled ones are more stable due to the diagonal arrangement.

This important property is also seen in Table 4.1 showing the Hartree and SB
mean-field free energy all four stripe phases, and for completeness, also the energy
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Figure 4.3: The same as in Fig. 4.2 but for the half-filled SC stripes. Open (filled)
circles show he results obtained in the HA (SBA), respectively.

of the uniform PM and AF phases, for two representative values of the Coulomb
repulsion, i.e., U/t = 4 and U/t = 12. For clarity, the phases are listed in the
increasing energy order from bottom to top. First of all note that the overall order
in the weak coupling regime U/t = 4 is precisely the same in both methods. Due
to electron correlations, in the strong coupling regime U/t = 12, a tendency of the
HA to promote the AF phase results in the interchanged order of the HVSC and
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HA

SBA

U/t

phase F/t

phase F/t

4 PM  —0.8422 PM  —0.9885
HDSC —0.8639 HDSC —
HVSC —0.8832 HVSC —

AF  —0.8848 AF  —0.9893
DSC  —0.9106 DSC  —0.9914
VSC  —0.9110 VSC  —0.9975

12 PM 0.6890 PM  —0.5040
HDSC —0.2183 HDSC —0.5339
HVSC —0.3454 AF  —0.5393

AF  —0.3675 HVSC —0.5689
VSC  —0.4416 VSC  —0.5751
DSC  —0.4649 DSC  —0.5821

Table 4.1: Comparison of the free energy I per site as obtained for various phases
in the Hubbard model from the HA and SBA in the weak (strong) coupling regime
U = 4t (U = 12t), respectively, at temperature 3t = 100 on a 128 x 128 cluster
with = 1/8.

AF structures as compared to the SBA, in which the HVSC stripe phase is favored
over the AF one. More importantly, at U = 12¢, one does find that the HVSC
phase is preferred over the HDSC one, and also, that the filled DSC structure is
promoted over the corresponding VSC one.

Let us now compare the density of states N(w) obtained within the HA and
SBA for the filled VSC and HVSC stripe phases shown in Fig. 4.4. This figure also
emphasizes the importance of a proper treatment of electron correlations which
modifies the overall shape of N(w). Indeed, the width of the Mott-Hubbard gap
between the LHB and UHB in the HA, given by Af4 = 2U(S?) for a uniform
AF phase, is overestimated almost twice as compared to the one obtained in the
SBA. As we have already discussed, stripes are characterized by the existence of
additional bands within the Mott-Hubbard gap. As the DWs contributing to the
mid-gap states are 1D, this part of the Hartree DOS resembles the tight-binding
DOS of a 1D chain with peaks at the edges [¢f. Figs. 4.4(a,b)]. However, more
spread out SB charge and spin density profiles, as compared to the Hartree ones,
result in a less clear character of the mid-gap segment of N(w) |cf. Figs. 4.4(c,d)].
We emphasize that both half-filled structures are metallic with the Fermi energy
lying inside the mid-gap states and their stability presumably rests on the partially
suppressed DOS at the Fermi energy.

An interesting question is which microscopic parameters decide whether a filled
diagonal or half-filled vertical stripe phase is more stable. To clarify this point
we investigated the competition between the stripe phases in the ¢-t-U model.
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Figure 4.4: Density of states N(w) as obtained within the HA (a,b) and SBA (c,d)
for the the filled VSC stripe (left), depicted in the left panels of Fig. 4.2, and the
HVSC stripe (right), shown in the left panels of Fig. 4.3.

Fig. 4.5 illustrates the effect of increasing |t/| on the free energy F' of various
phases, as obtained in the HA at temperature §t = 100 for + = 1/8. From
Fig. 4.5(a) with ¢ = 0, one finds that the half-filled stripe phase (dashed lines)
has significantly higher energy F' than the filled one (solid lines), especially in the
large U regime, and the ground state consist of either the VSC (U/t < 4) or DSC
stripe phases (U/t > 4) (cf. also Table 4.1) in agreement with the small cluster
results discussed in Chapter 3 |¢f. Fig. 3.5(a)]. Further, increasing |t'| frustrates
relatively stronger the AF domains of the VSC structure than the AF domains
of a narrower DSC stripe (c¢f. Fig. 4.2) so that the former is already unstable
at t'/t = —0.3. Simultaneously, the energy difference between the half-filled and
filled stripes gradually diminishes. Finally, as shown in Fig. 4.5(c), the HVSC
stripe phase becomes the ground state of the system in the regime U/t < 4.12 (cf.
also Table 4.2). However, increasing U clearly promotes the DSC structure with
the number of nonmagnetic DWs lower by a factor of two than in the case of the
HVSC one.

Turning now to the analogous results obtained in the SBA, the inclusion of
electron correlations improves significantly the free energy of the PM phase with
respect to the one found within the HA, as depicted in Fig. 4.6. Therefore, as the
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HA SBA

U/t phase F/t phase F/t

4  VSC — VSC —
PM  —0.7945 PM  —0.9452

HDSC —0.8238 HDSC —
AF  —0.8553 AF —0.9517
DSC  —0.8667 DSC  —0.9489
HVSC —-0.8677 HVSC —0.9540

12 VSC — VSC —
PM 0.7368 PM  —0.4822
HDSC —0.2696 AF —0.5341
HVSC —0.3525 HDSC —0.5534
AF  —0.3590 DSC  —0.5655
DSC  —0.4526 HVSC —0.5749

Table 4.2: The same as in Table 4.1 but in the t-t'-U model with ¢/t = —0.3.

average hole density at the half-filled DWs is noticeably smaller than at the filled
ones (cf. Figs. 4.2 and 4.3), it also helps to stabilize half-filled stripes, because
one gains more correlation energy when the nonmagnetic atoms are close to half-
filling. Nevertheless, the SB ground state of the Hubbard model (' = 0) consists
solely of filled stripes in the entire investigated regime 4 < U/t < 14, as shown
in Fig. 4.6(a).  Interestingly, one recovers here the crossover from vertical to
diagonal stripes upon increasing on-site repulsion U, shifted, however, towards
a higher value U/t ~ 6 than predicted by the HA. Another similarity with the
Hartree results is that increasing |¢'| reduces the stability of the VSC stripe phase
which becomes unstable already at ¢/t = —0.15 below U/t ~ 7 (cf. Fig. 4.6(b).
Eventually, further increase of |¢'| yields the HVSC stripe phase as the ground
state in the wide 4 < U/t < 14 regime as illustrated in Fig. 4.6(c). Moreover,
from the curvature of the free energies in HDSC and DSC stripe phases, one can
expect that the half-filled diagonal stripe phase also takes over the filled DSC
stripe phase in the strongly correlated U/t > 14 regime. Values of the free energy,
found in t-t’-U model with U/t = 4 and U/t = 12 as well as with ¢'/t = —0.3,
are reported in Table 4.2. Once again, one finds that the overall order of listed
phases is exactly the same in both methods in the weak coupling regime U/t = 4.
One also recovers a strong tendency of the HA to promote the AF phase which
becomes more stable than both types of the half-filled stripe phase in the strongly
correlated regime U/t 2 11.5, a situation which is avoided in the SBA.

The explanation of the enhanced stability of the HVSC stripe with respect to
the DSC structure, upon increasing |t’| follows to some extent from Tables 4.3 and
4.4, in which we show local hole (n,,) (3.5) and magnetization (S7?) (3.6) density
as well as double occupancy D; = (n;;n;|) of the DSC (Table 4.3) and HVSC (Ta-
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Figure 4.5: Free energy F' of various phases per site as a function of U, obtained
in the HA at temperature Gt = 100 for the ¢-t’-U model on a 128 x 128 cluster
with z = 1/8 and for: (a) ¢’ =0, (b) ¢ = —0.15¢, and (c¢) t' = —0.3t.
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Figure 4.6: The same as in Fig. 4.5 but in the SBA. Thin dotted line in panel (a)
indicates a crossover from the VSC to DSC stripe phase.

ble 4.4) stripe phases found in the t-#’-U model with ¢ = 0 and ¢/t = —0.3. As we
have already observed in Chapter 3, a negative (¢'/t < 0) next-neighbor hopping
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i 1 2 3 1 5
(ny) 0445 0196 0055 0020 0.011
HA (0.471) (0.194) (0.052) (0.014) (0.008)

(S7) 0.000 0.298 0.390 0.406  0.410
(0.000) (0.318) (0.399) (0.410) (0.412)

D; 0.077 0.073 0071 0075  0.076
(0.070)  (0.061) (0.065) (0.075) (0.076)

(n,) 0235 0.180 0.110 0.067  0.051
SBA (0.236) (0.176) (0.115) (0.065) (0.052)
(S2) 0.000 0.172 0.280 0.332  0.349
(0.000) (0.200) (0.287) (0.342) (0.355)

D; 0.059 0.064 0.070 0.074 0.075
(0.053) (0.059) (0.065) (0.070) (0.072)

Table 4.3: Local hole (n,,) and magnetization (S?) density as well as average
double occupancy D; per site in the DSC stripe phase, given for inequivalent
sites with decreasing hole density in the z-direction, as found either in the HA or
SBA, at temperature St = 100 in the Hubbard model on a 128 x 128 cluster with
U = 6t and x = 1/8. The values given in parenthesis are for the ¢-¢’-U model with
'/t = —0.3.

i 1 2 3
(n,) 0294 0.091 0.024
HA (0.293)  (0.091) (0.025)

(S2) 0.000 0.372  0.405
(0.000) (0.381) (0.407)

D; 0.124  0.068  0.074
(0.125)  (0.062) (0.071)

(n,) 0187 0119 0.7
SBA (0.185) (0.119) (0.077)
(S2) 0.000 0.274  0.332
(0.000) (0.290) (0.344)

D; 0.068  0.067  0.070
(0.067) (0.062) (0.064)

Table 4.4: The same as in Table 4.3 but for the HVSC stripe phase.

yields a positive kinetic energy contribution and is best optimized in a phase with
the filled stripe by expelling the holes from the AF domains, stronger reduction
of double occupancy, and consequently, by a larger spin polarization of the AF
regions between stripes. All these features are clearly seen in Table 4.3. By con-
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Figure 4.7: SB band structure of the HVSC stripe phase as a function of parallel
momentum £k, calculated from the unit cell shown in Fig. 4.1(a) at temperature
Bt = 50 in the ¢-t-U model on a 8x16 cluster with U/t = 12 and: (a) ¢’ =
and (b) ¢/t = —0.3. Black (gray) line corresponds to the bulk (mid-gap) bands,
respectively, whereas the dashed line indicates the Fermi level.

trast, even though the half-filled stripe phase also reduces double occupancy and
develops strong polarization of the AF domains upon increasing |¢'|, the average
hole density within the AF domains remains constant or even it is slightly en-
hanced as illustrated in Table 4.4. This means that such a configuration provides
a possibility to gain the kinetic energy associated with ¢’ due to the mechanism
known for the HVSC stripe phase with a period quadrupling [c¢f. Fig. 3.18(a)].
Indeed, in agreement with Ref. 33, Fig. 4.7 shows that negative t' leads to a dis-
tinct broadening of the partially filled mid-gap band and consequently to a shift of
this state to lower energy. Conversely, the energy gain due to such a modification
of the band structure is not possible in the case of filled stripes as their mid-gap
states are entirely unoccupied |cf. Fig. 3.15(a)|. This clarifies the puzzling role of
t" in promoting partially filled DWs.

4.6 Doping dependence of the stripe ground state

In the preceding Section we have discussed the competition between two idealized
stripe phases, i.e., pure half-filled and entirely filled structure. However, the true
ground state could correspond to neither one of those special cases as the optimal
filling might vary with doping. Moreover, one would like to know whether the SC
or BC stripes are preferred in particular doping regimes.

With the goal of elucidating these points we have performed extensive SB
studies involving vertical SC (BC) stripes with the size of the AF domains varying
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d SC stripes BC stripes
2 128x128 —

3 144x144 144 %144
4 128x128 128x128
5  140x140 140x140
6 120x120 120x120
7 140x140 140x140
8 128x128 128x128
9 144x144 144 %144
10 120x120 120x120
11 132x132 132x132

Table 4.5: Cluster size used in calculations for both SC and BC stripes separated
by a different distance d in units of the lattice constant. BC stripes with d = 2 do
not exist.

from d = 2 (d = 3) up to 11 lattice constants, respectively. Note that in the case
of BC stripes, there is no BC configuration with d = 2. Calculations were carried
out on a squared cluster with the linear dimension along the x direction chosen
always as an even multiplicity of the elementary unit cell dimension. The cluster
size used in calculations for a given distance d is listed explicitly in Table 4.5. In
both structures, the largest d = 11 corresponds to a unit cell with 22 atoms. On
the one hand, unit cell of the SC stripes consists of two nonmagnetic DWs and
two AF domains containing n3% = d — 1 atoms each. This yields a total number
of atoms,

Lsc =2(n}G + 1) = 2d. (4.61)

On the other hand, unit cell of the BC stripes consists of two DWs made out of
pairs of atoms with FM spin polarization and also two AF domains containing

nBS = d — 2 atoms each. This results in a total number of atoms,

Lpc = 2(njF +2) = 2d. (4.62)

The same length of the magnetic unit cell for a fixed d makes both structures
practically indistinguishable in neutron diffraction experiments. We believe that
such large systems, as those reported in Table 4.5, suppress the finite size effects
and allow one to obtain a realistic comparison of the free energies of structures
with a different length of the unit cell. In the numerical studies, we have chosen
U/t = 12, which gives the ratio of J/t = 1/3 with J = 4t?/U, being a value
representative for LSCO [130].

In Fig. 4.8, we show the SB free energy gain of the VSC stripe phase with
respect to the AF phase 0 F4r as a function of doping x found in the t-t'-U model
for representative values of the next-neighbor hopping, i.e., ' = 0, t' = —0.15¢,
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Figure 4.8: SB free energy gain of the VSC stripe phases with respect to the AF
phase 0 Flar as a function of doping x, as obtained at temperature gt = 100 for
the ¢-t’-U model with U = 12t and: (a) ¢’ =0, (b) ¢’ = —0.15¢, and (¢) ¢’ = —0.3t.
Stripes are separated by d = 2,..., 11 lattice constants.
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Figure 4.9: The same as in Fig. 4.8 but for the VBC stripes.

and t' = —0.3t. Quite general, one observes that a curve with the largest d = 11,
appears at the lowest values of x and upon further doping curves with smaller
d systematically cross the ones with larger d, meaning that stripes with smaller
periodicity become the lowest energy solutions. For ¢’ = 0, this effects continues
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VSC VBC
x d F/t d F/t
0.050 11 —0.4263 11 —0.4263
0.055 10 —0.4360 10 —0.4359

0.060 9 —0.4456 9 —0.4455
0.070 8 —0.4649 8 —0.4648
0.080 7 —0.4841 7 —0.4840
0.090 6 —0.5034 6 —0.5032
0.100 5 —0.5225 6 —0.5224
0.120 5 —0.5607 5 —0.5607
0.140 4 —0.5985 4 —0.5983
0.160 4 —0.6342 4 —0.6342
0.180 4 —0.6671 4 —0.6670
0.200 3 —0.6978 3 —0.6983
0.250 3 —0.7682 3 —0.7689
0.300 3 —0.8242 3 —0.8245
0.350 2 —0.8627 3 —0.8605

Table 4.6: Comparison of the SB ground state free energy F' for the VSC and
VBC stripes as found in the ¢-¢'-U model with U = 12t and ¢’ = —0.15t¢.

until the d = 3 stripe sets in, as the d = 2 one is, for the present value of U, a
highly-excited state and never corresponds to the ground state. By contrast, finite
t' results in a deeper minimum of the d = 2 curve and stabilizes such a phase
with with a single atom in the AF domains in the overdoped regime z > 0.34
(x > 0.23) for t'/t = —0.15 (¢'/t = —0.30), respectively. We shall, however, not
pursue here this effect as the properties and mechanism leading to formation of
the d = 2 stripe is discussed in the next Section. Next, except for the smallest
d < 3 cases, increasing [t'| shifts the free energy minima towards lower doping
level which should affect the filling of the DWs and the charge distribution in the
stripe ground state.

