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Abstract
In this Thesis the universal aspects of the Hund’s-rule induced spin-triplet pairing are
analyzed within the two-band extended Hubbard model for the case of square lattice.
In the presented considerations, two physically distinct regions of parameters have been
singled out. Namely, the so-called attractive-interaction regime when the intraatomic
interorbital Coulomb repulsion magnitude is smaller than the Hund’s coupling (U ′ < J)
and the purely repulsive-interaction regime (U ′ > J).

First, the emphasis is placed on the U ′ < J regime for which the phase diagram
is calculated with the use of the Hartree-Fock (HF) approximation combined with the
Bardeen-Cooper-Schrieffer (BCS) approach. Within this treatment the stable pure su-
perconducting phase, as well as coexistent with either ferromagnetism or antiferromag-
netism are obtained. Influence of the intersite hybridization on the stability of the
paired phases, as well as the temperature dependences of both the magnetic moment
and the superconducting gaps are discussed. The approach supplements the diagrams
established earlier which now contain not only magnetically ordered phases, but also the
spin-triplet paired states treated on equal footing. According to the performed calcula-
tions, the nonzero magnetization can appear slightly below the Stoner threshold when
it is induced by the onset of the paired phase which leads to the conclusion that the
spin-triplet pairing of A1 type enhances the magnetism.

To analyze the influence of interelectronic correlations, the so-called statistically con-
sistent Gutzwiller approximation (SGA), which has been developed recently, is used for
the same model. The results obtained within the HF and SGA methods are often similar
from the qualitative point of view. The main difference is that in the SGA the region
of stability of the spin-triplet paired phase coexisting with ferromagnetism is absent,
whereas it appears in the HF-BCS situation.

Next, it was discovered that for the purely repulsive interactions regime the spin-
triplet paired phases, both pure and coexisting with antiferromagnetism, can become
stable but only when the calculations are performed within the SGA method. The
absence of the stable paired states in that regime within the HF approximation shows
explicitly, that the electron correlations, in conjunction with the Hund’s-rule exchange,
play a crucial role in stabilizing the spin-triplet superconducting state. Furthermore, even
though the model contains only the intrasite interactions, an intersite pairing appears
in the correlated regime that leads to the k-dependent superconducting gap (extended
s-wave).

Finally, the problem of the average particle number conservation with respect to
the Gutzwiller projection operation is discussed. A modification of the previously used
method (SGA) is proposed and consists of inclusion of an additional term in the effec-
tive Hamiltonian which enforces the conservation of the average particle number when
carrying out the Gutzwiller projection, without introducing the so-called fugacity fac-
tors in the projection operator. It is shown, that this modification leads to a significant
reduction of the superconducting gap in the situation when the pairing is strong. Nev-
ertheless, the qualitative trends remain the same. Concluding, it is claimed that the
SGA method can be regarded as a realistic method of approach also when extended to
concrete materials, which should be analyzed separately.
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Streszczenie
W niniejszej rozprawie przeprowadzono rozważania dotyczące uniwersalnych aspektów pa-

rowania trypletowego zaindukowanego regułą Hunda w dwupasmowym modelu Hubbarda na
sieci kwadratowej. Dwa fizycznie różne obszary parametrów zostały przeanalizowane z osobna.
Pierwszy z nich to tak zwany region oddziaływań przyciągających, który odnosi się do sytuacji,
gdy międzyorbitalne wewnątrzatomowe odpychanie kulombowskie jest mniejsze od całki oddzia-
ływań wymiennych typu Hunda (U ′ < J), natomiast dla drugiego z nich mamy do czynienia z
czysto odpychajacymi oddzialywaniami (U ′ > J).

W pierwszej części rozprawy rozważano sytuację, w której U ′ < J . Za pomocą przy-
bliżenia Hartree-Focka (HF) połączonego z podejściem Bardeena-Coopera-Schrieffera (BCS)
wyznaczone zostały diagramy fazowe, zawierające obszary stabliności fazy nadprzewodzącej, a
także fazy nadprzewodzącej wspólistniejacej z ferromagnetyzmem lub antyferromagnetyzmem.
Przeanalizowany został wpływ miedzywęzłowej hybrydyzacji na stabilność rozważanych faz, a
także na zależność temperaturową momentu magnetycznego i przerwy nadprzewodzącej. Dzięki
przedstawionemu podejściu diagramy fazowe wyznaczone wcześniej i zawierające jedynie fazy
o uporządkowaniu magnetycznym zostały uzupelnione o obszary stabilności faz sparowanych
trypletowo. Jak wynika z przeprowadzonej analizy, niezerowe namagnesowanie może wystąpić
poniżej progu Stonera, jeśli faza ferromagnetyczna współistnieje z nadprzewodnictwem, co z
kolei prowadzi do konkluzji, że nadprzewodnictwo trypletowe typu A1 wspomaga uporząd-
kowanie ferromagnetyczne.

W celu przeanalizowania wpływu korelacji miedzyelektronowych na rozważane fazy użyto
tzw. statystycznie konsystentego przyblizenia Gutzwillera (SGA), które zostało opracowane
w ostatnich latach. Wyniki otrzymane w ramach przyblizeń HF oraz SGA są często podobne
z jakościowego punktu widzenia. Główna różnica polega na tym, że dla metody SGA obszar
stabilności fazy nadprzewodzącej typu A1 z fazą ferromagnetyczną nie wystepuje, natomiast
jest on obecny gdy obliczenia przeprowadzi się zgodnie z przybliżeniem HF.

Następnie, odkryto, iż faza nadprzewodząca oraz faza antyferromagnetyczna współistniejąca
z nadprzewodnictwem, mogą być stabline dla obszaru parametrów, który odpowiada czysto
odpychającym oddziaływaniom, gdy obliczenia przeprowadzone są zgodnie z metodą SGA. W
przybliżeniu Hartree-Focka fazy nadprzewodzące nie wystepują dla tego obszaru parametrów,
co prowadzi do stwierdzenia, że korelacje międzyelektronowe wraz z regułą Hunda odgrywają
najistotniejszą rolę w stablilizacji nadprzewodnictwa trypletowego. Co więcej, pomimo że w
rozważanym modelu wystepują jedynie oddziaływania wewnatrzwęzłowe, to parowanie tryple-
towe ma charakter miedzywęzłowy w stanie skorelowanym, co z kolei prowadzi do przerwy
nadprzewodzącej zależnej od wektora falowego k (extended s-wave).

W ostatniej części rozprawy, rozważany jest problem zachowania średniej ilości cząstek przy
wykonywaniu projekcji Gutzwillera wielocząstkowej funkcji falowej. Zaproponowano mody-
fikacje poprzednio użytej metody SGA, która polega na dodaniu wyrazu do Hamiltonianu
effektywnego, który to wyraz wymusza zachowanie średniej ilosci cząstek bez wprowadza-
nia odpowiednich współczynnikow wariacyjnych Fukushimy (fugacity factors) w operatorze
projekcji Gutzwillera. Pokazano, że zaproponowana modyfikacja prowadzi do silnej redukcji
wartości przerwy nadprzewodzącej w sytuacjach, dla których nadprzewodnictwo trypletowe
jest silne. Niemniej jednak, trendy jakościowe pozostaja bez zmiany. Konkludując metoda
SGA może zostać uznana za realistyczną do zastosowania do konkretnych meteriałów, które
wymagają jednak odrębnej analizy ilościowej.
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Chapter 1

Introduction

Unconventional superconductivity
In recent years the unconventional superconductivity has become one of the main top-
ics in condensed matter physics. The term “unconventional” is used with respect to all
superconductors, in which the pairing mechanism has either a non-phononic origin or
the structure of the superconducting gap and other physical properties are of non-BCS
character. There is a wide range of materials which fulfill either of the conditions. They
are: the heavy fermion superconductors [1, 2], the high-TC cuprates [3, 4] and the iron-
pnictide [5, 6, 7] superconductors, the organic superconductors [8, 9], the uranium based
superconductors [10, 11], and the ruthenate superconductors [12, 13]. In the mentioned
compounds one distinguishes between the spin-singlet and the spin-triplet pairing. The
latter has been observed in UGe2 [10, 14] and UIr [15, 16] at high pressure, as well
as in URhGe [17, 18] and UCoGe [19, 20] at ambient pressure. The enhanced linear
coefficient γ of the electronic specific heat shows that these materials are moderately
correlated metals. What is interesting, the paired phase coexists with itinerant ferro-
magnetism in all four of them. Furthermore, they share the feature that the uranium
5f magnetic moments hybridized with conduction-electron states are responsible for the
ferromagnetic order and it is believed that the same hybridized 5f electrons form Cooper
pairs in the superconducting state. What is more, the paired phase appears close to the
magnetic instability and, except UCoGe, the region of stability of this phase is com-
pletely contained inside the region of stability of the ferromagnetic phase on the (p, T )
diagram. At this point, one should note that the first evidence of coexistence of itinerant
ferromagnetism and superconductivity has been reported for the d-band metal Y9Co7
[21]. The spin-triplet superconductivity can also coexist with antiferromagnetic ordering
which is the case in the heavy fermion UNi2Al3 [22, 23, 24] and UPt3 [25, 26].

A pure spin-triplet superconductivity has been observed in Sr2RuO4 [12], which has
the same layered structure as high-TC cuprates. Because of the fact that this material
gives a set of Fermi liquid parameters comparable to those of the superfluid 3He, some
analogies are drawn between these two systems. It should be noted that 3He was the first
case of the spin-triplet pairing in a quantum liquid. The electronic structure of Sr2RuO4

is characterized by three cylindrical Fermi surfaces (α, β and γ) and it is suggested from
experiment (neutron scattering) that it is a correlated electron system with dominant
incommensurate antiferromagnetic correlation. Due to similarities between Sr2RuO4 and
the layered compound LaFeAsO1−xFx [27, 28], it is believed that this iron-based material
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CHAPTER 1. INTRODUCTION 11

can also be a spin-triplet superconductor. The mother compound LaFeAsO is metallic
and shows antiferromagnetic ordering at about 150 K. The paired phase is induced by
the doping, similarly as in the case of the cuprate superconductors. Furthermore, among
the organic compounds one can also find candidates for the spin-triplet pairing. In this
respect the (TMTSF)2PF6 has attracted much attention due to observation of large Hc2

[29], as well as unusual Knight shift results [30]. However, the pairing mechanism in this
compound is most likely different than that proposed in Sr2RuO4.

The microscopic origin of spin-triplet pairing
The question of the microscopic origin of pairing in the mentioned systems still remains
open. Different scenarios are considered and it may be the case that not all of the
spin-tiplet superconductors can be described by a unified approach. One of the pos-
sible mechanisms is the pairing due to ferromagnetic spin fluctuations or paramagnon
exchange (similarly as in superfluid 3He) [31, 32, 33, 34, 35]. Such approach results in the
odd parity (p-wave) gap symmetry and is limited to weak correlations. One could also
consider the incommensurate antiferromagnetic spin-fluctuations [36] or charge/orbital
[37] fluctuations as the origin of a spin-triplet pairing. Moreover, it has been suggested
that the intra atomic Hund’s rule exchange can lead in a natural manner to the triplet
paired phase [38, 39, 40, 41], both pure, as well as coexisting with magnetic ordering.
Some theoretical investigations put aside the question of the microscopic mechanism for
Cooper pair creation and apply a phenomenological or semi-phenomenological approach
[42, 43, 44, 45].

Since there are already more than a few candidates for the spin-triplet pairing, many
different models are examined by authors considering this unconventional type of super-
conductivity. In this respect, one can distinguish between the single- and the multi-band
models. Earlier, the spin-triplet pairing in 3He [46, 47] and that of the neutron star crust
[48] has been successfully described with the use of a single band Landau Fermi-liquid
picture. This approach has been applied to weakly ferromagnetic superconductors [49]
and to Sr2RuO4 [31]. A single band model was also used, together with a phenomeno-
logical approach, relating to the uranium based compound UGe2 [43]. However, in order
to describe in a realistic manner the spin-triplet superconductivity one should often con-
sider a multiband model. The two- [44, 45, 50, 51] and three- [42, 52] band models were
examined to study both the pnictides and Sr2RuO4, as well as the spin-triplet pairing in
general [50, 52]. A number of theoretical investigations of multiband models are carried
out with the help of mean-field approximation [42, 43, 44, 45, 52], but the influence of
correlations has also been examined by few authors using DMFT+quantum Monte Carlo
method [50, 51].

The gap symmetry
Another important aspect is the symmetry of the superconducting gap parameter. As
the gap symmetry arises from the pairing mechanism, the crystal structure and the mi-
croscopic properties of the considered compound, also in this context different situations
are being considered. The constant a− b plane Knight shift [53] and the spin suscepti-
bility [54] measurements below TC in Sr2RuO4, suggest that in this compound the gap
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function of the chiral p-wave state is realized. This kind of state is an analog of the
unitary A phase of 3He and it breaks the time reversal symmetry. However, the experi-
mental research indicates [55, 56, 57] that the gap function should have lines of zeros on
the Fermi surface which is not consistent with the p-wave type of pairing. In this respect,
it has been proposed by Zhitomirsky et al [58] that a specific p-wave type of pairing with
a circular horizontal line nodes at kz = ±π/c on the α and β Fermi surface sheets can
be induced by an interband-proximity effect between the α and β bands and the γ band
in which a nodeless p-wave type of pairing is due to an attractive interaction. For these
calculations the two-band model has been used in the weak coupling limit. The same
type of p-wave pairing with line nodes has been earlier considered by Hasegawa et al
[59] by using a one band model and assuming a repulsive interaction between electrons
in a single Ru-O plane, as well as an attraction between electrons in adjacent layers.
Furthermore, suggestions of the f -wave gap functions for the Sr2RuO4 can also be found
[60, 61]. Investigations concerning possible p-wave and f -wave internal symmetries for
Sr2RuO4 have been performed by Annett et al [42, 62] for the three-band model, with
the pairing due to two nearest neighbors negative-U Hubbard interactions (intraplane
and the interplane). These calculations have been preformed in the mean field approx-
imation and gave a good agreement with selected experimental data. In contraposition
to these considerations, the fully open gap close to the BCS value for Sr2RuO4 has been
reported by Suderow et al [63]. The measurments have been performed by the tunneling
spetroscopy using a scanning tunneling microscope (STM) and it seems reasonable to
say, that they suggest a realization of an s-wave or extended s-wave gap symmetry in the
paired state. However, as far as the author of this thesis is concerned so far no theoretical
investigations applying directly the even-parity symmetry (of s-wave character) to this
compound have been carried out.