Similar tendency to promote stripes with larger (smaller) unit cells at lower
(higher) z, respectively, as well as to shift the minima of F to lower doping upon
increasing |t'], is observed for the VBC stripes, as shown in Fig. 4.9, and seemingly
it is a robust feature of both structures. Remarkably, for ¢/t = —0.15, a value
very close to the LSCO model parameter, i.e., '/t = —0.1 [140], one finds for
both the SC and BC phase, that the most stable stripes are separated by d = 4
lattice spacings a sizeable doping range above x ~ 1/8, in agreement with neutron
scattering experiment [23] and with theory [130] for LSCO.

In Table 4.6 we report the SB ground state free energy F' for both types of
stripes as found for U = 12t and ¢’ = —0.15¢. Unfortunately, based on the present
studies, one cannot reach any unambiguous conclusion concerning the competition
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Figure 4.10: Doping dependence of: (a,b) magnetic incommensurability e, (c,d)
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stripe ground state deduced from Figs. 4.8 and 4.9. Gray solid line in panels (a,b)
shows the experimental behavior of € in LSCO [23].

between the SC and BC stripes. Even though the SC stripes appear to be more
favorable in the doping regime x < 0.18, in agreement with DMFT results [130]
as well as with SB findings obtained on small 16 x16 clusters, the energy differ-
ence between the best SC and BC configuration does not exceed —0.0002¢, being
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comparable to the accuracy of the calculations. Therefore, it seems that quan-
tum fluctuations might play a crucial role and either stabilize one of two possible
structures or even lead to dynamical stripes for certain parameters. Moreover, a
detailed analysis of a hole propagation inside the BC DWs, with the filling slightly
below 1/2, shows that such a spin background yields larger kinetic energy gain
than narrower SC DWs [155]. This gain becomes more important especially at
larger doping levels z ~ 1/8 when the distances between stripes are small. Inter-
estingly, doping above x = (.18 stabilizes the d = 3 BC stripes and the energy
difference reaches its maximum 0.0007t at x = 1/4, then it gradually decreases,
and finally, the d = 2 SC structure becomes the lowest energy configuration, as
there is no such a BC counterpart (cf. Table 4.6).

The presence of IC spin fluctuations Q, = 7(1 £ 2¢,1) and Q, = 7(1,1 % 2¢)
consistent with stripe order in the CuO, planes of LSCO and Nd-LSCO is by now
well accepted [13, 18-20, 23]. Remarkably, the incommensurability e = 1/2d varies
linearly with doping ¢ = x in the underdoped regime of x < 1/8 meaning a fixed
stripe filling v = 1/2. By contrast, beyond x = 1/8, one finds in experiment a lock-
in effect with e = 1/8, corresponding to a stripe phase with a charge (magnetic)
unit cell consisting of four (eight) sites, and the AF domains with three atoms
along the x direction. This should be compared with our findings concerning the
behavior of € and the optimal stripe filling,

N, Npw’

v

(4.63)

upon increasing doping x for different values of ¢’, in both vertical SC and BC
phases, are shown in Fig. 4.10(a-d). In Eq. (4.63), Ny, is the hole excess compared
to half-filling, whereas NN,y denotes the length in the y direction of the cluster with
Npw domain walls. The points in Fig. 4.10 correspond to the middle of stability
region of the lowest energy configuration. Such a choice guarantees that, at this
particular doping level, a considered stripe phase with a given periodicity d would
be indeed realized at least in the vast majority of the system.

Comparing Fig. 4.10 with the experimental data in LSCO, one finds that phe-
nomenon of the half-filled d = 4 stripes at = = 1/8 requires, in agreement with the
previous SB studies [33], a finite next-neighbor hopping '/t < —0.15. Further, for
t'/t < —0.15, present calculations give almost linear dependence € = x for x < 1/8
and may be considered as reproducing a lock-in effect in a sizeable doping range
above x ~ 1/8 until the d = 3 stripes do not set in. It is worth mentioning here
that stable d = 3 stripes with e = 1/6 ~ 0.17 have also been found in the SB stud-
ies of the three-band model in the doping regime x > 0.225 [116]. Moreover, these
studies have also revealed the trend to suppress v upon increasing oxygen-oxygen
hopping t,,, imitated in the effective single-band model by ¢'. Remarkably, in the
regime where ¢ follows linearly x, an increasing density of stripes allows the system
to maintain fixed v and its value strongly depends on ¢’. This, in turn, pins the
chemical potential p, as shown in Fig. 4.10(e,f). In fact, such a suppression has
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Figure 4.11: Doping dependence of the density of states N(w) for the VSC stripe
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for the PM ground state at x
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been experimentally observed in LSCO in Ref. 80 [¢f. Fig. 2.6(b)|. Unfortunately,
for ¢/t = —0.15, the established shift of the chemical potential Au in the regime
x > 0.15 exceeds the experimental value ~ —1.5 eV /hole by a factor close to 2.
Indeed, the effective hopping ¢t = 0.62 eV, which follows from t = tf)d/A, with
Cu-O hopping t,; = 1.47 €V and charge transfer energy A = 3.5 eV [156], yields
Ap ~ —3.1 (=3.3) eV /hole for the SC (BC) stripes, respectively.

Our approach also allows one to investigate evolution of the density of states
N(w) as a function of doping, depicted in Fig. 4.11, for the VSC stripe ground
state. The analysis of N(w) reveals a systematic transfer of spectral weight from
the UHB into the LHB upon doping, in agreement with strong-coupling perturba-
tion theory for the Hubbard model [157], as well as into the mid-gap bands which
emerge and grow when the stripe order develops. Next, in the whole regime of
doping where the stripes are stable, i.e., below x < 0.3, one observes that the
mid-gap states are clearly separated from both the LHB and UHB by real gaps.
In contrast, the gaps are gradually filled up with the spectral weight when the
d = 2 melt, so that at x = 0.5 one recovers a well-know density of states that
resembles a simple tight-binding DOS.

4.7 Melting of the stripe phases

As we have pointed out in Introduction, two main scenarios for a driving mech-
anism of the stripe phase have been proposed [10]. In the first one stripes arise
from the Fermi surface instability with the spin driven transition [5-9|; then spin
and charge order simultaneously, or charge order follows spin order. The second
scenario comes from Coulomb-frustrated phase separation suggesting that stripe
formation is commonly charge driven, and the charge order sets in first when the
temperature is lowered. However, SB studies of the 2D ¢-#'-U Hubbard model
showed that the spin susceptibility diverges while the charge susceptibility does
not [143], supporting the former scenario. Therefore, the microscopic origin of the
stripe instability in real systems remains unclear.

Here, we investigate the mechanism leading to phase separation and the melt-
ing of vertical BC and SC stripes separated by d < 3 in the overdoped regime
x > 0.3 of the 2D ¢-t'-U Hubbard model. For the model parameters for LSCO:
U/t =12 and t'/t = —0.15, one obtains that the most stable SC DWs are sepa-
rated by d = 3 for 0.2 < x < 0.34. As shown in Fig. 4.12(a), increasing doping
stabilizes finally the SC stripes with a single atom in the AF domains. In contrast,
for the BC stripes above x = 0.19, the size of the AF domains remains fixed at
d = 3, as the BC configuration with d = 2 does no exist.

In Fig. 4.12(a) we show the energy gain of the stripe phases with respect to
the PM phase 0 Fpy;. Remarkably, the difference in energy between the best SC
and BC stripes is smaller than both the accuracy of the calculations, and the
resolution of Fig. 4.12(a), suggesting that quantum fluctuations might be impor-
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(5F /1) 107

Figure 4.12: Melting of vertical BC and SC with increasing doping x at tem-
perature St = 100: (a) the free energy 0Fpys (black line) and interaction (grey
line) energy gain in the stripe phases; (b) local charge densities dn; relative to
their average values; (c¢) amplitude of local magnetization (S?); (d) double occu-
pancies dD; relative to the values in the PM phase (scaled by a factor % for the
d = 2 stripe). In panels (b)-(d) the black (gray) curves correspond to the strongly
(weakly) polarized sites, respectively.

tant. We characterize the melting of stripes by their SB local averages: density
n; = y_,{(ni), amplitude of the magnetization (S7), and double occupancies D;.

In the d = 2 SC stripe, reported here for the first time, the two dn;(x) curves
are symmetrical in Fig. 4.12(b). In contrast, in the d = 3 BC stripe there are
two sites with weak magnetic moments per one strongly polarized site. We note
that, unlike in the SC phase, the variation in density is largest on the strongly
polarized sites in the BC phase. The magnetic moments (S7?) vanish for both types
d = 3 stripes at the same doping = = 0.375 |¢f. Fig. 4.12(c)|, suggesting that they
originate from the same instability.

The microscopic mechanism stabilizing the d = 2 SC stripes appears to differ
markedly from the one stabilizing the d = 3 ones [111]|. Indeed, for stripes sepa-
rated by d = 2, the reduction of double occupancy is strongest on the magnetic
sites, as shown in Fig. 4.12(d), and the corresponding reduction of interaction
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energy exceeds the gain of free energy |[¢f. Fig. 4.12(a)]. Thus the mechanism
leading to the formation of the d = 2 stripe is primarily local, making use of two
complementary effects helping to reduce double occupancy: finite magnetization
at magnetic sites and reduced electron density at nonmagnetic ones. Even though
the kinetic energy is partially lost in such a state, the gain in the interaction energy
overcompensates this loss, stabilizing this order in a wide doping range x < 0.485.

In contrast, for d = 3 stripes, both contributions to the free energy are substan-
tially decreased while the stripe order starts to melt already at x < 0.3 mainly by
a stronger reduction of double occupancies in DWs than within AF domains lead-
ing to gradually disappearing magnetic moments upon doping. Therefore, both
potential and kinetic energy (including the superexchange) cooperate to stabilize
the stripe phase with d > 2.

In fact, for both types of d = 3 stripes, the mechanism is doping dependent;
in the small magnetization regime, the interaction energy plays the leading role,
whereas under a further decrease of hole density, this gain nearly saturates (at x ~
0.33), and the gain in the kinetic energy starts to dominate. Moreover, it is only
slightly larger for the SC stripe phase as compared to the BC one, and therefore it is
easily compensated, mainly by the presence of finite magnetic moments at the BC
DWs. As a common feature, the spin and charge order disappear simultaneously at
the critical doping. Therefore, in the absence of longer ranged Coulomb interaction
the charge order is always accompanied by the spin order. This gives further
support to the first of he discussed scenarios that the stripe order is a common
charge-and-spin instability.

Summarizing, we have investigated the microscopic mechanisms responsible for
the formation of the vertical BC and SC stripe phases with d < 3. Interestingly,
we have found that both phases remain nearly degenerate, and spin and charge
order vanish simultaneously when the stripes melt, demonstrating a cooperative
character of the stripe order.






Chapter 5

Systems with orbital degeneracy

The Hubbard model has been employed for a long time as a standard model for
metallic ferromagnetism of itinerant electrons [158, 159] and localization [160].
However, it turns out that this model on the hypercubic lattice does not easily
yield ferromagnetism and some additional features are necessary to stabilize a
FM phase if one goes beyond the HF approximation. For example, Nagaoka
established that in the limit of infinite Coulomb interaction U, a single hole doped
into a half-filled system leads to the FM ground state [161]. Ferromagnetism may
be also promoted by a particular lattice or band structure. Lieb first showed that
a half-filled flat band induces a net magnetization [162|. Furthermore, Hirsch and
others have focused on the effect of additional off-diagonal matrix elements of the
Coulomb interaction [163-165].

A major step towards understanding the physics of real ferromagnets, e.g.,
transition metals Fe, Co, and Ni was the suggestion that orbital degeneracy might
play a crucial role. It was first pointed out by Slater, Statz, and Koster [166]
and then stressed by van Vleck [167]| that in the presence of degenerate orbitals,
Hund’s coupling Jg favors local triplet spin configurations of two electrons occu-
pying different orbitals. Roth [168] examined the doubly degenerate model in the
three-dimensional quarter-filling case with one electron per site. She found that
the ground state is a spin triplet and orbital singlet, i.e., the system forms an
orbital superlattice structure in which two sublattices are occupied by electrons of
different orbitals. Taking into account the connection between staggered orbital
order and spin ferromagnetism, Kugel and Khomskii [169] derived an effective
strong coupling Hamiltonian with coupled spin and orbital degrees of freedom,
extended further by Cyrot and Lyon-Caen [170], who included the effect of on-site
pair hopping, and by Inagaki [171]. These seminal papers started a new field —
spin-orbital physics in correlated transition metal oxides [2].

While systems of higher dimensionality are clearly the ones of most interest
recently [172-180], significant insight into the complementary behavior of both
degrees of freedom was obtained in a 1D model. Indeed, many of essential features
of such 1D systems were established by QMC simulations [181], ED studies [182—
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184], and DMRG method [185]. Finally, quite an interesting result was obtained in
the classical spin limit which gives an orbital valence bond ground state, in which
each bond is an orbital singlet and spin triplet, whereas the spin on neighboring
bonds interact antiferromagnetically [186].

However, in all above studies a theoretically simplified model, the orbital de-
generate Hubbard model in which two equivalent orbitals that are not mixed by
the hopping. In contrast, the orbital flavor for the e, electrons is not conserved,
and this is likely to lead to partial orbital polarization which is expected to modify
the magnetic instabilities. Therefore, in Section 5.1 we introduce a realistic model
with the e, electrons and in Section 5.2 we verify if the phenomenon of a comple-
mentary behavior of the spin and orbital flavors is also a characteristic feature of
this particular case by solving exactly a two-site system at quarter-filling. Next,
in Section 5.3, we determine a phase diagram of the model in the HA and com-
pare the mean-field results with the ED solutions. In particular, we address the
occurrence of orbitally polarized states due to the inequivalent orbitals, and their
interplay with FM and AF spin order. We also discuss the role played by Hund’s
exchange coupling Jgy and by the crystal field orbital splitting F, in stabilizing
one of the competing phases.

The magnetic and orbital instabilities within the e, band become especially
relevant in the context of doped nickelates LSNO and LNO, where interesting novel
phases including the stripe order were discovered [14]. Therefore, in Section 5.4, we
shall investigate behavior of the incommensurability €, optimal stripe filling v, and
the chemical potential p in the stripe ground state, similarly as we have done in
Chapter 4 within a single-band Hubbard model for the cuprates. For this purpose
we use the HA known to provide, when applied to a four-band Peierls-Hubbard
model, a good description of the stripe phase in the nickelates [101, 102| and show
that the filled diagonal BC stripes observed in the nickelates appear naturally
within the effective model for the e, electrons, whereas a simplified equivalent
band model, i.e., DDH model, yields half-filled DWs and appears to be insufficient
to reproduce the experimental data.

5.1 Hamiltonian for e, electrons

Even though doped nickelate LSNO is isostructural with the cuprate counterpart
LSCO, its electronic degrees of freedom are more complicated. In fact, a realistic
Hamiltonian for LSNO must contain, besides the |z* — y?) orbital states included
in the cuprate oxide models, also the |3z? — r?) orbital states, so as to account
for the actual filling with two holes and for the high spin state (S = 1) in the
stoichiometric compound. Such a model of interacting e, electrons in a 2D (a, b)
plane may be written as follows,

H= Hkin+Hint+Hcfa (5]-)
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with two orbital flavors: |z) ~ |22 — ¢?) and |z) ~ [32% — r?) forming a basis in
the orbital space. The kinetic energy is described by

t( 3 +V3
_ af 1 af _
Hyin = ZZ% CiaoCjBos by = 1 (i\/g 1 ) ; (5.2)

(ij) abo

where t stands for an effective (ddo) hopping matrix element due to the hybridiza-
tion with oxygen orbitals on Ni—O—Ni bonds, and the off-diagonal hopping ;7
along a and b axis depends on the phase of the |z) orbital along the considered
cubic direction. The electron-electron interactions are described by the on-site
terms, which we write in the following form,

Hip = UZ(nizTnixl + nizTnizl) + (U - gJH) Z”m”z’z

- 2']H Z SZCE ’ Siz + JH Z(CI$TCZ$lCZ'ZlCiZT + CZZTC:Ii-ZlCiCEJ,CZ'Z‘T)7 (53)

2

where U and Jy stand for the intraorbital Coulomb and Hund’s exchange elements,
whereas n;, = Y, Niao for @ = (x,2). The interactions H;,, are rotationally
invariant both in the spin and in the orbital space [187]. The last term H,;
describes the uniform crystal-field splitting between |z) and |z) orbitals along the
C axis,

Hep = 3E0 Y (Miao — Nize)- (5.4)
The reason of splitting between the e, orbitals is the tetragonal Jahn-Teller dis-
tortion of the NiOgz octahedron. In LasNiOy4, however, the octahedron, with the
Ni—O—Ni bond lengths to be 1.95 (2.26) A in-plane (out-of-plane) [189], respec-
tively, is much less distorted as compared with 1.89 and 2.43 A for La,CuO, [190],
which reflects the difference in electron filling. In what follows we consider only a
realistic positive Ey favoring, due to elongated octahedra, the |z)-occupancy over
the |z)-occupancy by the e, electrons in doped compounds.