What concerns UGe2, the non-unitary p-wave type superconducting phase coexisting
with ferromagnetism has been considered [43]. This choice of gap symmetry was mo-
tivated by the experimental results form the 73Ge-nuclear-quadrupole-resonance under
pressure [64] which revealed, that the spin-up band is gapped with line nodes, but the
spin-down band remains gapless at the Fermi level.

The p and f -wave symmetries are examples of the so-called odd-parity pairing which
has an intersite character. On the other hand, some general investigations concerning
s-wave or extended s-wave (even-parity) pairing in the correlated electron systems were
presented in Refs. [50] and [51]. In these calculations, only the on-site interactions
were included in the two-band Hubbard model and the pairing was due to the Hund’s
rule coupling. Both intra- (s-wave) and inter- (extended s-wave or d-wave) site type of
pairing have been proposed to describe the superconductivity of the iron based supercon-
ductor LaFeAsO1−xFx [44]. In this case, also a two-band model has been used, however
the analysis was performed in the mean field approximation and the superconducting
phase has occurred due to an effective paring term which has been introduced in the
Hamiltonian. This kind of approach should be considered as a phenomenological one.
Furthermore, the considerations regarding even parity type of superconductivity have
been presented by Puetter et al [52] for t2g orbital (3-band) system. In this approach,
the spin-orbit and Hund’s rule couplings jointly give rise to the superconducting state
in the mean filed approximation.
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Calculation methods for correlated electron systems
For the case of weakly-correlated electron systems, when the interaction energy is much
smaller than the kinetic energy, the standard Hartree-Fock approximation provides often
satisfactory results, at least from a qualitative point of view. Unfortunately, many of
the realistic compounds which are of interest in the modern-day solid state physics, are
considered to be moderately or strongly correlated. In those systems the magnitude of
the electron-electron interaction is comparable to or larger than the kinetic energy. In
such situation, the Gutzwiller variational approach has received a great deal of interest.
It uses the so-called variational many-particle wave function (Gutzwiller wave function,
GWF) which describes the correlated state and is constructed by action of a projection
operator (which, in turn, contains the variational parameters determined by optimizing
the energy) on a non-correlated state. Due to the variational principle this approach
provides the upper bound for the ground state energy of the initial Hamiltonian. The
GWF was proposed for a single-band Hubbard model by Gutzwiller [65] (see also [66]).
Because the approach which uses GWF can be quite cumbersome even for simple mod-
els, the Gutzwiller approximation (GA) has been developed which is a straightforward
method to handle GWF. This method provides a prescription for constructing the ef-
fective single-particle Hamiltonian, in which the so-called band-narrowing factors are
introduced. However, additional simplifications have to be made in the GA which lead
to a reduced quality of the solution.

As it has been shown by Metzner and Vollhardt [67, 68] in the limit of infinite di-
mensions, the GA gives the same results as the GWF approach. An approximation-free
solution for the GWF was obtained in one spatial dimension [69, 70], however for a long
time the most important cases of d = 2 and 3 could not be solved without additional
simplifications. Recently, a diagrammatic method allowed for obtaining the GWF param-
agnetic [71] and superconducting [72] solutions for the two-dimensional Hubbard model.
Alternatively, the variational Monte Carlo (VMC) techniques [73] have been developed
which allow for an accurate evaluation of the expectation values for the Gutzwiller pro-
jected wave function in two and three dimensions. Unfortunately, they are restricted
to small systems. The Gutzwiller variational approach was extended to the multi-band
case [74, 75, 76], as well as applied to the periodic Anderson model [77] and also used
to perform a full out-of-equilibrium time-dependent calculations [78]. Moreover, on the
basis of GA the so-called renormalized mean-field theory (RMFT) for the t − J model
has been derived by Zhang et al [79].

Recently, the so-called statistically consistant Gutzwiller approximation (SGA) has
been developed [80] which is a modification of the original GA approach. As argued in
Ref. [80], in the standard Gutzwiller approximation the mean fields should be treated as
viariational parameters to obtain a fully-minimazed energy of the system. This is due to
the fact that the mentioned band-narrowing factors depend explicitly on the mean-fields.
However, to make the self-consistency condition fulfilled during the minimization proce-
dure, one has to impose additional constraints. These constraints, together with invoca-
tion of the maximum entropy principle, which allow to work in the nonzero-temperature
regime, are the novelties introduced within the SGA method. Such an approach was
applied to the t − J model [81, 82] as well as to the Anderson-Kondo lattice model
[83, 84]. As one can see from this brief overview, the original concept of Gutzwiller has
been developed further over the years and is still widely used.
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With respect to the quantitative analysis of correlated electron systems, one should
also mention other non-variational methods. One of them is the density matrix renormal-
ization group (DMRG) method [85], which yields very accurate results but for quasi-one
dimensional ladder systems. The approach based on the tensor network states [86],
which is the generalization of the DMRG to two-dimensions has also been used in recent
years but have similar limitations as the VMC calculations. In general, the VMC is the
variational alternative for the so-called Quantum Monte Carlo (QMC) [87] techniques,
which are very efficient for bosons but suffer from the negative sign problem [88] when
applied, in the non-variational form, to interacting fermions. This weakness does not
allow for an accurate QMC simulations of large systems at low temperatures.

Another method is the dynamical mean-field theory (DMFT), which is based on map-
ping the lattice model (such as the Hubbard model) onto a quantum impurity model
which constitutes a many-body local problem and is solvable through various schemes
(usually the QMC simulations are used at this point→ DMFT+QMC). The mapping is
exact in the infinite-dimension limit which means that it leads to a similar approxima-
tion as the GA. However, the DMFT has not been often applied to the unconventional
superconductivity as the off-site anisotropic pairing (d or p wave) cannot be treated by
it. Instead, it has been used with respect to the s-wave type of pairing [50, 51].

One should also mention the slave boson (SB) approach which has been used to treat
the infinite-U Anderson model as well as large-U Hubbard model for description of high-
TC superconductors. This method is based on introducing bosonic degrees of freedom
on each lattice site of the system and formulating a new Hamiltonian in the extended
bosonic-fermionic Hilbert space. The resulting Hamiltonian can be treated by means of
the mean field theory (MF), as it has been proposed by Kotliar and Ruckenstein [89] for
a one-band situation, and extended subsequently to the multi-band case by Lechermann
et al [90]. When it comes to the computational complexity, limitations, and applicability,
the SB approach can be considered as comparable in quality to the GA method. This is
why the topic of the GA and SB equivalence has been addressed in the series of papers
[77, 91, 92]. As argued in Ref. [80], the so-called SGA variant of the GA approach gives
results equivalent to the SB+MF in the simplest one-band and multi-band situations.
As it is pointed out in the mentioned paper, all features of the latter method may be
obtained in a alternative simpler manner within SGA, without introducing the “ghost”
condensed-Bose fields introducing spurious Bose-Einstein condensation points into the
thermodynamic description of the system at hand.

Aim and scope of this Thesis
As one can notice from previous Sections, the evidence for the spin-triplet superconduc-
tivity is not completely clear as yet and different types of approaches are developed in
order to describe theoretically this fundamental phenomenon. In this Thesis the empha-
sis is placed on the Hund’s rule as the primary source of the spin-triplet pairing which
was proposed in 1999 [38]. This concept originated form drawing an analogy between the
spin-triplet superconductors and the cuprate high-TC superconductors, where the anti-
ferromagnetic kinetic exchange is regarded as a source of not only antiferromagntism but
also the spin-singlet pairing. Hence, the question of ferromagnetic interactions as leading
to spin-triplet pairing comes out naturally. Within the approach itinerant magnetism,
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as well as superconductivity, can be induced by the Hund’s rule interaction. As a result,
both pure superconducting and coexisting superconducting-ferromangetic states can ap-
pear as stable. It should be noted at the start that most of the compounds in which
the spin-triplet pairing has been observed or proposed represent multiband systems with
strongly or moderately correlated electrons. Moreover, the magnetic instabilities are sig-
nificant in them and the paired phase often coexists with magnetic ordering. A complete
phase diagram of a model with Hund’s rule induced spin-triplet pairing and magnetism
has not been determined until now and the influence of the interband hybridization on
the stability of the considered phases has not been analyzed. Another important topic is
the influence of the correlations. There are only few theoretical papers that investigate
the spin-triplet pairing in the correlated regime. In the paper from Klejnberg et al a slave
boson approach (for the Coulomb interaction terms) combined with the mean-field-BCS
approximation (for the pairing part) has been discussed. In this manner the correlations
have been included only partly. The DMFT method has been also applied [50, 51] with
regard to the considered mechanism of pairing, but no comparison with the mean field
results for the same model has been performed, which would allow to scrutinize the
effect of correlations. Moreover, in these papers the complete phase diagram including
superconducting and magnetic phases in the correlated case has not been determined.
Also, the DMFT method was applied to calculate the instablility of the normal state
with respect to the pairing only. To the best knowledge of the author of this Thesis, the
GA approach (and in particular SGA) has not been applied for a multi-band model with
spin-triplet pairing due to the Hund’s rule, until now.

The principal aims of this thesis are as follows:

1. To investigate the global stability of the Hund’s rule induced spin-triplet paired
phase against the onset of either magnetism (ferromagnetism and antiferromag-
netism) or coexistent states and to construct a proper phase diagram comprising
the stable phases.

2. To determine the influence of the interband hybridization on the relative stability
of the considered phases.

3. To analyze in detail the influence of the interelectronic correlations on the formation
of the paired and coexistent phases.

In order to achieve the goals written above the extended two-band Hubbard model is
used for the case of square lattice within both the Hartree-Fock approximation and the
Statistically Consistent Gutzwiller Approximation (SGA). In the process of executing
this project it has been discovered that a purely repulsive interactions regime (U ′ > J)
can also yield a stable phase of type A (i.e., with equal spin pairing), as well as coexistent
spin-triplet superconducting-antiferromagnetic phase. This new feature is important as
the approach encompasses now the regime of parameters regarded as canonical situation
for appearance of itinerant magnetism only. Nevertheless, the approach still awaits
application to real materials. A possibility of its direct application to the analysis of
superfluid cold-atom systems should also be noted.



Chapter 2

Synopsis of the papers

2.1 Paper A.1, Spin-triplet pairing induced by Hund’s
rule exchange in orbitally degenerate systems:
Hartree-Fock approximation

As said in the Introduction, it is important to determine the location of the paired
and magnetically ordered phases on the phase diagram. The calculations have been
performed using the Hartree-Fock approximation for the cases of flat density of states
and for the square lattice. The paper reflects the initial stage of the research, and no
antiferromagnetism has been included as yet. In the Section 2 of the paper, a detailed
theoretical approach is presented in the mean-field approximation (HF+BCS) including
the A, A1, and B superconducting phases, as well as the ferromagnetic phase.

Next, the ground-state phase diagrams on the (n, J) plane are provided for the cases
with and without the interband hybridization. The results show sizable regions of sta-
bility of the pure paired phase of type A, as well as of the superconducting A1 phase
coexisting with ferromagnetism (FM), for both shapes of the density of states considered.
The pure ferromagnetic phase is stable only for the half filled band situation (n = 2) in
the case with no hybridization. The regions of stability of A and A1+FM phases narrow
down with the increasing strength of the hybridization in favor of the normal phase and
the pure ferromagnetic phase, respectively. The results show that hybridization has a
negative influence on the considered kind of spin-triplet superconductivity.

For the sake of completeness, the temperature dependences of the gap parame-
ter, magnetic moment, and chemical potential have been provided for the coexistent
superconducting-ferromagnetic phase, for different hybridization strengths. It can be
seen from the plots that as the temperature is increased the system undergoes two phase
transitions. The first one is from the A1+FM phase to the pure ferromagnetic phase
(at the temperature TS) and the second corresponds to the transition from the ferro-
magnetic phase to the paramagnetic phase (at the temperature TC). The calculated
transition temperature ratio was TC/TS ≈ 5. With the increasing hybridization the
critical temperature TS decreases, while the Curie temperature TC increases.

To summarize, in this paper the results from the first stage of the research have been
presented. The initial phase diagram without antiferromagnetsim has been determined
in the mean field approximation and the influence of the hybridization on the paired
phases has been analyzed. In the next step of the research the antiferromagnetically
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ordered phase is considered.

2.2 Paper A.2, Coexistence of spin-triplet supercon-
ductivity and antiferromagnetism in orbitally de-
generate systems: Hartree-Fock approximation

In this paper it is presented how to incorporate the antiferromagnetic phase into con-
sideretions contained in this Thesis. In particular, the coexistant Hund’s rule induced
spin-triplet paired phase in coexistance with antiferromagnetism (SC+AF) has been pro-
posed. First, the theoretical discription of such a phase in the mean-field approxaimation
is presented in detail. To make it possible for the paired phase to coexist with antiferro-
magnetism, four sublattice gap parameters (two sublattices and two spin orientations)
have been inroduced. For symmetry reasons the gap parameters that correspond to in-
tersite Cooper pairs with the spin aligned in the same direction as the magnetic moment
on the sublattice are equal. As a result one obtains effectively two gap parameters.

Next, in the results section, the free energy of the considered phase as a function of
temperature is presented and compared to the free energies of four other phases which
were considered in the previous paper (A.1). The gap parameters, the staggered magnetic
moment, and the specific heat have been analyzed, all as functions of temperature. The
results show that as the temperature is being raised the system undergoes two phase
transitions, similarly as in the case of A1+FM phase form A.1 paper. It should be
noted that both gap parameters which have been introduced in this paper vanish for a
single phase transition temperature. The transitions can be also seen from the calculated
specific heat plots where there are two discontinuities in the critical temperature (TC)
and Néels temperature (TN). The calculated transition temperature ratio is TN/TS ≈ 9.

From the determined band filling dependences one can see that the SC+AF phase is
stable close to the half filled band situation, however for n = 2 the superconducting gap
parameters vanish and the pure antiferrromagnetism becomes stable. Furthermore, it is
transparent from Figs. 3a and 3b that the division into two sublattice gap parameters
is accompanied by the creation of the staggered structure in the system.