5.2 Exact solution of the two-site cluster

First, in order to understand better the electronic structure and intersite corre-
lations, we solve exactly in this section the two-site molecule with either e, or
toy orbitals at quarter-filling. Although it is straightforward to solve the present
problem numerically, it is instructive to find the solution analytically. Along this
process several important aspects will be clarified.

For the 1D model it is most convenient to consider a chain with a basis consist-
ing of a directional orbital along the chain |¢) and a planar orbital |£) orthogonal
to the bond direction [188]. Pairs of such orthogonal orbitals forming a new basis
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Figure 5.1: Pairs of orthogonal orbitals {|(), |£)} aligned along the a axis. (a) e,
orbitals; (b) t,, orbitals.

might be obtained by the following transformation of the original orbital basis

{|=), =)}, o
()= (ot i) (). o

with the angle 6 = i%’r depending on whether one considers the chain along a or
b axis. Explicitly, we obtain,

=302 £V3l2)), &) =3(FV3l2) + ), (5.6)

i.e., the directional |() ~ [32% — r?) or |[¢) ~ [3y* — r?) orbital along the chain
consists of predominantly |z) contribution, whereas the orthogonal |£) ~ |y? — 2?)
or |€) ~ |22 —2?) has a larger amplitude of |z) than |x) orbital. The above rotation
leads to a simple hopping matrix,

10
€ _ _
te, =t <0 0) : (5.7)

allowing only for intersite transitions between the directional |{) orbitals. We
compare this case with a frequently studied diagonal-hopping model, i.e., with the
DDH model. Assuming again two orbitals in the 1D case it describes the dynamics
of two active ¢y, orbitals, e.g. for a chain along z axis, |() ~ |zz) and |§) ~ |zy),

so that,
10
ti = —t (0 1) . (5.8)

Pairs of orthogonal orbitals {|(), |€) } used in both models are presented in Fig. 5.1.

N

As we are interested in the crystal field acting along the ¢ axis perpendicular
to the chain, we need to rotate the field (5.4) by the same angle § = £2¢. Making
an inverse transformation to (5.5) and expressing orbital projection operators on
|z) and |z) orbital,

Nigo = |xia><$ia|7 Nize = |Zia><Zia|7 (59)
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in terms of new fermion operators ng(g)(,a which create an electron at |¢) (|£))

orbital, respectively, the crystal field term (5.4) takes the form,

Hey = %EO Z [COS Q(C;rgaciga - CZ@Cz'ca) + sin Q(C;rgaciga + C;r(acz'go)] . (5.10)

i

Note that cos is negative so the field (5.10) favors the |£)-occupancy over the
|¢)-occupancy, as it should.

Let us now define the total spin operator S = ) ,'S; with the spin components
defined in the usual way,

S = (87,87, 87) = {2 st D st 3 Dt —mia)) o (5.11)

« e «

where the summations run over both orbitals a = {(,¢}. The Hamiltonian (5.1)
commutes both with the square and z-component of the total spin operator,

[S?,H] = [S*,H] = 0. (5.12)

This implies that it is possible to find simultaneous eigenstates of these operators
and the Hamiltonian H. Therefore, they are good quantum numbers and label
the eigenstates. Likewise, we introduce the total orbital pseudospin operator T =
>; Ti where the three components of pseudospin are given by,

= (T T, T) = {Z ngaci(cﬂ Z C;'r(ocigm 3 Z("z‘&a - ”ig‘o)}- (5.13)

g g g

In order to distinguish perpendicular to a chain ¢ axis from the other axes along
which one can consider the chain, we have labeled the third component of the
pseudospin with the ¢ index. Note however that in contrast to the spin oper-
ator, the (-component of the pseudospin operator Tf does not commute with
the Hamiltonian (5.1) which mix states with different values of this observable.
Nevertheless, we will use its eigenvalues together with the z-component of S to
specify multiparticle states in terms of which we write the Hamiltonian. To count
available configurations, we apply elementary statistics which gives for a Ng-fold
orbitally degenerate band system with NV sites and N, electrons,

L= (QNNeNd) (5.14)

atomic configurations forming a basis. Hence in our two-site chain with two bands,
the basis consists of L = 28 states altogether. Among them, there are,

NN,
Ly= 2( N, d) =12, (5.15)
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states in the subspace with S* = £1, whereas,

N-Ny\?
Lo = ( N, d) = 16, (5.16)

states span the S* = 0 subspace, with N, = N,./2 being the number of electrons
with a given spin o. Notice that by accident, the number of states with S* = 0 is
precisely the same as the number of low energy singly occupied states,

Ls = (2- Ng)N = 16. (5.17)

It is straightforward to construct explicitly all the states, starting with the
S* = 1 subspace. There are two states with 7T¢ = +£1,

o) = clegehrl0), W) = clerche[0), (5.18)

and four with T¢ = 0,

[W55) = 5 (clercher = clercher) 10). (5.19)
|\I/§tT) = %(Ciﬁciﬁ + c;ﬁc;ﬁ)|0>. (5.20)

In the high spin subspace S* = £1, the Hamiltonian (5.1) with the field given
by Eq. (5.10) is decomposed into a 4 x 4 matrix,

E. 0 V2B 0 [|¥)
- 0 —E. V2B, 0| [|%0)
Hy = Ueol, (Ueo|, (P71, (P ¢ s ¢o
1 ;(< 13 |’< ¢ |a< 10‘|7< 20’|)X \/§Es \/§E5 0 ‘o |\ija> ,
0 0 i U3 |\IJ§J>
(5.21)

and a 2 X 2 matrix,

=S gl () (jes]) (52

ty
g

Here we have introduced the effective hopping amplitudes ¢+ = t.¢ &+ t¢e. Their
explicit values depend on the pseudospin symmetry. For the e, model with the
immobile |£) pseudospin one obtains ¢, = ¢t_ = ¢, whereas for the ¢5, one with the
equivalent bands one has ¢, = 2t and t_ = 0. Further, U3 = U — 3Jy is the on-
site interorbital Coulomb interaction of two parallel spins (triplet state). Finally,
E.= FEycosf and E, = % sin 6 are the diagonal and off-diagonal matrix elements
of the crystal field term. Twice larger amplitude of the former oc £, njq0 is
due to the fact that applied on the |¥,,) state, consisting of both electrons with
the a pseudospin flavor, yields a factor 2. Additionally, v/2 in the Hamiltonian
matrix (5.21) is owing to different normalization factors of the |¥,,) and |¥ )
states.
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In the absence of a finite crystal field, the |U,,) trlplets with T¢ = £1, become
fully localized and degenerate with eigenenergy ET = 0, being common for both
models. The other four eigenenergies might be written in a compact expression,

By, (t) = 4(U =35 + VU —37m)2 + 1), (5.23)

Now we are left with the S* = 0 subspace consisting of eight states with
T¢ = =41,

|7) = I5( Terche, £ el cher)10), (5.24)
|@3) = %(CICTCKL + CQCTCQQ) 0), (5.25)
|85 = %(C&Tclgl + CQgTCle) 0), (5.26)
®7) = %(CIQCQQ + C1glcQ§T) 0), (5.27)
and eight with 7¢ = 0,
|®5) = %(Cig ey T CQ&TCQCl) 10), (5.28)
|@5) = %( J{gTCQQ + chlC%T)\O% (5.29)
|BE) = %(Clglclﬁ + C2£lCQCT)|O>’ (5.30)
[05) = 5 (cleycher * clercae))10)- (5.31)
In terms of these states, the following Hamiltonian matrices are found:
Hy = ({27 ], (@3], (@5, (5], (@3], (@5 |, (7], {@51)
—E, 2t 0 0 0 E;, 0 -—E, |D7)
2tecc U—FE. Jg 0 E, 0 —-E, 0 D7)
0 Ju  U+E. 2t E;, 0 —-E; 0 D)
0 0 2ee E. 0 E;, 0 -—E, [Py )
“l'o B B 0 U t. —Jg 0 ||| @32
E, 0 0 Es ty O 0 0 |Dg )
0 —FE; —FE; 0 —Jg 0 Uy t4 |D1)
—F; 0 0 —-E;, 0 0 ty 0 |Dg )
and,
Hy = ((27], (@5 |, (@51, (7], (@5 |, (g, (27 ], (@5 ])
—FE, 0 0 0 0O Es 0 E |DT)
0 U-E Jug 0 E, 0 —E 0]|[®)
0 Jy U+E. 0 E;, 0 —-E;, 0 |D5)
0 0 0 E. 0 E;, 0 FE D)
“ o B E. 0 U t —Jg 0|l @3
E, 0 0 Es t 0 0 0 D)
0 —F -Es 0 —Jg 0 Uy t_ |D-)
E, 0 0 Es 0 0 ¢t 0 |Pd)
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with Uy = U — 2Jg, being the on-site interorbital Coulomb interaction of two
antiparallel spins. In the present subspace both singlets and triplets are repre-
sented. However, by assuming F, = 0 which decouples the T¢ = %1 states from
the T¢ = 0 ones in matrices (5.32) and (5.33), we can readily identify them.

Let us consider first a model with two ?y, orbitals. Note that this problem
is different from three ¢5, orbitals and, consequently, the excitation energies will
not be the same. In this case, both block diagonal sectors of the matrix (5.32)
can be trivially diagonalized with six eigenvalues corresponding to singlets and
with other two corresponding to triplet components. Explicitly, we obtain the two
doubly degenerate singlets with energies,

Eg!(U ~ Ji) = %(U —Jn £ V(U = Jy)* + 16t2>, (5.34)

and the other two singlets with energies,

Eg;(U+ Jn) = %(U +Ju £/ (U+ Ju)? + 16t2>, (5.35)

whereas the two remaining states belong to the triplet subspace,

B (t,) = %(U —3Jy £ (U —3Jp) + 16t2>. (5.36)
The eigenvalues of the matrix (5.33) are (with the degeneracy given in parenthesis),
0(4), U—3Jg, U—Jug@2), U+ Ju (5.37)

Eliminating the ones which are not degenerate with the previously found 5% = £1
levels, yields three other singlets. They are:

E@=U-Jy(2), E&=U+Jy. (5.38)

Further, two of the eigenvalues zero correspond to the Hamiltonian eigenstates
|®7) and |®;) and together with the |¥,,) eigenstates, they form two E3 triplets.
Next, we notice other two eigenstates |®¢) and |®J) of the matrix (5.33), with
the interchanged T- and |-spins, both with eigenvalue zero. However, applying the
spin lowering operator S— = )., cjalcmT to the high-spin eigenstate |¥ ) with
eigenenergy FEi2(t_) = 0, gives a superposition of both states. Therefore, the |®F)
and |®g) states should be combined into a new eigenstate,

o) = S (128) + 128) ). (5.39)

which is ascribed to the E;?_q (t_) = 0 triplet, whereas its counterpart,

P5) = 55 (128) - o)) (5.40)



5.2. Exact solution of the two-site cluster 95

corresponds to another singlet state. Finally, we identify the last remaining state
in Eq. (5.37) as a component of the E?j (t-) = U — 3.Jy triplet.

Turning now to the e, orbital model and recollecting the immobile |£) orbital
flavor, we notice in the matrix (5.32) one entirely decoupled T¢ = 1 singlet |®, )
with the energy E¢’ = 0. The singlet |®,) is accidently degenerated with the
eigenstates |®) and |®]) of the matrix (5.33). They constitute together with
the |U,,) eigenstates two E% triplets, already seen in the ¢y, model. The second
similarity between the models are two singlets from diagonalization of a 2 x 2
sector with the ;) and |®3) states, having the energies E¢, = U & Jy.

Next, recalling that for the e, orbitals ¢, = ¢, there are two identical 4 x 4
subspace spanned by the T¢ = 0 states of both matrices (5.32) and (5.33). They
yield two doubly degenerated singlets,

ES (U — Jy) = %(U —Ju U= T+ 4t2>, (5.41)

whereas other eigenstates form, together with the S, = £1 states, two triplets,

By = %(U —3Jy £ /(U—3Jp)? + 4t2>, (5.42)

being again doubly degenerate. Finally, we are left with a submatrix in terms of
the |®7), |®3), and |®]) states. Determining of its eigenvalues involves solving
a cubic equation and does not lead to a simple expression. However, in order to
find out an approximate lowest energy state, one can leave out highly energetic
pair-hopping processes, which require an empty and a double-occupied orbital to
take place. Such configurations should be strongly suppressed by the intraorbital
Coulomb repulsion U. It completely decouples the |®7) state and working with
the 2 x 2 matrix gives the following eigenvalues,

B (U) = %(U + U2+ 16t2>. (5.43)

To get an insight into a competition between tendency towards the AF and
FM ground state, let us discuss the lowest energy eigenstates in the strong cou-
pling limit. As it was expected, in both systems the lowest energy spin triplet
is supported by a pseudospin singlet. However, recalling twice larger effective
hopping amplitude ¢ of the ty, system, its lowest-lying triplet levels should have
significantly lower energy than those of the corresponding triplet of the e, model.
Indeed, in the case of strong on-site interorbital repulsion (U — 3.Jy > t), the
square root in Eq. (5.23) can be expanded to second order yielding the excitation
energy —t2 /(U — 3Jg). Thus, the lowest high-spin excitation energy in the e,
subspace E;g and the corresponding one in the 5, subspace EtTQO'q are,

4t?
U—-3Jy

t2
U —3Jy

g __ t2g
ETO = ETO =

(5.44)
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Ju =0 Jy =U/8 Jy =U/4
E. )t S, TS| E. /t S, TS| E,/t S, TS
-04721 1 0|-07016 1 0] —-1.231 1 0
0 +1]-05311 0 0|-06056 0 0
0 0 0 0 0 0
0.0000 1 +1|-04244 0 0]-0382 0 0
1 0| 0.0000 1 41| 0.0000 1 =1
0 0 1 0 1 0
8.0000 1 0 0 0 0 0
0 41| 50000 1 0| 20000 1 0
0 0] 57016 1 0| 32361 1 0
84721 1 0| 7.0000 0 0| 6.0000 0 0
0 =1 0 0 0 0
0 0] 75311 0 0| 66056 0 0
0 0 0 0
9.0000 0 0| 10.0000 0 0
94244 0 0| 103852 0 0

Table 5.1: Eigenenergies of the model (5.1) with the ¢y, orbitals in the strong
coupling regime U = 8t. The eigenstates are specified by the total spin S,, and the
expectation values of the (-component of the total pseudospin 7¢. Triplet states
with S,, = 1 contain three components S? = +£1, 0.

Note however that finite Jy could reduce significantly the value of the interorbital
repulsion U — 3Jg, so that it would no longer be much larger than t. As a
consequence, corrections to the above result of the second order expansion are
expected in this case.

Analogously, in order to find out the lowermost low-spin excitations for both
models one can expand the square root in Egs. (5.34) and (5.43). They are,

B 4t?
U—Jyg’

¢ 42 ta
Eg =-7 Eg) =

(5.45)

Comparison of (5.45) with the lowest high-spin excitations (5.44) allows to draw
interesting conclusions about conditions for ferromagnetism. It is apparent that
Egz“’ and E;QO"’ are degenerate for Jy = 0. However, even infinitesimally small
Jg > 0 lifts this degeneracy and might give rise to spin ferromagnetism combined
with the AF pseudospin correlations. On the contrary, we expect the singlet state
with energy Egg to be the ground state of the e, shell model until Jy < U/4.
Therefore, Hund’s rule coupling Jy is a driving force of the FM solution in both
models but it is decisively more efficient when both orbital pseudospins are mobile.