In conclusion, in this paper the spin-triplet superconducting antiferromagnetic phase
has been proposed and it has been shown that this phase is stable for the proper range
of model parameters. The calculations have been performed in the mean field approx-
imation, however the hybridization has not been included yet. In the next step of the
research the complete phase diagrams and the influence of hybridization are examined.

2.3 Paper A.3, Coexistence of spin-triplet supercon-
ductivity with magnetic ordering in an orbitally
degenerate system: Hartree-Fock-BCS approxima-
tion revisited

In this paper, a fairly complete theoretical description of the spin-triplet paired phases
pure and coexisting with magnetic ordering (ferromagnetism and antiferromagnetism) is
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provided in the mean field approach for the case with nonzero interband hybridization.
Next, the phase diagrams are constructed including the pure spin-triplet superconducting
phase of type A, as well as superconductivity coexisting with both ferro- and antiferro-
magnetism. The evolution of the phase diagrams are presented with increasing strength
of the interband hybridization. The diagrams show that practically all magnetically or-
dered phases are in fact the coexistent phases with superconductivity except the half
filled band situation, where only the pure antiferromagnetism survives. A negative influ-
ence of the hybridization on the paired phase of type A is clearly visible. However, the
magnetically ordered phases are not that much affected by the increasing hybridization
strength.

The emphasis has been placed on the relation between the appearance of the A1
phase and the onset of ferromagnetism. The results show that the ferromagnetic phase
coexisting with superconductivity becomes stable for slightly lower J values than the
Stoner threshold for the appearance of pure ferromagnetic phase (cf. Fig. 2). More-
over, the superconducting gap increases rapidly in the range of model parameters where
the magnetization also changes rapidly (Fig. 4). This leads to the conclusion that the
spin-triplet superconductivity and magnetism enhance each other. The temperature de-
pendences of the order parameters and the specific heat corresponding to the A, A1+FM,
and SC+AF phases, have been analyzed for various strengths of the hybridization.

The concluding section of this paper contains the discussion of the effect of model
parameters on the stability of the considered phases. It is emphasized that the necessary
condition for the pairing to appear in the HF+BCS limit is U ′ − J < 0. This condition
turned out to be unnecessary in the correlated regime as explained in papers A.6 and
A.7.

Additionally in the Appendix C a brief discussion is provided on how to include the
spin fluctuations within the considered model. It is outlined briefly, that by making the
Hubbard-Stratonovich transformation for the interaction parts of the Hamiltonian the
mean-field part and the fluctuation part can be incorporated into a single scheme.

This paper gives the fairly complete Hartree-Fock+BCS analysis of the given problem.
Apart from that, one short additional paper has been written concerning the Hartree-
Fock approximation. In the next stage of the research the so-called statistically consistent
Gutzwiller approximation is applied for the same model Hamiltonian to examine the
effect of correlations.

2.4 Paper A.4, Hund’s rule induced spin-triplet super-
conductivity coexisting with magnetic ordering in
the degenerate band Hubbard model

This paper should be considered as a small amendment to the Hartree-Fock analysis
performed so far. It contains a brief revision of the main results presented in the earlier
papers, as well as the calculated phase diagrams on (n, T ) plane which have not been
analyzed previously. The diagrams show the evolution of the stable paired phases and
the corresponding critical temperature with increasing band filling. It can be seen that
the coexistent paired and magnetically ordered phases remain stable for much larger
temperatures than the pure spin-triplet superconducting phase which again leads to the



CHAPTER 2. SYNOPSIS OF THE PAPERS 19

conclusion that magnetism and this type of unconventional superconductivity enhance
each other. Also, the influence of the hybridization on the stability regions on the
diagrams is shown.

2.5 Paper A.5, Coexistence of spin-triplet supercon-
ductivity with magnetism within a single mecha-
nism for orbitally degenerate correlated electrons:
Statistically-consistent Gutzwiller approximation

This paper discusses in detail the central issues of the Thesis. Namely, the statistically
consistent Gutzwiller approximation is introduced for the first time for the-two band
model with spin-triplet pairing. Before the results are presented, the details of the the-
oretical approach are given. In this approach the multiband extension of the Gutzwiller
approximation is used to derive the so called renormalization factors for the considered
two-band model. Next, the effective Hamiltonian is constructed within the framework
of the SGA method, in which additional terms are added to the standard Gutzwiller
approximation. These terms play the role of basic constraints, thanks to which all the
mean fields, that are evaluated by minimizing the energy of the system, coincide with the
corresponding values obtained from the self-consistent procedure. As this approach, in
the present two-band case involves up to 256 variational parameters, the symmetry rela-
tions have been used for each phase considered reducing the number of these parameters
significantly.

The results are compared to those obtained from the Hartree-Fock+BCS approxi-
mation. In this manner, the role of electronic correlations can be singled out explicitly.
The free energy, the superconducting gaps, and the magnetic moments, all plotted as
functions of either band filling n or Hund’s coupling J have been analyzed. In general,
the results for the HF and SGA methods appear to be similar from the qualitative point
of view. However, the free energy calculated in the SGA is lower than the one for the
HF situation, as expected. The main difference between the two compared methods is
that in SGA the region of stability of the A1+FM phase is absent and only the pure
spin-triplet superconductivity of type A and superconductivity coexistent with antifer-
romagnetism become stable for proper ranges of the model parameters, whereas in the
HF approximation a sizable region of stability of the A1+FM phase is present.

Also, the band narrowing factors have been analyzed as functions of both band filling
n and the interaction constants U ,U ′, and J . The results show that for low values of the
band filling and of the interaction parameters, the renormalization factors have values
close to unity, as it should be, because the correlations are very weak then. Similarly, in
the antiferromagnetically ordered phase, when the staggered magnetic moment is close
to saturation, the renormalization factor is approaching to unity as in that situation the
configurations with two electrons of opposite spin on the same orbital, are being ruled
out. The influence of the hybridization is similar in the correlated case as it was in the
non-correlated, at least from a qualitative point of view.

Summarizing, in this paper an original many-particle (SGA) method has been formu-
lated which allows to investigate the spin-triplet real-space pairing in two-band correlated
systems. By comparing the results obtained in this method with those calculated with
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the use of Hartree-Fock+BCS approximation the effect of inter-electronic correlations
have been analyzed and thus the results have been put on a firmer basis for a discussion
of concrete meterials or cold-atom optical-lattice systems.

2.6 Paper A.6, Even-parity spin-triplet pairing for or-
bitally degenerate correlated electrons by purely
repulsive interactions

In this paper we concentrate on a entirely new idea. Namely, that the spin-triplet pairing
can originate from purely repulsive interactions. It should be noted again, that the
discussion presented so far was for the case when the intraatomic interorbital Coulomb
repulsion magnitude is smaller than the Hund’s coupling (U ′ < J). This limit can be
called as that with attractive interactions. It is important to investigate if it is possible
that the paired phase can be stable in the more realistic regime of purely repulsive
interactions (U ′ > J). This is the main topic of this and the next papers. The regime
of purely repulsive interactions corresponds to a canonical situation of studying the
correlated or itinerant magnetism within the whole class of extended Hubbard models.

By considering the same method and selection of phases as in the paper A.5, the phase
diagram has been calculated, which shows that the paired phase (pure and coexisting
with antiferromagnetism) is stable for the purely repulsive interactions regime. From
the comparison with Hartree-Fock results, in which the paired phases are absent in the
considered regime, it is seen that the correlations play a crucial role in stabilizing the
superconducting state in this limit. The coexistent SC+AF phase appears close to half
filling only, similarly as in the case of pnictide superconductors, whereas the pure A
phase appears for n ≈ 1.2 which corresponds roughly to the case of Sr2RuO4 in the hole
language.

It has also been shown, that in the correlated regime the considered pairing mech-
anism can lead to intersite pairing in spite of the fact that all the interactions are of
intrasite character in the starting model. The intersite pairing term in the effective
Hamiltonian is non-zero only when the intrasite pairing is also present, which shows a
direct connection between this two contributions to the pairing. The k-dependent gap
parameter that corresponds to this intersite pairing is of the same character as the form
of the band dispersion relation. As a result, in the considered case one obtains the s-
wave gap symmetry (intrasite) with an admixture of the extended s-wave gap symmetry
(intersite). As before, the interband hybridization is detrimental to the superconducting
A-phase stability when the spin-triplet pairing condensation energy is smaller than the
Pauli principle-allowed kinetic energy gain.

Summarizing, in this paper the combined Hund’s rule and correlation-induced pairing
has been proposed. This kind of mechanism is operative in the purely repulsive inter-
actions regime and leads to both intra- and inter-site contributions to the pairing. The
considered kind of superconductivity can appear as a pure SC phase, as well as coexist
with antiferromagnetism for the proper range of model parameters.
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2.7 Paper A.7, Spin-triplet paired state induced by the
Hund’s rule coupling and correlations: fully statis-
tically consistent Gutzwiller approach

In this paper the matter of conservation of the average particle number is elaborated
with respect to the Gutzwiller projection operation, of the starting wave function, which
is performed within the SGA method. The variant of this method which has been used
to obtain the results presented in two preceding papers, leads to the situation, in which
the average particle number is reduced while carrying out the Gutzwiller projection for
certain states. Similar feature was also present in the original Gutzwiller formulation
and it may raise doubts since the conservation of the average particle number should
be a characteristic of the Fermi liquid. This matter has already been discussed by a
number of authors with respect to the one band Hubbard model and Anderson model.
To compensate the particle number reduction in the correlated state, the projection
operator has been modified by Fukushima by introducing the so-called fugacity factors.
A different approach to handle this problem is proposed here.

In the theoretical section the modification of the previously used method is described
in detail. As it is shown, the particle number conservation constraint can be imposed by
adding a supplementary term to the effective Hamiltonian in the spirit of the Lagrange-
multiplier method. It should be noted, that this term does not contain any operators,
but only the expectation values. In this manner, the projection operator is not modified,
in contrast with the approach incorporating the fugacity factors, but the changes are
made on the stage of the effective Hamiltonian construction.

The proposed method has been used for the discussion of the Hund’s-rule and cor-
relation induced spin-triplet paired phase of type A. It has been shown, that the gap
magnitude obtained, when incorporating the particle number constraint, is essentially
reduced. The differences between the situation with and without the particle number
constraint are not significant when the superconducting pairing is weak (for low J val-
ues). The differences in the free energy between the two compared approaches is of the
order of 1meV in the favor of the solution when the particle number is not conserved as
expected, since for this case the variational space is richer. What is interesting that such
a small energy difference leads to a significant quantitative differences of the physically
meaningful parameters, although their qualitative trends remain the same. The influence
of the interband hybridization appears to be similar for both methods considered.

In the last part of the paper the Fermi-surface topology of the normal state, as well
as the quasi-particle energies in the normal and paired phases have been analyzed. It
has also been argued that the Fermi vector mismatch between the hybridized bands can
be the source of a transition to a spontaneous inhomogeneous spin-triplet state of the
FFLO type. The last suggestion requires a further analysis.
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Conclusions

To conclude the Thesis, in the present analysis the fundamental aspects of the proposed
microscopic real-space spin-triplet pairing mechanism has been discussed in the regime
of weak to moderate correlations. Both the pure superconducting and the coexistent
superconducting-magnetic phases have been analyzed and the proper phase diagrams
have been constructed in the ground state. Moreover, the temperature dependences of
the order parameters have been investigated. The calculations have been carried out by
using the HF+BCS approach, as well as the SGA method, which have been applied for
the first time to the two-band model with the spin-triplet pairing.

For the so-called attractive interactions regime (U ′ < J), a robust stability regions of
the paired phases have been obtained by using using both HF+BCS and SGA approxi-
mations. As it has been shown, the Hund’s rule induced spin-triplet superconductivity
and magnetism enhance each other. In the correlated case (SGA) the paired phase in
coexistence with antiferromegnetism appeared, however, the coexistence with ferromag-
netism turn out not to be stable, in distinction with repsect to to the non-correlated
situation (HF+BCS).

An important finding presented in this Thesis is that in the correlated regime the
paired phases, both pure and coexistent with antiferromagnetism, can become stable
for the case of purely repulsive interactions, which corresponds to a canonical situation
of studying magnetism in the extended Hubbard model. It has been argued that this
phenomenon takes place due to the combined effect of the Hund’s-rule and the correla-
tions. Moreover, as shown in detail, the considered mechanism can lead to both intra-
and inter-site contributions to the pairing, even though the starting model contains only
interactions of the intrasite character. Some connotations between this result and the
pairing in the one-band Hubbard model, obtained in Ref. [72], can be mentioned at
this point. As it has been shown there, the one-band model with intrasite repulsion can
also lead to an intersite pairing. Similarly, in that case the correlations have to play
the crucial role in the pairing mechanism. In fact, a more precise method of taking into
account the correlations has to be applied (GWF) in the one-band situation to obtain
the paired states. Also, for strong Coulomb repulsion the one-band model can be trans-
formed to the t − J model, in which the pairing is intensively investigated. However,
in contrast to these considerations, in the case considered here, the pairing has both
intra- and inter-site character and apart from the correlations, the Hund’s rule is very
important for the appearance of the superconducting phase, as it favors the spin-triplet
states by decreasing their energy on a single atomic site. Nevertheless, the total energy
including Coulomb repulsion is still positive (purely repulsive interactions). It should be
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also noted that according to the performed analysis the inter- and intra-site pairing have
strong connection, as they appear for the same values of the model parameters.

Furthermore, the influence of the intersite hybridization on the stability of the paired
phases has been analyzed. The hybridization introduces the inequivalence of the bands
and has a negative influence on the considered kind of paired states which is due to
the Fermi wave-vector mismatch that appears. However, when the mismatch is not very
large the paired state can still be stable, which means that the considered kind of pairing
mechanism could be applied to some of the realistic situations. One of the possibilities
is the compound LaFeAsO1−xFx, in which upon doping the superconductivity occurs.
It is suggested, that the two bands β1 and β2 in this system are responsible for the
appearance of the paired phase. Hence, a two-band model has been considered [44]
for the discription of s-wave (and extended s-wave or d-wave) superconducting state,
in a phenomenological manner. The approach presented in this Thesis can be used to
construct a microscopic model of superconductivity also in a two-band approximation of
this iron-based compound.