The eigenenergy spectra obtained from the ED of the Hamiltonian (5.1) with

the ¢y, (e,) orbitals in the strong coupling regime U = 8¢ for a few values of Jy
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Ju =0 Jy =U/8 Jy =U/4
E./t S, TS| E,/t S, TS E./t S, TS
—0.4721 0 —1]—-0.4784 0 —0.9985| —0.4983 0 —0.9935
—0.1231 1 0| —0.1926 1  0.0000 | —0.4142 1  0.0000

1 0 1 0.0000 1 0.0000

0 0]-01401 0  0.0000 | —0.1623 0  0.0000

0 0 0 0.0000 0 0.0000
0.0000 1 #£1| 0.0000 1 41.0000| 0.0000 1 41.0000
0 1 0 1.0000 0 1.0000
80000 0 +£1| 51926 1  0.0000| 24142 1  0.0000
0 1 1 0.0000 1 0.0000

81231 1 0| 7.0000 0O  0.0000| 6.0000 0  0.0000
1 0| 71401 0  0.0000 | 6.1623 0  0.0000

0 0 0 0.0000 0 0.0000

0 0] 72388 0 02318 62927 0  0.1097

84721 0 —1| 9.0000 0  0.0000 | 10.0000 0  0.0000
92396 0 —0.2333 | 10.2056 0 —0.1162

Table 5.2: The same as in Table 5.1 but with the e, orbitals.

are gathered in Table 5.1 (5.2), respectively. We have specified them in terms of
the total spin S,,. Two electrons can built a state with the total spin either S, = 0
or S, = 1. In the latter case, the z-component takes values S? = £1,0. Another
value used for the classification of states is the (-component of the total pseudospin
operator. However, it is not a good quantum number being modified by the pair-
hopping processes from one orbital to the other. Indeed, in matrix (5.32), a sector
consisting of |®]) and |®) states, carrying the T¢ = —1 pseudospin flavor, is
coupled to the one in terms of |®7) and |®;) states, carrying the opposite T¢ = 1
flavor. Similarly, sectors with different pseudospin flavors are mixed in matrix
(5.33). Thus, one has to determine the expectation values of 7¢ by a direct
calculation in the Hamiltonian eigenstates.

Looking at these values one sees that in contrast to the e, case, all the compo-
nents of a given ¢y, pseudospin triplet remain degenerate, even for finite Jy. We
also note full or at least partial quenching of the pseudospin. More precisely, there
are six eigenstates with the fully suppressed orbital flavor in the case of the ty,
model, whereas only two eigenstates of the e, model become pseudospinless upon
finite Jy. Recalling the two singlets with energy Eg, = U £ Jy, common for both
models, we readily identify these two pseudospinless eigenstates as a symmetric
and antysymmetric linear combination of |®;) and |®3) states carrying the op-
posite pseudospin flavors. Analogously, the other two with 7¢ = —1 and two with
with 7 = 1 pseudospin triplet components, turning (due to finite Jy) into doubly
degenerate pseudospin singlets with energies Eg?j‘;’ (U—Jy), are ascribed to the two
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identical, T, sectors in terms of {|®7),|®5)} and {|®3),|P;)} being coupled by
Ji. These two sectors are characterized by the opposite values of T¢.

In contrast, |®;) is the eigenstate Fg’ = 0 of the e, model so its pseudospin
T: = 1 is conserved regardless of Jy. Therefore, due to inequivalent number of
states with the opposite value of T¢ forming the submatrix {|®7),|®5), |®7)},
its eigenstates have partially quenched pseudospin. Of course, regardless of the
pseudospin symmetry, pseudospin quenching obeys a constraint,

> TS =0, (5.46)

where the sum runs over the eigenstates.

Remarkably, even for unrealistically large Jy = U/4, the e, ground state is a
singlet with the occupied mobile pseudospin |() orbitals (¢f. Table 5.2) contra-
dicting our predictions from the strong coupling regime. It is apparently because
the approximate low-spin state energy E;g = —41? /U overestimates the tendency
towards ferromagnetism (high-spin state) as we have left out the pair-hopping
processes. We shall see later on that the pair-hopping of the e, electrons remain
important even for large U/t = 20. Nevertheless, it is evident that increasing Jy
diminishes the difference between the lowest singlet and the two excited triplets.

On the contrary, the ground state of the ¢,;, model with finite Jy is a spin
triplet accompanied by a pseudospin singlet (¢f. Table 5.1). Notice however that
its energy E2(t,) = —1.2361t obtained for Jy = U/4 differs vastly from the

lowermost roughly estimated high-spin excitation E;?O'q = —2t (5.44). The reason
of this discrepancy is certainly the fact that the second order perturbation theory
is controlled by t?/(U — 3Jy) being of order O(t) here. Therefore, it can be
used only for qualitative arguments in this regime, while it works much better
for smaller Jy = U/8, yielding E?Og = —0.8t, much closer to the ED energy
E2(t,) = —0.7016t.

Now we shall discuss the influence of the crystal field (5.10). Except for the
Hamiltonian matrix (5.22) yielding the eigenvalues E, (t,) (5.23), the form of the
other matrices for this calculation is considerably more complicated due to addi-
tional coupling of states with different 7¢. In general, it is not possible to obtain
analytic expressions for eigenvalues and one has to resort to a numerical diago-
nalization. However, due to the equivalent hopping amplitudes, the eigenvalues of
the ?5, model should be independent of the rotation angle 8, i.e., one has to get
the same energy spectrum for a field (5.10) with finite 6, as well as for a diagonal
in pseudospin field of the form E,7°. It acts along the chain and corresponds to
0 = 0 in Eq. (5.10). Applying the latter immediately leads to a diagonal form of
the matrix (5.21) with the eigenvalues: 0, +Fy and U — 3.Jy. Obviously, U — 3Jy
is also eigenvalue of the matrix with finite 6, whereas the others can be found by
analytical diagonalization. They are,

XAo=0, Ay=+\/E2+4E2 (5.47)
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Accordingly, substituting £, = Eycosf and F, = % sin # one recovers the previ-
ously found eigenvalues +F;. We immediately recognize the corresponding eigen-
states. They constitute two degenerate spin triplets at energy Ey = 0 with the
opposite pseudospin flavors T¢ = £1 (cf. Table 5.1).

Numerical values of the calculation with Ey = 2t and 0 = i%’r are listed in
Table 5.3. Although the energy spectrum of the 5, model indeed does not depend
on the field direction, expectation values of 7¢ in the Hamiltonian eigenstates
certainly do, as a finite rotation angle # enables mixing of states with different
values of 7¢. As a consequence, the initial pseudospin T¢ = 1 of spin triplets
with the energy +FE; is reduced up to T¢ = 40.5 by the field with § = i%’r,
whereas it is conserved when 6 = 0.

Contrary to the Fy = 0 case with a spin triplet and pseudospin singlet as the
toy ground state, provided Jy > 0, finite positive Ey suppresses the AF pseudospin
correlations and stabilizes a spin singlet with the positive value of T¢ ~ 0.5. On the
other hand, the effect of the crystal field on the e, ground state is just the opposite.
Namely, by lifting the degeneracy of pseudospin flavors it promotes the immobile
|€) one. Consequently, there is not that much kinetic energy to be gained and
the Coulomb interactions start to be crucial. However, they are noticeably better
optimized by a FM phase. Indeed, from Table 5.3 one sees a strong competition
between the lowest singlet and triplet, both with positive but still smaller than in
the 15, case value of T¢ ~ 0.45. However, it becomes energetically advantageous to
have the triplet as a ground state for large Jy = U/4. In spite of the complicated
form of pseudospin mixing by the crystal field, we have noticed that the pseudospin
quenching satisfies again the condition (5.46) in both systems.

Having numerically determined all the eigenstates |¢,) and the corresponding
eigenvalues E,, of the Hamiltonian (5.1), we can evaluate the partition function,

Z =Y exp(—pE,), (5.48)

from which thermodynamic properties of both systems can be inferred in the entire
parameter range. Thermodynamics of a twofold degenerate Hubbard model with
equivalent bands was studied in Ref. 182. For example, the internal energy U is
given by the expectation value of the energy (F),

1 1
This can also be written in terms of a derivative of the partition function,
107 olnZ
-2 ch2 (5.50)
Z 0p op
Further, the specific heat is defined as a derivative of the internal energy,
ou ou #?In”Zz
C=—=—kpB— = kpf’ : 5.51
o7 =~k =k (551)
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100

ey orbitals 194 Orbitals
Jy=U/8 Jy=U/4 Jy=U/8 Jy=U/4

E./t S, TS E./t S, TS E./t S, TS E./t S, TS
—2.0786 0 0.4229 | —2.0965 1 0.4429 | —2.4767 O 0.4995 | —2.4910 O 0.4980
—2.0548 1 0.4695 | —2.0852 0 0.4179 || —2.0000 1 0.5000 | —2.0000 1 0.5000
—0.2286 0 —0.0348 | —0.4142 1 0.0000 || —0.7016 1 0.0000 | —1.2361 1 0.0000
—0.1926 1 0.0000 | —0.2410 0 —0.0305 | —0.5311 0 0.0000 | —0.6056 0 0.0000
—0.1468 0 0.0002 | —0.1703 0 0.0003 0.0000 1 0.0000 0.0000 1 0.0000
—0.0494 1 0.0734 | —0.1169 1 0.1658 0 0.0000 0 0.0000

1.6727 0 —0.3841 1.5089 1 —0.4969 1.5183 0 —0.4977 1.4876 0 —0.4899

1.8878 1 —0.5409 1.6340 0 —0.3713 2.0000 1 —0.5000 2.0000 1 —0.5000

5.1926 1 0.0000 24142 1 0.0000 5.0000 1 0.0000 1 0.0000

52165 1 —0.0020 2.7045 1 —0.1118 5.7016 1 0.0000 3.2361 1 0.0000

5.8526 0 0.4929 5.2848 0 0.4140 5.7639 0 0.4472 5.1716 0 0.3536

5.8564 0 0.4885 5.3156 0 0.3627 6.2695 0 0.4498 5.7610 0 0.3539

7.0374 0 —0.0538 6.0468 0 —0.0631 7.0000 0 0.0000 6.0000 0 0.0000

7.2305 0 0.0461 6.2702 0 0.0517 7.5311 0 0.0000 6.6056 0 0.0000
10.2567 0 —0.4394 | 10.8387 0 —0.3512 || 10.2361 0 —0.4472 | 10.8284 0 —0.3536
10.5476 0 —0.5385 | 11.1064 0 —0.4305 | 10.6890 0 —0.4516 | 11.2424 0 —0.3620

Table 5.3: Eigenenergies of the model (5.1) with either the e, or t5, orbitals in the strong coupling regime U = 8t with the
finite crystal field Fy = 2t acting perpendicular to the chain.
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Finally, the second derivative of In Z with respect to 3 gives,

Pz 1022 [(182\°
T;? =205 (E%) = (B%) — (B)% (5.52)

which is the mean square deviation (§F)? of individual, instantaneous measure-
ment of the internal energy FE away from the mean value (F),

(0E)* = (£ — (E))?). (5.53)

Using Eq. (5.52) to eliminate the second derivative in the specific heat (5.51), we
can relate the size of spontaneous fluctuations (§E)? to the rate at which energy
will change due to temperature alterations,

(E?) — (E)?

O —
kgT?

(5.54)

Note that the fluctuations of thermodynamic variables determine in general
the system properties and similar equations to Eq. (5.54) may be derived. Indeed,
each parameter of a system that we fix has a conjugate variable which represents
the response of the system to the perturbation of this parameter. For example,
the effect of an external magnetic field h* on a magnet can be accounted for
by a magnetic energy term in a Hamiltonian of the form —yh*S?*, where &% is
the z-component of the total spin S, and 7 is the gyromagnetic factor. Since
E, = E,(h*) now, we can write the expectation value (S*) = 2> SZexp(—(E,)
in terms of a derivative of the partition function,

sy L 97 _ 10wz
 ABZ 0Ok ~B OhF

(5.55)

Here, S? is the value of S* in the state |¢,). Another derivative of In Z with
respect to h* produces again a factor of S? in the sum over states and one finds,
in a direct parallel with Eq. (5.52),

Pz 1 9*Z 10ZN? ., ol oo Y
oh )2~ Zo(h)? (§ahz) =B (((S )7y = (57) ) (5.56)

which one recognizes as the mean square fluctuations of S*. Moreover, the spin
susceptibility x,, which measures the strength of the response of §* to changes in
h?, is proportional to 957) Tt follows that,

oh*
2 ((5%)%) — (5%)?
T (5.57)

Xs =7

i.e., the spin susceptibility depends on fluctuations of S*.
This is a useful identity in statistical mechanics for calculating thermal fluctu-
ations of a physical quantity, even if no appropriate field coupling to that quantity
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appears in the Hamiltonian [191]. We simply make up a fictitious field which
couples to our quantity which allows us to calculate fluctuations of the quantity
we are interested in, and finally we set the field to zero making the fictitious field
vanish from the Hamiltonian again. Let us suppose now that a finite crystal field
acts along the chain. The conjugated variable to this field is the (-component
of the total pseudospin operator 7¢, and the two are linked via a term in the
Hamiltonian Fy7¢. Thus, the corresponding pseudospin (orbital) susceptibility
X: is equal to,
((T9)?) —(79)
kgT '
Knowing the partition function (5.48), we can also write an expression for the
free energy of the system,

Xt = (5.58)

F=—kgThhZ. (5.59)

Finally, having found F' one may calculate the entropy S, which measures the
amount of disorder in the system,

S = _@—;)m (5.60)

We have thus shown that the knowledge of Z allows to evaluate all the important
thermodynamic quantities. Let us now discuss their temperature dependence.

Magnetic nature of the ground state is best described by considering the on-
site (S7) and intersite (S; - Sy) spin-spin correlation functions. Analogously, we
shall determine the on-site (T?) and intersite (T; - T5) pseudospin correlation
functions yielding information about an orbital state together with orbital corre-
lations between neighboring sites. In Fig. 5.2 we present temperature dependence
of the spin (solid line) and pseudospin (dashed line) correlation functions, both
susceptibilities and the specific heat of the model with either e, (left panels) or ¢,
orbitals (right panels). We have set Hund’s exchange coupling to be Jy /U =1/8
(gray line) and Jy /U = 1/4 (black line).

Consider first the e, system. At low temperature, one expects to have the
charge localization due to the strong coupling regime U = 8¢. Indeed, the local spin
moment (S?) reaches virtually the magnitude S(S+1) = 3/4 of the spin S = 1/2,
regardless of Jy > 0. A rise of (SZQ> upon increasing temperature is possible due to
excitations to triplet states. They are stabilized by Hund’s interaction and form
local high-spin configurations. Consequently, the rise of (S?) is larger for stronger
Jy = U/4. Next, the intersite spin-spin correlation function (S; - Ss) indicates the
AF nature of the ground state, whereas the corresponding pseudospin function
(T - Ty) illustrates the FM pseudospin correlations. The opposite behavior of
(S1-Sy) and (T - Ts) is also well seen in both susceptibilities. Upon taking the
logarithm of x; we find that it is of the Curie-Weiss type with linear segments in
the low and high temperature regions. The displacement of these two segments
does not appear when Jy = 0. Accordingly, it is presumably related to partial
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Figure 5.2: Temperature dependence of: local spin (S?) and pseudospin (T?)
moments (top); spin (S;-Ss) and pseudospin (T;-T5) correlation functions (second
row); spin log(=§5) and pseudospin log(3}) susceptibilities (third row), and the
specific heat kBLN (bottom) of the model with either the e, (left panels) or ¢y,
orbitals (right panels). Parameters: U = 8t, Jy = U/8 (gray line), Jg = U/4
(black line) and Ey = 0. Solid (dashed) line (rows 1-3) refers to spin (pseudospin),

respectively, and the dot-dashed line (right panels) shows the results for Jy = 0.




104 CHAPTER 5. SYSTEMS WITH ORBITAL DEGENERACY

quenching of T¢ due to pair-hopping processes. In contrast, y, shows a typical AF
behavior with a characteristic cusp at the critical temperature 7,(e,;). Obviously,
the AF array that sets in has zero net magnetic moment at the temperature below
T¢(ey) and that is the reason of the observed cusp in y,. Moreover, the particular
kink in the curve y, versus T coincides with the low temperature peak of the
specific heat. Comparing position of the peaks corresponding to Jy = U/8 and
Ju = U/4, one finds that increasing Jy reduces T.(e,). Note, however, that for
Jy = U/4 the low temperature peak in the specific heat splits into two. The first
one corresponds to a transition from the ground state to the first two excited triplet
states with the excitation energy AF;/t = 0.0841, whereas the second one appears
due to excitations into higher levels with the excitation energy AFE,/t = 0.336 and
AFE;/t = 0.498. In contrast, when Jy = U/8, the excitation energy into the first
excited state is much larger AE]/t = 0.286, whereas the other excitation energies
are nearly unaltered: AFE}/t = 0.338 and AE;/t = 0.478. This results in a
single broad low temperature peak. Finally, high temperature peaks occur due
to the thermal excitations which create double occupancies and lead to charge
delocalization, well seen in the suppression of (S?).

On the contrary, in the ¢5; model, except for Jyz = 0 when the intersite spin
and pseudospin correlation functions overlap and are negative, positive (S; - Ss)
demonstrates the FM nature of the ground state supported by the pseudospin
singlet with negative (T, - Ty). Thereby, x; is of the Curie-Weiss type, whereas
x: displays the AF kink at the critical temperature T,.(t5,). Unlike the e, case,
increasing Jy shifts T..(to,) towards higher temperatures. As a result, the critical
temperatures of both systems differ substantially, especially in the large Jy = U/4
regime. Indeed, from the position of the low temperature peak of the specific heat
in Fig. 5.2, one can read off that kgT.(e;) = 0.025¢, whereas kpT,(t2,) = 0.35t.
Origin of this marked difference is certainly the fact that increasing Jy diminishes
(enlarges) the gap between the spin singlet (triplet) ground state and the first
excited triplet (singlet) of the e, (f5,) system, respectively (cf. Tables 5.1 and
5.2).

Different energy spectra of the e, and ty, systems result in quite different
temperature evolution of the entropy S, as shown in Fig. 5.3. In the former case,
with a spin singlet as the ground state, vanishingly small S corresponds to a state
of perfect order in the system in the low 7' limit. Basically, the overall evolution
of the curves in Fig. 5.3(a) is very much the same, i.e., the entropy rises rapidly
around T.(e,) corresponding to the low temperature peak in the specific heat
and approaches the limiting value S = kgln 28, meaning that the energy of the
system tends to a constant value as all the microscopic states are equally probable.
However, a detailed behavior of S is Jy dependent. In a small Hund’s exchange
Jy < U/8 regime, where Lg = 16 singly occupied states are clearly separated from
doubly occupied states, S possesses a point of inflection S = kgln16 at kT ~t,
which follows from a vanishing character of the specific heat. In contrast, in
the large Jy = U/4 regime favoring spin triplets, the gap between singly and
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Figure 5.3: Temperature dependency of the entropy S: (a) e, orbitals; (b) ty,
orbitals. Solid, dashed, and dot-dashed line corresponds to Jg = U/4, Jy = U/8,
Ju = 0, respectively.

doubly occupied states is smaller and the corresponding point of inflection is less
transparent.

In fact, the limiting value S = kg In 28 results from the calculation performed
in the canonical ensemble with a fixed number of electrons. However, in the
grand canonical ensemble at high temperature, entropy would be further modified
by three- and four-electron states. Indeed, entropy shall approach the limiting
value S = 2kpIn 16, as the total number of possible configurations in a doubly
degenerate model with two sites, which includes such high energy states is given
by,

L = 4NN = 162, (5.61)

Turning to Fig. 5.3(b), which depicts the evolution of S in the ¢y, system, one
can notice that in the low temperature limit the entropy approaches either the
value kpln3 for both Jy = U/8 and Jy = U/4 or kpln6 when Jy = 0. The
explanation is contained in Table 5.1. For Jy = 0, the ground state corresponds
to six degenerate states — three of them constitute a spin triplet, whereas the
others are singlets. However, any finite Jg > 0 splits up these states and leads to
the triplet ground state with the entropy S = kpln3. As in the e, case, S has a
clear point of inflection only in the small Jy < U/8 regime.

The situation is quite different in the case of a finite crystal field Fy = 2t,
shown in Fig. 5.4. The low temperature ground state of the e, system depends
on the value of Jy, being AF (negative (S; - Ss)) for Jy = U/8 and FM (positive
(S1-Sy)) for Jy = U/4, whereas (T, - Ts) is positive and almost insensitive to Jy.
This is reflected by the Curie-Weiss type of x, obtained for Jgy = U/4 and both
X: in contrast to the AF behavior of y; corresponding to Jy = U/8. The position
of the high temperature peak of the specific heat at the temperature kg1 =~ t is
almost the same as the position of the strong anomalies of both on-site correlation
functions. The rise (fall) of (S?) ((T%)), respectively, upon increasing temperature
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Figure 5.4: The same as in Fig. 5.2 but with the finite crystal field Fy = 2t.

is mainly associated to the transitions from the low energy states to the excited
triplet with the opposite to the ground state pseudospin T ~ —0.5 (¢f. Table 5.3).

A finite crystal field affects drastically the behavior of the ¢y, correlation func-
tions as well. At low temperature negative (S; - Sy) reveals the AF coupling
between spins, whereas positive (T; - Ts) indicates the FM pseudospin correla-
tions, regardless of Jy. Again this is reflected by the Curie-Weiss behavior of
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Figure 5.5: The same as in Fig. 5.3 but with the finite crystal field Ey = 2t.

and by the AF character of y,. Instead of the high and low temperature peaks
of the specific heat we observe two slightly parted peaks for Jy = U/8 which
merge into a wide one for Jy = U/4. Analogously to the e, case, the rise (fall)
of (S2) ({(T?)) upon increasing temperature is related to the transitions from the
low energy states to the excited triplet with 7¢ ~ —0.5 (¢f. Table 5.3).

In addition, finite crystal field also modifies the temperature evolution of the
entropy, illustrated in Figs. 5.5(a) (e, orbitals) and 5.5(b) (fy, orbitals). De-
pending on Jy, the low temperature entropy S of the e, system either vanishes
(Jg < U/8) or approaches the value kgIn3 (Jy = U/4). Certainly, the latter cor-
responds to a spin triplet as the ground state. Nevertheless, owing to the vanishing
specific heat, all the curves in Fig. 5.5(a) have a point of inflection S = kgIn4 at
kgT ~ 0.1t. Note that in contrast to the case without a crystal field, there is no
such a point when S = kgln16. Namely, by promoting one pseudospin over the
other, a finite crystal field markedly lowers the states with double occupancies,
hence an analogous gap between the singly and doubly occupied states vanishes.

Finally, as shown in Fig. 5.5(b), the entropy of the t5, system is almost in-
dependent of Jz. We note that S is entirely suppressed at low 7" due to a spin
singlet ground state; it rises rapidly at kT ~ 0.1t, and approaches eventually the
limiting value S = kpIn 28, not having any point of inflection. Such a behavior is
a direct consequence of a broad single peak in the specific heat.

Another interesting aspect of the present model is the role of local quantum
fluctuations due to the orbital-flip term. These processes significantly increase the
size of the Hilbert space and are often neglected [182, 184]. In order to examine
the effects of such terms we consider the following limits of the full quantum
Hamiltonian (5.1): classical one (only the Ising part S;, = S7, of Hund’s exchange
coupling is taken into account and we also leave out the pair-hopping processes
from one orbital to the other), quantum spin only (no orbital-flip term), and
finally quantum pseudospin only (no spin-flip term). The corresponding intersite
spin correlation functions (S; - So) obtained without the crystal field are plotted
as functions of the Stoner parameter U + Jy in Fig. 5.6(a). Note that (S; - Sg)
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Figure 5.6: Intersite spin correlation functions (S; - Ss) of the model with either
tyy (gray lines) or e, orbitals (black lines) as functions of the Stoner parameter
U + Jg with Jg = U/4 at temperature ¢t = 100 for: (a) Ey = 0, and (b) Ey =
2t. Solid (dot-dashed) lines, show the results of the entirely classical (quantum)
model, whereas dotted (dashed) lines of the quantum spin (pseudospin) only limit,
respectively.

is finite and negative even in the noninteracting U = 0 limit due to the Pauli
principle.

It turns out that either spin or pseudospin fluctuations almost do not affect
(S1 - S,) of the classical model with the ¢, orbitals (gray solid lines) and all the
correlation functions overlap. On the contrary, in the e, orbital model (black lines),
(S1-Ss) of the classical model (solid line) differs noticeably from the one obtained
in the full quantum model (dot-dashed line). More precisely, spin fluctuations
(dotted line) suppress the AF spin correlations, whereas the pseudospin dynamics
(dashed line) supports negative (S; - Sy).

The explanation is provided by the eigenenergies of the matrix Hjz (5.32),
yielding the lowest energy states in the S* = 0 subspace. In the case of the ty,
model they might be written in a generic form,

Euﬁ):%@?iJHiv&ﬁing+1&ﬂ, (5.62)

with U = {U,U,}. The corresponding second order perturbation excitations Ey
(E) including the spin (pseudospin) dynamics, respectively, are,
4t? n 4t?

Ef= ——— Ef = — . 5.63
! Uy + Jy’ 2 U+ Jy (5.63)

Recalling the lowest energy high- (5.44) and low-spin excitations (5.45) of the ¢y,
model, one finds that E; corresponds to the S, = 0 triplet component, whereas
E to the singlet one. Therefore, spin dynamics splits up the above levels and by
pushing upwards the latter favors ferromagnetism, whereas pseudospin dynamics
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Figure 5.7: Intersite correlation functions: spin (S;-Ss) (solid line) and pseudospin
(T, -T5) (dashed line) as functions of the Stoner parameter U + Jy with Jg = U/4
at temperature St = 100 for: (a) e, orbitals, and (b) t5, orbitals. Parameters:
Ey =0 (gray line) and Ey = 2t (black line).

should clearly stabilize antiferromagnetism. However, due to a large energy gap
between the triplet ground state and the first excited singlets (¢f. Table 5.1),
fluctuations do not affect at all the value of (S; - S,) for the classical ¢y, model.
In contrast, there is a strong competition between the lowest-lying singlet and
the two excited triplets in the e, model (¢f. Table 5.2) and consequently one
cannot neglect fluctuations which modify substantially a spin correlation function
of the classical model, displayed in Fig. 5.6(a). However, the antiferromagnetism
supporting feature of the orbital-flip term is strongly suppressed by finite crystal
field Ey = 2t [¢f. Fig. 5.6(b)], as pair-hopping processes between different orbitals
involve now an additional energy. Nevertheless, (S; - Sy) of the classical and
quantum e, model differs vastly owing to the spin-flip term. Finally, fluctuations
only slightly suppress the spin correlation function of the classical 5, model with
Ey = 2t. Thereby, for the sake of clarity we show only (S; - S,) of the classical
and full quantum model.

In Fig. 5.7 we present a comparison of intersite spin (S; - Sg) (solid line)
and pseudospin (T; - Ty) (dashed line) correlation functions for e, system |[cf.
Fig. 5.7(a)| and for ¢y, system [cf. Fig. 5.7(b)| as a function of U + Jy. The ¢,
results illustrate the AF correlations between spins in the weak coupling regime
U + Jg < 7.5t. However, further increase of the interaction strength in the pres-
ence of the finite crystal field changes gradually the AF coupling into a FM one,
with the preferred immobile |£) pseudospin, whereas (T; - Ty) is only slightly
affected by the field.

As we expected, in the absence of a finite crystal field the ground state of
the ty, system with a finite interaction is a spin triplet (positive (S; - Sy)) and
a pseudospin singlet (negative (T - Ty)). The situation is changed drastically
by a finite crystal field. The resulting (S; - Sy) is then negative revealing the
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AF nature of the ground state, whereas positive (T; - Ty) shows that the AF
pseudospin correlations are suppressed. In the following Section we shall compare
these results with the one obtained in the HA.

5.3 Instabilities of the e, model

While several features are generic in the models with two [172-174, 177-179] or
more [175, 176, 180] orbitals per ion, and occur already when diagonal hopping
is assumed, we note that these models are closer to the behavior of t5, electrons
— strong interactions between them might explain a FM instability in ruthenates
[28]. Here we are interested in the magnetic and orbital order for interacting e,
electrons. It is known that strong quantum fluctuations may lead in the regime of
large intraorbital Coulomb interaction U to qualitatively new behavior in a Mott
insulator with three e, electrons per site [192], but the competition between various
magnetic and orbital instabilities was little explored in the weak coupling regime.
Therefore, in this Section we determine a phase diagram of the e, electrons within
the HA, searching for phases which are both orbitally and magnetically polarized.
In order to obtain a transparent description of such phases, it is convenient to
rewrite the Hamiltonian (5.3) by introducing the following operators [193]:

n;, = Zniaaa (564)

m; = Z )\anz’aaa 0; = Z )\aniada Di = Z )\a)\aniaoa (565)

fio = ) chaTisCisn (5.66)
af

with A\, = 1 for ¢ =7 (|) spin and A\, = £1 for & = x(2) orbital, and 7% being
the Pauli matrix. These operators correspond to: the total density, the total
magnetization, the orbital polarization, the magnetic orbital polarization, and the
on-site orbital flip, respectively. The Coulomb interaction term H;,; (5.3) can be
then written as:

Hyp = £Y [BU =5Jy)n? — (U + Ju)mi — (U = 5J)0; — (U — Ju)p}]

+ Jy Z firfil- (5.67)

The order parameters introduced in Eqgs. (5.65): m;, o;, and p;, used next to
minimize the ground state energy, provide a complete description of the ground
state at finite doping. We emphasize that they also reveal the dominating role of
the kinetic energy of doped holes over the superexchange energy. Namely, large
electron filling of |z) orbitals, contributing to a narrow band, optimizes the kinetic
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energy of holes in magnetically polarized and partly filled |x) orbitals, contributing
to a wide band. On the contrary, the superexchange o< J = 4(t**)?/U at large
U suggests that the system would better optimize the magnetic energy when the
orbitals with larger hopping elements ¢** were closer to half filling. This, however,
cannot happen as the loss of the kinetic energy is too large. We show below
that the complex interplay between all the degrees of freedom of the model (5.1)
results in rather peculiar doping dependence of the order parameters (5.65), and
thus leads to highly nontrivial and rich phase diagrams.

We investigate the stability of possible phases with either uniform or staggered
magnetic order in the HA by expressing the local operators (5.64) and (5.65) by
their mean-field averages,

V2~ 2y () — () (5.68)

In order to establish unbiased results, the calculations are carried out on a large
128 x128 cluster, using periodic boundary conditions at low temperature gt = 100.
For simplicity, throughout the present analysis we assume consistently (f;,) = 0.

5.3.1 Magnetic order and orbital polarization

As shown in Figs. 5.8(b) and 5.8(e), in the PM state at E, = 0, with (m) = (p) = 0,
a higher electron density is found in |z) orbitals ({(o) > 0), as then the kinetic
energy is lowered, except for x = 0. This state is our reference state for possible
magnetic instabilities.

We now proceed with the discussion of the magnetic order and orbital polar-
ization for two characteristic values of the Stoner parameter,

[=U+Jy, (5.69)

i.e., intermediate coupling I = 4¢, and strong coupling I = 8¢, being smaller and
larger than the bandwidth W = 6¢, respectively. Let us begin with the FM phase.
In Fig. 5.8(a) we show the magnetization (m) as a function of doping = for the
ratio Jy /U = 0.25 which is representative for the strong Hund’s exchange coupling
regime. In this case the interaction in the o-channel is repulsive. As depicted in
Fig. 5.8, several FM phases then occur.

Consider first the intermediate interaction strength I = 4¢ shown in Figs. 5.8(a-
¢), where one finds two disconnected FM states: one for 0 < x < 1, and the second
one for x ~ 1.5. The latter corresponds to a van Hove singularity in the density
of states. Since it is predominantly related to the |x) orbital, both the orbital
polarization (o) [cf. Fig. 5.8(b)| and the magnetic polarization (p) [cf. Fig. 5.8(c)]
are positive in this doping regime. In contrast, for 0 < x < 1 the total energy is
minimized when a higher electron density is found in the |z) orbital, where also
larger magnetic moments are formed. Such anisotropic filling of e, orbitals follows
from a large difference between the t** and ¢** hopping elements [194]. Note that
the orbital polarization is here opposite to that in the reference PM state.
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Figure 5.8: Order parameters: magnetization (m), orbital polarization (o), and
magnetic polarization (p) in the FM phase as a function of doping z for: (a-c)
Jy = 0.25U and (d-f) Jg = 0.15U, and for two values of the Stoner parameter:
U + Jy = 8t (black solid line) and U + Jy = 4t (gray solid line). A and B refer
to two sublattices in the orbital ordered state for z ~ 1. The orbital polarization
in the reference PM states is shown by dashed line.