On the other hand, in the case of strongly inequivalent bands (as are the α and
β bands in Sr2RuO4), the Cooper pair creation within the analyzed mechanism can
be inhibited. However, as suggested here, the stable paired state in such a situation
can also occur provided that the Fermi wave-vector mismatch can be compensated by
the non-zero center-of-mass momentum of the Cooper pairs. This would lead to the
spontaneous creation of the inhomogeneous spin-triplet FFLO phase. Such a scenario
should definitely be considered as a continuation of the work presented in this Thesis.
In particular, this kind of orbital-inequivalence-induced FFLO state could be applied
for investigations regarding superconductivity in Sr2RuO4 in a two-band approximation
including both α and β bands (as in Ref. [45]).

Futhermore, extension to the three-band case, even though may require cumbersome
calculations, should be attempted and would allow to study other real materials within
the approach considered here. Moreover, application of the findings obtained here to the
cold atom fermionic systems in the optical lattices [93, 94, 95], where the two-equivalent-
band situation can be realized, is also a promising route of further research.
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We discuss the spin-triplet pairing mechanism induced by the Hund rule ferromagnetic exchange. We include
explicitly the e�ect of interband hybridization and treat the problem by starting from an extended Hubbard
model for a doubly degenerate band, making the simplest Hartree�Fock approximation for the part involving the
pairing and the Hubbard interaction. The conditions of stability of various phases are determined as a function of
both band �lling and microscopic parameters. The phase diagram contains regions of stability of the spin-triplet
superconducting phase coexisting with either saturated or non-saturated ferromagnetism. Phase diagrams for the
cases of constant density of states and that of square lattice have been provided. The in�uence of hybridization
on the stability of considered phases, as well as the temperature dependences of magnetic moment and the
superconducting gap are also discussed.

PACS: 74.20.�z, 74.25.Dw, 75.10.Lp

1. Introduction

The candidates for the spin-triplet superconductors
have been discovered in the last two decades. They are
Sr2RuO4 [1], UGe2 [2], and URhGe [3]. Particularly in-
teresting are the last two as the paired state appears
inside the ferromagnetic phase and, in the case of UGe2,
disappears at the critical pressure together with ferro-
magnetism.
The question we posed for the �rst time a decade

ago [4�7] was whether the two phenomena may have
the same origin � the intra-atomic ferromagnetic Hund
rule exchange. This question originated from drawing an
analogy between the present systems and cuprate high-
-temperature superconductors where the antiferromag-
netic kinetic exchange is often regarded as the source of
both antiferromagnetism (in parent Mott�Hubbard in-
sulating compound) and spin-singlet superconductivity
when the metallic state is stabilized by doping the insu-
lator with holes. Namely, if the exchange interaction in-
duced superconductivity is a reasonable mechanism, not
just an accident, one has to explore other possibilities
such as the ferromagnetic interaction.
One should note a principal limitation for the exchange

interaction to represent a feasible mechanism of pairing,
which takes place in direct space. Namely, this is the
pairing induced by interparticle exchange. Therefore one

∗ corresponding author; e-mail: michal.zegrodnik@gmail.com

may think that the hopping (bare band) energy has to
become comparable to the exchange-interaction strength.
This idea is tested in the present paper in the simplest
Hartree�Fock approximation. It turns out that even in
the weak-coupling limit, the paired state (the so-called
A phase) may appear below the Stoner threshold for the
onset of ferromagnetism, as well as coexist with it above
that threshold (in the form of A1 phase). The result is
independent of the form of the density of states taken
and when interband hybridization is included.

2. Theoretical model

We consider the extended orbitally degenerate Hub-
bard Hamiltonian, which has the form

Ĥ =
∑

ij(i ̸=j)lσ

tija
†
ilσajlσ +

∑

ij(i̸=j)ll′(l ̸=l′)σ

t12ij a†
ilσajl′σ

+ U
∑

il

n̂il↑n̂il↓ − J
∑

ill′(l ̸=l′)

(
Ŝil· Ŝil′ +

3

4
n̂iln̂il′

)
,

(1)

where l = 1, 2 and the �rst term describes electron hop-
ping between atomic sites i and j. The second term intro-
duces hybridization into the system. The third term de-
scribes the Coulomb interaction between electrons on the
same orbital. The fourth term introduces the Hund rule
ferromagnetic exchange between electrons localized on
the same site, but on di�erent orbitals. In this model we
neglect the interaction-induced intra-atomic singlet-pair

(1051)
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1052 M. Zegrodnik, J. Spaªek

hopping ∼ J and the correlation induced hopping [8], as
we deal with the triplet-paired and ferromagnetic phases
only. It can be shown that [5] one can represent the full
exchange term with the help of the real-space pair oper-
ators, i.e.,

J
∑

ill′(l ̸=l′)

(
Ŝil· Ŝil′ +

3

4
n̂iln̂il′

)
≡ 2J

∑

i,m

Â†
imÂim, (2)

which are de�ned in the following way [9, 10]:

Â†
i,m ≡





a†
i1↑a

†
i2↑, m = 1,

a†
i1↓a

†
i2↓, m = −1,

1√
2

(
a†

i1↑a
†
i2↓ + a†

i1↓a
†
i2↑

)
, m = 0.

(3)

Hamiltonian (1) cannot be treated rigorously, apart from
model situations [11, 12]. In present paper we treat the
pairing and the Hubbard part in the mean-�eld approx-
imation. E�ectively, after making the Hartree�Fock ap-
proximation we can write down the Hamiltonian in the
following way (in reciprocal space):

ĤHF =
∑

klσ

(ϵk − µ − σISz)n̂klσ

+
∑

kll′(l ̸=l′)σ

ϵ12ka†
klσakl′σ

+
∑

k,m=±1

(
∆∗

mÂk,m + ∆mÂ†
k,m

)

+
√

2
∑

k

(
∆∗

0Âk,0 + ∆0Â
†
k,0

)

+ N

[ |∆1|2 + |∆−1|2 + 2|∆0|2
2J

+
n2

2
(3J − U) + 2I(Sz)2

]
, (4)

where I = U + J is the e�ective magnetic coupling con-
stant, N is the number of atomic sites and ϵk1 = ϵk2 ≡ ϵk

is the dispersion relation in the doubly degenerate band.
For modeling purpose, we assume that the bands are
identical. In the Hamiltonian written above we have in-
troduced the superconducting spin-triplet gap parame-
ters

∆±1 ≡ −2J

N

∑

k

⟨Âk,±1⟩, ∆0 ≡ − 2J√
2N

∑

k

⟨Âk,0⟩.
(5)

Moreover, as the bands are identical, we assume that the
corresponding band �llings and magnetic moments are
also identical, i.e. n1 = n2 ≡ n/2 and Sz

1 = Sz
2 ≡ Sz.

The one-particle part of the H�F Hamiltonian can be
easily diagonalized via unitary transformation which in-
troduces hybridized quasi-particle operators

ãk1σ =
1√
2
(ak1σ + ak2σ),

ãk2σ =
1√
2
(−ak1σ + ak2σ), (6)

with new dispersion relations

ϵ̃k1σ = ϵk − µ − σISz + |ϵ12k|, (7)

ϵ̃k2σ = ϵk − µ − σISz − |ϵ12k|, (8)

for σ = +1, −1 corresponding to spin orientation up and
down, respectively.