The above peculiar behavior disappears gradually when the interaction strength
is enhanced to I = 8¢ and both (o) and (p) tend to saturate to the optimal value,
being positive (negative) for < 1 (x > 1), leaving the |z) orbital almost fully
polarized. Here the magnetic instability, with the largest effective interaction term
U+ Jy, dominates and the magnetization barely deviates from its saturation value
2 — x, except for the low electron density x > 1.8. In this case doping of the half-
filled FM state first leads to holes introduced into the |x) orbitals, leaving the
center of the narrower band, with predominantly |z) orbital character, below the
former broader one. Therefore, in this situation the formation of local magnetic
moments optimizes the energy. They are naturally associated with the |z) orbitals
since they contribute to the narrower band.

When Hund’s exchange coupling Jy is reduced, the interaction in the o-channel
becomes attractive. As a result, for large I = 8t, both (0) and (p) nearly saturate
to the ideal behaviors —x for x < 1 and 2 — x for x > 1. Therefore, a transition
between these two solutions would be first order, and one observes a jump at x ~ 1.
However, as shown in Figs. 5.8(d-f), the two-sublattice orbital order sets in in this
crossover regime in the form of a FM,, state. This state has opposite orbital
polarization (0)4 ~ —0.8 and (0)p ~ 0.8 on both sublattices [¢f. Fig. 5.8(e)].
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Figure 5.9: Order parameters as in Fig. 5.8 but for the AF phase.

While the total density (n), is somewhat higher than (n)p due to inequivalent
e, orbitals, also (m)s4 > (m)p. For large doping = > 1 the electrons occupy
mainly the |z) orbitals, and the small occupancy of |z) orbital results solely from
the interorbital hopping term o t,,. Indeed, at x ~ 1.3 one finds appreciable
orbital polarization, with |z) orbitals occupied and almost empty |z) orbitals, the
situation encountered in La;_,Sr;,,MnO, manganites [195]. In all FM phases
found at Jy = 0.15U the total magnetization is close to saturation. When U is
reduced, one gradually recovers the behavior obtained for large Jy/U.

We now turn to the AF phase, expected as a ground state near half filling
(x = 0). The order parameters are illustrated in Fig. 5.9 for the same parameter
values as considered above for the FM case. For I = 8t and Jy/U = 0.25 the
mean-field equations possess two competing solutions |¢f. Figs. 5.9(a-c)|. The
first one, which can be continued to weak coupling, is characterized by negative
values of orbital (o) and magnetic (p) polarizations. Namely, the higher electron
density is found within the |z) orbitals, and these orbitals carry the magnetic
moment. More precisely, introducing holes in the half-filled insulating AF state
mostly affects the band with |z) orbital character, leaving the magnetic moments
within the more localized |z) orbitals almost saturated. This solution extends
to large doping x ~ 1. In contrast, the second solution rather stems from the
behavior expected for low density: the electrons first occupy the broader band
with |z) orbital character until quarter filling (x = 1) is reached, and next they
gradually occupy the other band, with |z) orbital character. However, since the
interaction in the o-channel is repulsive and since both bands are coupled, the
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Figure 5.10: Order parameters as in Fig. 5.8 but for the C-AF phase.

orbital polarization (o) and the magnetic polarization (p) are reduced from their
maximal values which would be reached for decoupled orbitals. These two trends
from x = 0 and = = 2 contradict each other, and therefore an abrupt (first order)
transition between both solutions is observed at x ~ 0.7, as shown in Figs. 5.9(b-c).

Reducing Jy barely affects the above findings for strong coupling I = 8¢ [¢f.
Fig. 5.9(d-f)]. While the magnetization (m) is almost unchanged, the first order
transition between two differently polarized states is more pronounced, as the
values of the orbital polarization and the magnetic polarization are enhanced.
When reducing U the location of the first order phase transition shifts towards
smaller doping, while all order parameters are suppressed. At the same time the
critical doping locating the second order phase transition is reduced by a weaker
Coulomb interaction U but is enhanced by a weaker Hund’s exchange coupling Jy.
When seeking for other phases one may expect that two-sublattice FM solutions
can smoothly interpolate between the FM and AF states. Such solutions never
turned out to be the ground state in this study (up to I = 8t).

A competition between the FM and AF order in the present model of e, band
may lead to a superposition of the two phases in a form of C-AF phase, where the
magnetic moments are FM along one direction and staggered in the other (orthog-
onal) one. According to recent numerical simulations [196], a coexistence of FM
and AF bonds is indeed expected for x ~ 0.5. Unlike in the AF phase, the order
parameters are continuous functions of doping for Jy /U = 0.25, as can be seen in
Figs. 5.10(a-c). This behavior is similar to that of the FM case |¢f. Fig. 5.8]. Its
origin can be attributed to the orbital polarization which is substantially stronger
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Figure 5.11: Phase diagrams of the e, orbital model (5.1) as functions of the
Stoner parameter U + Jy and hole doping z = 2 — n, with: (a) Jy = 0.25U, and
(b) Jg = 0.15U. Panel (c) shows the stable phases for finite crystal field splitting
E. =2t and Jg = 0.25U. Transitions from the PM phase to magnetic phases are
second order. The remaining solid lines denote first order transitions while the
dashed, dotted, and dashed-dotted lines indicate second order transitions.

in the AF case to the extent that is exceeds a certain threshold above which no
smooth solution can interpolate between the small and large doping regimes. For
x ~ 0.5 the magnetic moment (m) is carried by the |z) orbital for large U, while
(m) decreases and (o) changes sign for small U.

When reducing Jy /U, the orbital polarization is enhanced and a first order
transition appears for I = 8t, as illustrated in Figs. 5.10(d-f). In this case both the
orbital polarization and the magnetic moment are predominantly carried by the
stronger correlated |z) orbital (with a weaker hopping and thus larger ratio U/t**
than U/t**) in the physically relevant doping range centered around z = 0.5.

5.3.2 Magnetic phase diagrams

Our main findings are summarized in the phase diagrams in Fig. 5.11. As shown
in Fig. 5.11(a), the doped PM phase for Jy /U = 0.25 is characterized by a positive
orbital polarization, therefore denoted PMz. It is unstable towards AFx phase
for small doping up to x ~ 0.5, towards C-AFz phase for 1 < x < 1.02 and for
1.65 < x < 1.75, and towards FMxz phase otherwise. In particular, for x = 1
the FMz, C-AFz, orbitally unpolarized FM and (for I > 16t) the alternating
FMzxz phases appear successively with increasing interaction strength I. The C-
AF phases are found for x ~ 0.5 at I > 4¢, and also in a small range around
x ~T7/4.

When reducing Jy /U, the main difference appears for x ~ 1, as illustrated
in Fig. 5.11(b). Here the PMx phase is unstable towards an AFz phase which
itself is robust and remains stable up to strong coupling. This seemingly peculiar
behavior can be better understood by recalling the results obtained from the ED
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Figure 5.12: Tight binding density of states N,(w), projected on the orbital |x)
(solid line) and |z) (dashed line) of the Hamiltonian (5.2) at x = 0 with: (a)
diagonal hopping elements t%ﬁéaﬂ, and (b) all the hopping elements tf}ﬂ.

of a two-site cluster. Namely, even though ED of the full Hamiltonian (5.1) gives
a singlet ground state also for Jy = U/4, (¢f. Table 5.2), one finds in the large
U expansion, by leaving out the orbital-flip term as in the present approximation,
the ground state to be AFz, with the energy Eg = —4t*/U for Jy < U/4, and
FMzxz, with E;g = —t*/(U — 3Jy), for larger Jy, in qualitative agreement with
our mean-field calculation.

Let us finally mention that the tight-binding Hamiltonian (5.2) is known to
have a van Hove singularity at u = /3t corresponding to z = 1.5. Indeed, in
Fig 5.12, we show the density of states,

Nale) = 5 30 3 W, (000 — 2k, (5.10)

projected either on the orbital |x) or |z). Here, ¥, (k) are the eigenvectors
associated with eigenvalues i,. One clearly observes that the off-diagonal hopping
element tf}ﬁ = 4+/3t/4 modifies substantially N,(w) by shifting the van Hove
singularity from g = 0 [¢f Fig 5.12(a)] towards p = /3t [¢f Fig 5.12(b)].
Therefore, at x = 1.5, one would expect a FM instability for arbitrary weak
coupling at zero temperature. This particular instability, however, turns out to be
unusually strongly temperature dependent. As a result, the corresponding critical
value of the Stoner parameter [ is finite at temperature 7" > 0, and reaches a

value close to W/3 (Fig. 5.11) at "= W/600 used in this work.

5.3.3 Consequences of the crystal field splitting

A complete investigation of the phase diagrams at finite crystal field splitting
E., would be quite involved. Such a study would be worthwhile if motivated by
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real compounds and is left for future work; here we only show qualitatively what
happens for selected values. At E, = 0 the majority of stable magnetic solutions
is characterized by a positive orbital polarization, a tendency expected for a 2D
model of e, electrons [195], which would certainly be enhanced by a negative
crystal field E,. We therefore limit our present discussion to the influence of a
positive F,, in order to investigate a competition between the kinetic energy, which
is lower when the broad band with predominantly |z) orbital character is closer
to half filling, and the potential energy at finite E,. Furthermore, we restrict
ourselves to the strong Hund’s exchange coupling regime of Jy = 0.25U.

As shown in Fig. 5.11(c), the orbital polarization of the PM phase is changed
to negative (PMz phase) already for moderate F, = 2t. As a result, the magnetic
moment and the orbital polarization are carried by the same orbital in all phases,
and the magnetic instabilities are achieved for lower values of I = U+ Jg. Another
consequence of finite £, > 0 is the observed shift of the van Hove singularity to
larger doping, strongly enhancing the tendency towards ferromagnetism in the low
density regime.

In addition, the competition between FM and AF phases at quarter filling
(x = 1) remains quite spectacular: even though ED studies of the two-site molecule
in the classical limit yield negative (S;-Ss), suggesting the AF nature of the ground
state in the entire coupling regime up to I = 15¢ [¢f. Fig 5.7(b)|, in the HA, FM
phase takes over in an intermediate coupling regime 5.15¢ < I < 6.5t. We conclude
therefore that the Hartree approach slightly overestimates the tendency towards
ferromagnetism in this narrow region as the energy difference does not exceed
0.002t at I = 6t. In contrast, we have found that the HA predicts a stable FM
phase in the large U regime with a crossover at I = 16¢, in agreement with the
ED studies.

In summary, we have determined the phase diagram of e, electrons on the
square lattice within the HA. The occurrence of antiferromagnetism in the vicinity
of half filling, followed by C-AF phase at x ~ 0.5, as well as FM phases for z ~ 0.75
and x ~ 1.5, are robust features of this model. Note that the regions of stability
of the AF and C-AF phases with respect to the FM one would still be somewhat
extended due to quantum corrections [197]. In particular, it should be stressed
out that while the orbital polarization systematically appears in all phases, the
orbital carrying the magnetic moment does not necessarily coincide with the one
carrying higher electron density, leading to a particularly interesting interplay
between magnetic and orbital degrees of freedom.

5.4 Stripe phases

So far we have focused on structures with up to two atoms in the unit cell. How-
ever, neutron diffraction experiments on nickelates point to the existence of filled
stripe phases with DWs running diagonally across the NiO, planes [14, 15, 24—
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L xL d LxL
T2X72 8 64x64
80x80 9 T2x72
80x80 10 80x80
T2x72 11 88x88
84 x84

~1 O O = WX,

Table 5.4: Cluster sizes used in the calculations for the BC stripes separated by a
different distance d in units of the lattice constant.

29]. They were also obtained in the theory using either the HF approximation
applied to a charge transfer model, in which both the nickel and oxygen degrees of
freedom are explicitely taken into account [101, 102, 113], or by the ED of finite
clusters within the effective two-band model (5.1) extended by the coupling of
ey electrons to the lattice [196]. However, due to a large number of basis states,
the latter calculation has solely been done for an eight site cluster allowing only
for searching stripe phases with a small unit cell observed experimentally at high
doping levels x = 1/3 and = 1/2. In contrast, the HA allows one to investigate
DWs structures with larger unit cells and hence it should provide an answer to
the important question whether the description of NiO, planes by the simplified
ey model (5.1) yields results consistent with the charge transfer model predictions
[101, 102, 113]|. An important aspect of these studies, as compared to the pioneer-
ing work on the cuprates, where the relevant models yield DWs with nonmagnetic
Cu®" ions [5-9], is that DWs in the nickelates are formed of Ni** ions carrying a
finite spin S = 1/2 leading to a FM arrangement along DWs. Moreover, in the
preceding Section, we have obtained phase diagrams showing, in the regime away
from half-filling, a clear tendency to ferromagnetism for Jy = U/4, or at least to
the C-AF phase for Jy = 0.15U (¢f. Fig. 5.11). Therefore, in what follows we
investigate the properties of BC stripes made out of pairs of atoms with a FM
spin polarization within the model Hamiltonian (5.1) in the wide doping regime
0.05 <z <04.

In order to obtain unbiased results, we performed calculations on large clusters
and used a reciprocal space HA, based on the smallest unit cell choice, similar to
the one introduced in Chapter 4. As previously, we worked on squared clusters
with the linear dimension along the z direction chosen as previously as an even
multiplicity of the elementary unit cell dimension. However, due to orbital degen-
eracy we solved the mean-field equations on smaller clusters as compared to the
ones used for a single-band Hubbard model (¢f. Tables 4.5 and 5.4).

To ensure that the model (5.1) is indeed relevant for the nickelates, it is neces-
sary to adopt appropriate values of parameters U, Jy, and E,. Therefore, taking
into account that LSNO is a charge-transfer insulator with the charge-transfer
energy A nearly the same as that of NiO, as concluded upon x-ray-absorption
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Figure 5.13: Free energy gain of the VBC (top) and DBC (bottom) stripe phases
with respect to the AF phase 0F r as a function of doping x, as obtained at
temperature St = 100 for the e, model with U = 8t, Jy = 1.5¢, and E, = 0.
Stripes are separated by d = 3, ..., 11 lattice constants.

(XAS) measurements [198] as well as on XPS and bremsstrahlung-isochromat
spectroscopy (BIS) studies [199] of the electronic structure of LSNO, the param-
eters are taken as in the self-consistent Born calculations reproducing quite well
photoemission spectra of NiO [200]. More precisely, owing to the fact that our
approximation utterly ignores electron correlations we replace the strong on-site
Coulomb repulsion in LSNO by a smaller value of the charge-transfer energy A
of NiO, i.e., we set U = A = 5 eV. Next, as the in-plane Ni—O—Ni bond length
in LayNiO, of 1.95 A[189] is very much the same as compared with 1.89 A for
LayCuOy4 [190], we set hopping t,q between the p, orbitals and |z) ~ |2? — y?)
orbitals to be as in LSCO, i.e., t,4 = 1.47 eV [156]. This in turn yields an effective
in-plane Ni-Ni hopping t** = 0.43 eV. However, it is more convenient to take as the
energy unit ¢ an effective (ddo) hopping element connecting two |2) ~ |32% —7r?) or-
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VBC DBC
r d FJt d F/t
0.05 11 2.8811 11 2.8794
0.06 11 2.8376 11 2.8326
0.07 11 2.7946 11 2.7870
0.08 11 2.7519 11 2.7430
0.09 10 2.7099 10 2.7001

0.10 10 2.6677 9 2.6570
0.11 9 2.6258 8 2.6140
0.12 8 2.5839 7 25712
0.14 7 2.5001 6 2.4853
0.16 6 2.4162 6 2.3997
0.18 5 2.3329 5 2.3130
020 5 2.2485 4 2.2291
025 4 2.0394 4 2.0155
0.30 3 1.8325 3 1.8029
0.40 3 1.4619 3 1.4081

Table 5.5: Comparison of the ground state free energy F' for the VBC and DBC
stripe phases as found in the e, model with U = 8¢, Jy = 1.5t and E, = 0.

bitals along the c-axis, related to t** via the Slater-Koster relation ¢ = 4¢**/3 ~ 0.6
eV, so that U ~ 8t. Next, the value of Hund’s exchange between ¢, electrons in
NiO Jp = 0.8 eV [200], is associated with Jy for e, electrons through a simple
relation,

Jy = Jy + B, (5.71)

where B stands for the Racah parameter [201]. Taking into account that B ~ 0.13
eV for NiO, [202], one finds Jy = 0.93 €V, i.e., Jy ~ 1.5¢t. Indeed, it has been
shown that Jy = 1 eV reproduces the experimental band gap and the magnetic
moment of LayNiOy4 [203]. Finally, band structure calculations in the local density
approximation predict the crystal field splitting between e, orbitals to be 0.5
eV [204]. On the other hand, XAS spectra reveal a larger splitting of 0.7 eV
[205], a value also deduced from the optical spectroscopy [103]. Altogether, we set
E, =1=10.6 eV as a realistic value of the crystal field splitting in the nickelates.

We proceed now to discuss our key qualitative results obtained for increasing
doping. Fig. 5.13 shows free energy gain of the VBC and DBC stripe phases with
respect to the AF phase d 4 as a function of doping x, as obtained at temperature
Bt = 100 for the e, model (5.1) with U = 8¢, Jy = 1.5¢, and E, = 0. Analogously
to the single-band findings, Fig. 5.13 gives a clear demonstration of the tendency
to a gradual formation of stripe phases with smaller unit cells upon increasing
doping. Another important observation is that, in agreement with the results
of multiband models for nickelates [101, 113], for a given fixed doping diagonal
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Figure 5.14: The same as in Fig. 5.13 but with finite crystal field splitting FE, = t.

structures are significantly lower in energy than vertical ones, especially in large
doping regime x = 0.4. The robust stability of the DBC stripe phase with respect
to the VBC one is illustrated more transparently in Table 5.5, where we compare
the ground state free energy F' for both structures. Note that a similar variation
of the optimal distance between DWs d suggests the same optimal stripe filling.

A further qualitative point concerns the influence of a finite crystal splitting
between the |z) and |z) orbitals on stability of DW structures. As depicted in
Fig. 5.14, realistic value E, = t seems not to promote noticeably any stripe phases
and one recovers DBC stripes as the ground state. We conclude therefore that it
is not E, that is responsible for a different orientation of DWs in nickelates and
cuprates. Later on we shall see that finite £, has also only a little visible effect
on optimal stripe filling. However, a reduced stability of both stripe phases with
respect to the uniform AF phase appears to be rather puzzling at first sight. One
finds that realistic positive F, promotes |z) orbitals with a narrow band which
suppresses substantially the AF superexchange gain o< J = 4(¢**)?/U. Moreover,
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larger filling of the |z) orbitals means that holes are predominately doped into
the |x) orbitals. Hence, one would expect that such charge redistribution strongly
increases the kinetic energy gain due to a wider band formed by holes, propa-
gating especially easily along DWs where the AF order is partially suppressed.
Nevertheless, this gain is apparently easily overcompensated by the kinetic energy
loss due to hopping perpendicular to the stripes. On the one hand, our studies
of the BC stripe phases within the single-band Hubbard model have shown that
the largest kinetic energy gain is released on the bonds connecting pairs of fer-
romagnetically coupled atoms located in the DWs (¢f. Fig. 3.4). On the other
hand, in the e; model, FM order of the DW spins is substantially stabilized by the
off-diagonal hopping ¢** yielding low-energy excitations of the FM superexchange
o< Jpyr = 4(t"*)? /(U — 3Jg). However, when one orbital is sufficiently favored by
finite crystal field over the other one, these low-energy processes are practically
blocked, explaining enhanced stability of the AF order with respect to the BC
solutions (cf. Figs. 5.13 and 5.14).

Let us now pause for a moment to remind the main experimental data con-
cerning stripe phases in nickelates. The stripe order in LSNO is characterized by
both charge Q. = +7(2¢, 2¢) and spin Q, = 7(1 £ ¢, 1 £ €) IC wave vectors along
the diagonal, with respect to the Ni-O bond, direction, with the incommensura-
bility €, corresponding to the inverse of the distance d between DWs, i.e., e = 1/d
[14, 15, 24-29]. Further, € varies continously upon doping z following the linear
relation € = = in the wide doping regime x < 1/3 and than it gradually saturates
with the value € ~ 0.44 [29]. Such behavior of € indicates a fixed hole density of
one hole/Ni ion and it is consistent with the HF predictions both in the single-
and multiband models [5-9, 101, 102, 113]. Finally, a fixed hole density along
DWs results in the pinning of the chemical potential p for < 1/3, whereas a
large (~ 1 eV /hole) downward shift appears in the higher doping regime [110].

Our theoretical findings concerning the properties of BC stripe phases are
summarized in Fig. 5.15 showing the doping dependence of the incommensurability
¢, stripe filling v, and chemical potential p for both the VBC (left) and DBC
(right) stripe ground state deduced from Figs. 5.13 and 5.14. Here, by analogy
with Fig. 4.10 illustrating doping dependence of ¢, v, and p in the model for
cuprates, the points correspond to the middle of stability region of a given type
of the ground state. The only exception is the d = 3 case, in which €, v, and p,
are plotted for the minimum of the free energy.

In agreement with the experimental data for LSNO, indicated here by a gray
solid line in panels (a,b), one observes that e follows the law € ~ z up to x ~ 0.2 and
then it tends to saturate with the highest possible value for the BC stripe phase,
i.e., ¢ = 1/3, as there are no BC stripe phases in which DWs are separated by d = 2
lattice spacings. Further, in the regime where € follows linearly x, decreasing stripe
periodicity allows the system to maintain nearly fixed v |¢f. Fig. 5.15(c,d)| pinning
simultaneously the chemical potential u, as shown in Fig. 5.15(e,f). Remarkably,
the ground state of both the VBC and DBC stripe phases is characterized by the
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Figure 5.15: Doping dependence of: (a,b) magnetic incommensurability e, (c,d)
stripe filling v, and (e,f) chemical potential p for the VBC (left) and DBC (right)
stripe ground state deduced from Figs. 5.13 and 5.14. Gray solid line in panels
(a,b) shows the experimental behavior of € in LSNO [29].

optimal filling 0.9 hole/Ni, very close to the experimental value one hole/Ni ion,
and the optimal filling remains almost unaltered in the model with a finite crystal

field E, = t.

Regarding the chemical potential shift Ay in the doping regime x > 0.2, one
finds that, as in the calculations for the cuprates, it exceeds the experimental
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Figure 5.16: Free energy gain of the VBC (top) and DBC (bottom) stripe phases
with respect to the AF phase dF4r as a function of doping x, as obtained at the
temperature 5t = 100 for the DDH model with U = 8t, Jg = 1.5t, and E, = 0.

value ~ —1 eV /hole [¢f. Fig. 2.9(d)] by a factor of 2. Indeed, assuming the
effective hopping ¢t = 0.6 €V, one obtains Ay ~ —2.2 (—2.1) eV /hole for E, =0
(E, = t), respectively. Therefore, we conclude that either one needs to carry out
calculations within more realistic multiband models with oxygen atoms, or the
value of the effective hopping is a decreasing function of doping x, which could be
ascribed to an increasing disorder in the system.

We proceed now to figure out whether the established results concerning the
ground state with the DBC stripe phase as well as doping dependence of € and v,
appear solely in the realistic e, model or if they are also a common feature of the
DDH model with a simplified hopping matrix t** = —(¢/2)d,s5. Note, that the
average bandwidth of the e, and DDH models is the same, which ensures that for
a given U, electrons in both models are approximately equally correlated. Here,
we shall set the same value of parameters as we have chosen for the e, model, i.e.,
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VBC DBC
x d F/t d F/t
0.050 11 3.1095 11 3.1000
0.055 10 3.0912 11 3.0804

0.060 9 3.0729 11 3.0610
0.065 8 3.0547 10 3.0417
0.070 8 3.0364 9 3.0225
0.080 & 3.0001 8 2.9839
0.090 7 2.9636 7 29454
0.100 6 2.9269 7 2.9070
0.110 5 2.8902 6 2.8683
0.120 4 2.8538 5 2.8301
0.140 4 2.7807 5 2.7530
0.160 3 2.7077 4 2.6760
0.180 3 2.6347 4 2.5996
0.200 3 2.5626 3 2.5227
0.300 3 2.2129 3 2.1531
0.400 3 1.8809 3  1.8116

Table 5.6: Comparison of the ground state free energy F' per site for the VBC
and DBC stripe phases as found in the DDH model with U = 8¢, Jy = 1.5¢, and
E,=0.

U = 8t, Jg = 1.5t, and we consider only the E, = 0 case. In addition, we restrict
ourselves, due to equivalence of the bands, to the subspace with (o) = (p) = 0.
Fig. 5.16 shows free energy gain of the VBC and DBC stripe phases with
respect to the AF phase d 4 as a function of doping x, as obtained at temperature
Gt = 100 for the DDH model. First of all, for a fixed doping diagonal structures
are again significantly lower in energy than vertical ones (cf. also Table 5.6).
Moreover, also in this case, we recover here a tendency to gradual crossover towards
stripe phases with smaller unit cells upon increasing doping, Note, however, that
in contrast to the predictions made within the e, model, structures with vertical
(diagonal) DWs separated by a distance d > 5 are the lowest energy solutions
only in a narrow doping region z < 0.12 (x < 0.15), respectively. Hence, in the
DDH model, one observes a fast variation of the optimal distance d which should
result in a small optimal stripe filling. Indeed, as depicted in Fig. 5.17, a linear in
x segment of the incommensurability e, exceeds the experimental value in LSNO
roughly by a factor 2 (1.5) in the case of the VBC (DBC) stripe phase, respectively.
Consequently, the optimal stripe filling in the former case is substantially reduced
down to v =~ 0.55 and in the latter case — down to v ~ 0.65 [¢f. Fig. 5.17(c,d)].
Finally, one finds that the chemical potential in the VBC stripe phase is released
already at  ~ 0.14 and at slightly larger doping x ~ 0.16 in the DBC one.
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Figure 5.17: Doping dependence of: (a,b) magnetic incommensurability e, (c,d)
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the experimental

behavior of € in LSNO.

In order to find out the reason of such a vast discrepancy between the pre-
dictions made in the e, and in the DDH model, let us now investigate closer the
properties of idealized filled and half-filled DWs. In particular we shall discuss
the local hole density ny(l,), local modulated magnetization density m(l,), local
hole orbital polarization oy, (I, ), and local modulated magnetic orbital polarization



5.4. Stripe phases 127

nh(lm) = Znha(lx)v m?T(lZ‘) = (_1)%) Z /\anaa(lm)a (572)
onls) = Y Aanalla), Pelz) = (1) ) Aadonaq(la), (5.73)

where n,,(l;) is the local orbital charge density,

nao(lz) = <n(lgc,0)oza>7 (574)

whereas n,4(l;) denotes the local orbital hole density,
Mha(le) = 1= nag(l). (5.75)

Furthermore, important information about the nature of stripe phases is provided
by the average local intraorbital double occupancy,

D(lm) = Z Nat (lx)nal (lx)a (576)

as well as by two local interorbital double occupancies,

Dgg(lx) = Z nma(lm)nzﬁ(lx)a (577)
DY (la) =Y o (le)no (1) (5.78)

where 6 = —o. To appreciate better the differences between the DDH and e,
model, we compare in Fig. 5.18, local hole n,(l,) and modulated magnetization
density m,(l,) of the filled VBC and DBC stripe phase found at temperature
Bt = 100 in either model on a 64 x 64 cluster with U = 8¢, Jg = 1.5¢, £, = 0, and
x = 1/8. For completeness we also show, finite in the e, model, local hole o (l,)
and local modulated magnetic p.(l,) orbital polarization.

The observed differences, pronounced especially at DWs, follows directly from
the fact that each model prefers a different effect helping to reduce double occu-
pancy at those sites. Namely, in the e, model, large positive op(l,) at DWs means
that it is energetically advantageous to optimize the kinetic energy of holes doped
into the |x) orbitals, contributing to a wide band. However, in the HA, the only
way to optimize the on-site energy is to develop a strong spin polarization which,
in turn, would noticeably reduce the kinetic energy gain. On the other hand, one
can avoid such disadvantageous suppression by a strong reduction of electron den-
sity. This explains clearly larger hole density ny(l,) along DWs in the e, model,
as compared to the corresponding value found in the DDH model. Indeed, in the
latter case both bands are equivalent, resulting in oy (l;) = p.(l») = 0. Hence this
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Figure 5.18: Local hole ny(l,) (top) and modulated magnetization density m(l,)
(second row), as well as local hole oy, (I;) (third row) and local modulated magnetic
px(l;) orbital polarization (bottom) of the filled VBC (left) and DBC (right) stripe
phase found at temperature ¢ = 100 in either the DDH (open circles) or e, (filled
circles) model on a 64 x 64 cluster with U = 8t, Jy = 1.5¢t, £, =0, and z = 1/8.
For clarity, the e, results are shifted by one lattice constant from the origin of the
coordinate system. In the degenerate Hubbard model o,(l,) = p,(l,) = 0.
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Figure 5.19: Local intraorbital double occupancy D(l,) (top) and two local in-
terorbital DZ7(l,) (middle) and DZ?(l,) (bottom) double occupancies, of the filled
VBC (left) and DBC (right) stripe phase shown in Fig. 5.18. Open (filled) circles
denote the results found in the DDH (e,;) model, respectively.

model yields a more localized stripe phase with a larger magnetization |m.,(l,)| at
DWs than the one obtained in the e, model (¢f. Fig. 5.18).

To verify our conclusion, we show in Fig. 5.19 the average double occupancy
(5.76)-(5.78) of the stripe phases shown in Fig. 5.18. Remarkably, in the DDH
model (open circles) the on-site energy is predominately optimized by the reduc-
tion of the high-energy intraorbital D(l,) and interorbital D?7(l,) double occu-
pancies, so that the system might create even in the low doping regime a large
number of DWs in the unit cell and consequently reduce the optimal stripe fill-
ing. In contrast, in the e, model, the Coulomb energy is mainly optimized by the
reduction of the low-energy interorbital DZ7(l,) double occupancy resulting in a
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Figure 5.20: Local hole ny(l,) (top) and modulated magnetization density m.(l,)
(second row) as well as local hole oy,(l,) (third row) and local modulated magnetic
px(l;) orbital polarization (bottom) of the HVBC (left) and HDBC (right) stripe
phase found at temperature ¢ = 100 in either the DDH (open circles) or e, (filled
circles) model on a 64 x 64 cluster with U = 8t, Jy = 1.5¢t, £, =0, and z = 1/8.
For clarity, the e, results are shifted by one lattice constant from the origin of the
coordinate system. In the degenerate Hubbard model o,(l,) = p,(l,) = 0.
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Figure 5.21: Local intraorbital double occupancy D(I,) (top) and two local interor-
bital DZ7(l,) (middle) and DZ7(l,) (bottom) double occupancies, of the HVBC
(left) and HDBC (right) stripe phase shown in Fig. 5.20. Open (filled) circles
denote the results found in the DDH (e,;) model, respectively.

smaller magnetization |m,(l,)| at DWs as compared to the one found in the DDH
model. However, reduced |m,(l,)| at those sites allows the system to optimize
better the kinetic energy gain which apparently overcompensates a large on-site
energy only when the optimal filling is close to one hole/Ni site, meaning that for a
given doping level, the DWs should be separated by a larger distance as compared
to predictions made in the DDH model. On the other hand, a robust stability
of the DBC stripe phases with respect the VBC ones, has the origin in a better
optimization, by the former, of all double occupancies (5.76)-(5.78).

For completeness, in Fig. 5.20 we compare hole- ny,(l,) and spin- m,(l,) density
profile of a half-filled vertical bond-centered (HVBC) stripe with a corresponding
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Figure 5.22: Band structure of the HVBC stripe phase as a function of parallel
momentum £k, calculated from the unit cell shown in Fig. 4.1(a) at temperature
Bt = 50 either in the e, (a) or DDH (b) model on a 8x16 cluster with U/t = 8,
Jg = 1.5t, E, =0, and = 1/8. Black (gray) line corresponds to the bulk (mid-
gap) bands, respectively, whereas the dashed line indicates the Fermi level, and
show that the lower mid-gap states are partly filled.

profile of a half-filled diagonal bond-centered (HDBC) stripe. Even though the
overall shape of the DWs looks very much the same in both models, a larger mag-
netization |m,(l,)| at DWs is again found within the DDH Hamiltonian which
follows from larger interorbital D?7(l,) double occupancy (cf. Fig. 5.21) promot-
ing, due to finite Hund’s exchange Jy = 0.15¢, the on-site high-spin states. In
fact, different values of m,(l,) at these sites has severe consequences for the band
structure of the HVBC stripes in both models, shown in Fig. 5.22. First of all,
note that due to the AF spin modulation along the BC DWs, one finds a distinct
gap between two mid-gap states lying within the Mott-Hubbard gap. Remark-
ably, the lower mid-gap state is localized just above the LHB in the DDH model,
wheraes it is clearly separated, due to smaller on-wall m,(l,), by a real gap from
the LHB in the e, model. Therefore, in the former it is possible to fill up also the
low-lying mid-gap states explaining the reason of substantial suppression of the
optimal stripe filling in the DDH model, the situation which is avoided in the e,
model, promoting filled stripes.

The above important difference is also well seen in the DOS, depicted in
Fig. 5.23. Fig. 5.23(a) [Fig. 5.23(b)] shows density of states N,(w) (5.70), pro-
jected on the orbital |z) (]z)), respectively. The corresponding total density of
states N(w) is shown in Fig. 5.23(c). Here, one finds that the mid-gap bands are
formed mainly by the |x) states, which optimizes the kinetic energy of holes doped
into the |z) orbitals, whereas the vast majority of the |z) states belongs to the
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Figure 5.23: Partial densities of states N,(w): (a) projected on |z) orbital, and
(b) projected on |z) orbital, as well as (c) total density of states N(w) for the
HVBC stripe phase obtained in the e; model. Panel (d) shows for comparison
N(w) as found in the HVBC stripe phase within in the DDH model. Parameters
as in Fig. 5.20

Hubbard bands. In contrast, in the DDH model the lower mid-gap states overlap
with the LHB [¢f. Fig. 5.23(d)].

We summarize our key results in Table 5.7, where we compare the free energy
of both the filled and half-filled BC stripe phases, found either in the e, or DDH
model. In the realistic e, model, one observes a generic tendency to promoting
filled stripes over the half-filled ones (¢f. Table 5.7). Most imoportantly, for the
parameters relevant for LSNO, one finds as the lowermost phase experimentally
observed filled diagonal stripes. In contrast, even though the DDH model with two
equivalent orbitals clearly favors diagonal DWs, it stabilizes the half-filled diagonal
stripes.

In fact, our systematic studies of stripe phases, within the model with e,
orbitals, separated by different lattice spacing varying from d = 3 to d = 11, have
revealed that, in the doping regime where € ~ z, i.e., for x < 0.2, the optimal stripe
filling in the true ground state is slightly less (0.86 < v < 0.89 hole/Ni, depending
on the crystal field splitting) than the experimental value of one hole/Ni ion.
Nevertheless, we argue that only a realistic model including two e, orbitals with
different hopping elements inducing finite orbital polarization provides a correct
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ey model DDH model
phase  F/t phase  F/t
HDBC 2.5759 VBC  2.8395
HVBC 2.5756 HVBC 2.8354
VBC  2.5629 DBC  2.8172
DBC  2.5508 HDBC 2.8135

Table 5.7: Comparison of the free energy F' for the BC stripe phases as obtained
at temperature 3t = 100 either in the e, or DDH model on a 64 x 64 cluster with
U=8t, Jy =15t FE, =0, and z = 1/8.

description of doped NiOy planes in layered nickelates.

Finally, in Chapter 3 we have seen that in the single-band Peierls-Hubbard
model, strong electron-lattice coupling might tip the balance between vertical and
diagonal DWs clearly stabilizing the former (cf. Fig. 3.14). This is a particularly
intriguing question in the light of arguments indicating that LSNO is strongly lo-
calized primarily due to a large effect of the electron-lattice coupling [138], whereas
neutron scattering experiments suggest that DWs run diagonally across the NiOq
planes [14, 15, 24-29|. However, it should be emphasized that the realistic e,
model is qualitatively different from the DDH model, in which, by analogy with
the results found in the single-band Peierls-Hubbard model, one would also expect
stabilization of the vertical DWs in the presence of the Peierls coupling. Hence, a fi-
nite electron-lattice coupling in the e, model does not necessarily have to stabilize
vertical DWs, explaining the discrepancy between the theory and experimental
findings. This situation suggests that further studies are needed to establish a
definite answer to this question.



Chapter 6

Summary and conclusions

The aim of this Thesis was first and foremost to understand the properties of stripe
phases and to determine the reasons of differences between the doped layered
cuprates and the nickelates. In order to get an insight into the above important
questions, we have used two realistic models: (i) an extended hopping single-band
Hubbard model (t-#-U) for the cuprates and (i) a two-band model with the e,
orbitals as appropriate for the nickelates.

First, in Chapter 3, motivated by the pioneering works [5-9] we investigated,
using the HA, the relative stability of the filled vertical /horizontal and diagonal
stripe phases and discussed the role of finite lattice anisotropy, next-neighbor
hopping t/, nearest-neighbor Coulomb interaction V', and finally the influence of
static Peierls electron-lattice coupling. In particular, it has been found that stripe
order always selects the direction of DW’s along a smaller hopping direction in the
anisotropic model, and that both repulsive V' (V' > 0) and negative t' (t'/t < 0),
which correspond to the realistic parameters of the superconducting cuprates,
enhance the relative stability of the diagonal stripes. Furthermore, we have shown
that even such a simple method as the HA is sufficient to demonstrate the solitonic
mechanism which primarily stabilizes stripes owing to the hopping perpendicular
to the direction of DW’s and allows to draw qualitative conclusions about the
possible phases. Interestingly, we have found that the static Peierls electron-lattice
coupling stabilizes vertical DW’s by the bond contractions, especially pronounced
on the bonds which connect DW atoms with their neighbors in the transverse
direction. They lead to a stronger relative enhancement of the local hopping
elements and consequently to a larger kinetic energy gain as compared to the case
of diagonal DW’s. Next, guided by the observation that the negative ¢’ (#'/t < 0)
yields a positive kinetic energy and hence its contribution is reduced by expelling
holes from the AF domains and reinforcing the stripe order, we have stabilized
a half-filled stripe phase involving an on-wall SDW. We argue that such phase
not only easily accommodates holes, but also redistributes them around DW’s
in such manner that the kinetic energy associated with next-neighbor hopping
becomes negative despite negative ¢’ and consequently, it takes over in the regime

135
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of t'/t ~ —0.3.

In Chapter 4 we reviewed the SRI SB representation of the Hubbard model and
have introduced the reciprocal space representation, used in the investigation of
stripe phase stability in this Thesis. Having presented the theoretical framework,
we then proceeded with an analysis of stability of the idealized filled as well as
the half-filled stripes in the ¢-#’-U model at the doping z = 1/8 and have shown
that the negative next-neighbor hopping (¢'/t < 0) favors the latter. We have
also emphasized the role a proper treatment of strong electron correlations by
comparing the SB charge and spin density profiles with the ones obtained in
the HA. With this knowledge of general features of the stripe phases, we have
performed a systematic studies of an array of stripe phases by considering variable
length of the unit cell. Our findings obtained in ¢-#’-U model within the SBA agree
qualitatively with the experimental data concerning the cuprates and reveal a
strong influence of the next-neighbor hopping ¢’ on the optimal filling of DW’s. In
particular, we have found that the stability of the half-filled DW’s, as established
in LSCO and Nd-LSCO, requires taking t'/t < —0.15. Finally, we have analyzed
the melting of stripes in the overdoped regime x > 0.3. The numerical result that
spin and charge order disappear simultaneously led us to the conclusion that the
stripe order is a common charge-and-spin instability.

Once we understood the competition between various stripe phases in the ¢-t'-
U model, we considered, in Chapter 5, a degenerated model with two e, electrons
in order to establish the role of the second orbital in stabilizing filled DW’s in
the nickelates. First, in order to understand better the electronic structure and
intersite correlations, we solved exactly a two-site molecule with either e, or t5,
orbitals at quarter-filling and found that the phenomenon of a complementary
behavior of the spin and orbital flavors is also a characteristic feature of this
model. Next, we addressed the occurrence of orbitally polarized states due to the
inequivalent orbitals, and their interplay with FM and AF spin order in the HA,
and demonstrated that finite Hund’s exchange coupling Jy significantly stabilizes
the former order. Having discussed the properties of phases with small unit cells,
we have proceeded with applying the reciprocal space representation to the BC
stripe phase which is a good candidate for a ground state of the model with finite
Jg due to FM order on the rungs. Using the HA we have shown that the filled
diagonal BC stripes observed in the nickelates appear naturally within the effective
model for e, electrons, whereas a simplified DDH model, yields instead half-filled
DW’s in the ground state and hence cannot reproduce the experimental data.

Summarizing, we have developed a simple but powerful approach which allows
one to investigate the various stripe phases with a large unit cell and carry out the
calculation on large (up to 144x144) clusters. Consequently, our method provides
a unique opportunity to study strong changes induced by doping in the electronic
structure of a system with DW’s. Moreover, it allows us to obtain unbiased results
at the low temperature 5t = 100 as well as to eliminate the role of finite size effects.
Therefore, the stripe phases found in the present approach are stabilized not due to



137

particular boundary conditions, but they represent a generic feature of the doped
strongly correlated electron systems.

At the end, let us address briefly a few problems which remain interesting and
timely topics in this field. One of them is to establish the influence of charged
impurities on stripe phases. It has been found that the system with DW’s is
extremely sensitive to the presence of charged impurities and the stripe order is
suppressed at sufficiently large impurity concentration, although it can persist
in some part of the cluster [206]. In fact, a possible mechanism of destructive
influence of the disorder on the stability of DW’s could by easily investigated in
the present approach by adding a random potential. Furthermore, it would be
interesting to examine whether a finite static Peierls electron-lattice coupling in
the model with two e, orbitals stabilizes vertical DW’s, as the effective single-band
model does, or if it promotes diagonal DW’s observed in the layered nickelates.
Finally, further studies are needed to establish to what extent, results found within
the effective e, model and the predictions made out of a more realistic multiband
model remain in qualitative agreement.






Appendix A

Useful formulas of
the SRI SB representation

A.1 Spin density vector

Here we prove the formula for the spin density vector in terms of SB operators,
L, T
S =) Toolhorls = 5 (PP +B'py — D' x D). (A.1)

oo’o
Substitution the expression (4.3) for p,,s into (A.1) gives,

1
Z Too/p:rfalpala/ = Z Z T oo (pEr)TO,UOj + pTTaal) (pOTO,Jla’ + pTola’)' (AQ)

oo'oy oo'o

A straightforward multiplication yields,

Z Tag/plalpala/ = i Z T o [Z plpuéw/ +n- TM/] , (A.3)
oo’ n

oo’o1
n=pip+p'p +i(p' xp), (A.4)
where we used the relation,
(A T ) (B Too) =A-B+i(AxB)- 71,0 (A.5)

Now, we can leave out the first term on the right hand side of (A.3) due to the fact
that Pauli matrices are traceless: ), 7 .0, = 0, and multiply Pauli matrices
in the remaining term separately for each direction a = x, y, 2,

T
Ne Z Tooo' Taoo! = TTa Z Tovoo! (Tawor) = 2n4. (A.6)

oo’ oo’
The upper sign refers to z and z, whereas the lower — to y direction. The

last step is to introduce a new operator p = (p1, —p2, p3), which allows to write
the final result in a compact form (A.1l), in which we took into account that
(pxp), = F(p X p),, with the sign convention as in (A.6).
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A.2 Kinetic energy renormalization operator

It is convenient to express the spin matrix z,

\/1 +efe + dfd + Zupru

V(= didzy —2ppy/(1 = ele)z - 201

in terms of its mean-field eigenvalues. However, in order to proceed one needs to
determine the eigenvalues of the matrix p. They are: p;, = %(po + p). Therefore,
the eigenvalues z; o and the corresponding eigenvectors xio of the matrix z are
given by,

z= (eTp + ﬁTd) ) (A'7)

zl—i e(po +p) + d(po — p) X1—L(1>
a ’ - id |
V2 U= = o+ )21 — ¢ — Lo — p)? V2 e
oy = 1 e(po — p) + d(po + p) v 1 (_e—i<1>)
— | _ )
\/5\/1_d2—%(po—p)Q\/l—GQ—%(poer)Q v2

where the angle ® describes a regular twist of the spin quantization axis.
On the other hand, matrix z can be diagonalized by means of a similarity
tranformation,

(201 O) — PP, (A.9)

<2
specified by its eigenvectors,

P= % <€}¢ _61@) . (A.10)

Hence, one can express z in terms of its eigenvalues by applying the inverse simi-
larity tranformation,

(a0 o 2y e
g_E(O 22>£ _(zeiq’ 24 )’ (A.11)

24 = & —g 22, PR —y (A.12)

with,
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Glossary

1SR muon spin rotation, 5

1D one-dimensional, 1

2D two-dimensional, 2

AF antiferromagnetic, 1

AIPES angle-integrated photoemission spectroscopy, 5

ARPES angle-resolved photoemission spectroscopy, 5

Ba-LSCO Lay_, ,Ba,Sr,CuOy, 7
BC bond-centered, 3

BIS bremsstrahlung-isochromat spectroscopy, 119
BSCCO BisSryCaCusOgyg, 10

CDW charge-density wave, 48

CPT Cluster Perturbation Theory , 3
DBC diagonal bond-centered, 25
DDH doubly degenerated Hubbard, 4

DMEFT Dynamical Mean Field Theory, 3
DMRG Density Matrix Renormalization Group, 3

DOS density of states, 4

DSC diagonal site-centered, 24
DW domain wall, 1

ED Exact Diagonalization, 3

Eu-LSCO Lay_, ,Eu,Sr,CuQOy, 7

FM ferromagnetic, 14

FS Fermi surface, 12

HA Hartree Approximation, 3

HDBC half-filled diagonal bond-centered, 132
HDSC half-filled diagonal site-centered, 66
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Glossary

HF
HTT
HVBC
HVSC

IC
KR

LBCO
LCO
LHB
LNO
LSCO
LSNO
LTO
LTT

NCCO
Nd-LSCO
NMR
NQR
NSNO

PM

QMC
QP

SB
SBA
SC
SDW
SRI SB
STM

TEM

UHB
UPS

VBC

Hartree-Fock, 1

high-temperature tetragonal, 7
half-filled vertical bond-centered, 131
half-filled vertical site-centered, 45

incommensurate, 5
Kotliar and Ruckenstein, 55

Las_,Ba,CuQOy, 7

LasCuOyyy, 8

Lower Hubbard Band, 43
LagNiO4+5, 13

Las_,Sr,CuQy, 1

Lag_,Sr;NiOy, 2
low-temperature orthorhombic, 6
low-temperature tetragonal, 6

Nd,_,Ce,CuQy, 13
Lay_;—,Nd,Sr,CuOy, 2
nuclear magnetic resonance, 5
nuclear quadruple resonance, 5

ng_xSTmNiO4, 13
paramagnetic, 2

Quantum Monte Carlo, 3
quasiparticle, 10

slave-boson, 4

Slave-Boson Approximation, 3
site-centered, 3

spin-density wave, 4
spin-rotation-invariant slave-boson, 4
scanning tunneling microscopy, 5

transmission electron microscopy, 5

Upper Hubbard Band, 43
ultraviolet photoemission, 5

vertical bond-centered, 25
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VMC Variational Monte Carlo, 37
VSC vertical site-centered, 24
XAS x-ray-absorption, 119

XPS x-ray photoemission, 5

YBCO YBaQCU3OG+5, 9

Zn-LSCO Lay_,Sr,Cu;_yZn, Oy, 8