In the calculations, we make a simplifying assumption
that ϵ12k = βhϵk, where βh ∈ [0, 1]. Let us note that
the two energies correspond to the antibonding and the
bonding states, respectively.

A generalized Nambu�Bogolyubov�de Gennes scheme
is used next in order to write down the H�F Hamiltonian
in a matrix form allowing an easy determination of its
eigenvalues. With the help of composite creation opera-

tor [5] f̃
†
k ≡ (ã†

k1↑, ã
†
k1↓, ã−k2↑, ã−k2↓), we can construct

the 4 × 4 Hamiltonian matrix and write

ĤHF =
∑

k

f̃
†
kH̃kf̃k +

∑

kσ

ϵ̃k2σ + N{. . .}, (9)

where

H̃k =




ϵ̃k1↑ 0 ∆1 ∆0

0 ϵ̃k1↓ ∆0 ∆−1

∆∗
1 ∆∗

0 −ϵ̃k2↑ 0

∆∗
0 ∆∗

−1 0 −ϵ̃k2↓


, (10)

and f̃k ≡ (f̃
†
k)†. We limit ourselves to the case of real

gap parameters ∆∗
m = ∆m, and distinguish between the

following superconducting phases: A (∆1 ̸= 0, ∆−1 ̸= 0,
∆0 = 0) and A1 (∆1 ̸= 0, ∆−1 = 0, ∆0 = 0). The phase
labeled as B, i.e. that with ∆1 ̸= 0, ∆−1 ̸= 0, ∆0 ̸= 0 is
not stable within this mechanism, so it does not appear
in the subsequent discussion. After making the diago-
nalization transformation of (10) we can write the H�F
Hamiltonian as follows:

ĤHF =
∑

klσ

λklσα†
klσαklσ +

∑

kσ

(ϵ̃k2σ − λk2σ)

+ N{. . .}. (11)

The transformed (quasi-particle) operators have the form

αk1↑ = Ũ
(+)
k ãk1↑ + Ṽ

(+)
k ã†

−k2↑,

α†
−k2↑ = −Ṽ

(+)
k ãk1↑ + Ũ

(+)
k ã†

−k2↑,

αk1↓ = Ũ
(−)
k ãk1↓ + Ṽ

(−)
k ã†

−k2↓,

α†
−k2↓ = −Ṽ

(−)
k ãk1↓ + Ũ

(−)
k ã†

−k2↓, (12)

where the so-called Bogolyubov coherence factors acquire
the form

Ũ
(±)
k =

1√
2

(
1 +

ϵk − µ ∓ ISz

√
(ϵk − µ ∓ ISz)2 + ∆2

±1

)1/2

,
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Ṽ
(±)
k =

1√
2

(
1 − ϵk − µ ∓ ISz

√
(ϵk − µ ∓ ISz)2 + ∆2

±1

)1/2

. (13)

The dispersion relations for the quasi-particles λklσ are
then

λk1↑ =
√

(ϵk − µ − ISz)2 + ∆2
1 + βh|ϵk|,

λk1↓ =
√

(ϵk − µ + ISz)2 + ∆2
−1 + βh|ϵk|,

λk2↑ =
√

(ϵk − µ − ISz)2 + ∆2
1 − βh|ϵk|,

λk2↓ =
√

(ϵk − µ + ISz)2 + ∆2
−1 − βh|ϵk|. (14)

De�ning the gap parameters as ∆±1, the average num-
ber of particles per atomic site as n =

∑
l⟨n̂il↑ + n̂il↓⟩,

and the average magnetic moment per band per site as
Sz = ⟨n̂il↑ − n̂il↓⟩/2, the set of self-consistent equations
can be constructed for calculating all unknown mean-�eld
parameters

1 = −J

∫ 1/2

−1/2

ρ(ϵ)√
(ϵ − µ − ISz)2 + ∆2

1

× (f(λ1↑) + f(λ2↑) − 1)dϵ, (15)

1 = −J

∫ 1/2

−1/2

ρ(ϵ)√
(ϵ − µ + ISz)2 + ∆2

−1

× (f(λ1↓) + f(λ2↓) − 1)dϵ, (16)

n − 2 =

∫ 1/2

−1/2

ρ(ϵ)

{
ϵ − µ − ISz

√
(ϵ − µ − ISz)2 + ∆2

1

× (f(λ1↑) + f(λ2↑) − 1) +
ϵ − µ + ISz

√
(ϵ − µ + ISz)2 + ∆2

−1

× (f(λ1↓) + f(λ2↓) − 1)

}
dϵ, (17)

Sz =
1

4

∫ 1/2

−1/2

ρ(ϵ)

[
ϵ − µ − ISz

√
(ϵ − µ − ISz)2 + ∆2

1

× (f(λ1↑) + f(λ2↑) − 1) − ϵ − µ + ISz

√
(ϵ − µ + ISz)2 + ∆2

−1

× (f(λ1↓) + f(λ2↓) − 1)

]
dϵ, (18)

where ρ(ϵ) is the bare density of states (per site per spin
per orbital) and we have normalized all energies to the
bare bandwidth, W , while f(x) stands for the Fermi�
Dirac distribution function. Using Eq. (11) we can cal-
culate the free energy functional per site of the system

F

N
= −T

∫ 1/2

−1/2

ρ(ϵ)
∑

lσ

ln

(
1 + exp

(
−λlσ

T

))
dϵ

+

∫ 1/2

−1/2

ρ(ϵ)
∑

σ

(ϵ̃2σ + λ2σ)dϵ + µn + {. . .}, (19)

where T ≡ kBT/W denotes the reduced temperature.
Substituting the solutions for ∆±1, µ and Sz coming
from Eqs. (15)�(18) to Eq. (19), we obtain the physical
free energy which determine relative stability of di�erent
magnetic and/or paired states which we discuss next.

3. Results and discussion

Phase diagrams on the plane (n, J) have been cal-
culated for the case of constant density of states in the
starting (non-hybridized) bands and for that appropriate
for the square lattice. In both cases, regions of stability of
the following six di�erent phases have been determined
and involve the states: NS � normal state, A � su-
perconducting phase A, SFM � saturated ferromagnet,
FM � nonsaturated ferromagnet, A1+FM � coexisting
superconducting phase A1 and FM phase, A1+SFM �
coexisting superconducting phases A1 and SFM phase.
Exemplary phase diagrams for selected parameters are
shown in Fig. 1 for the constant density of states and for

Fig. 1. Phase diagrams for T = 10−4 for the case
of constant density of states in the starting (non-
-hybridized) bands for βh = 0.0 (a) and βh = 0.04 (b).
The Coulomb repulsion constant U = 7 J. No antiferro-
magnetism was included here.

hybridization parameter βh = 0 (a) and βh = 0.04 (b).
The presence of hybridization enriches remarkably the
phase diagram. Let us note that the Stoner threshold is
reached for J = 0.125; only above this critical value the
coexistent (S)FM+A1 phase appears. One has to em-
phasize that the pairing is induced by the exchange, not
by any spin (moment) �uctuation. This is clearly seen
from the fact that it can appear even in the ferromagnet-
ically saturated state. The same type of phase diagrams
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1054 M. Zegrodnik, J. Spaªek

Fig. 2. Phase diagrams for T = 10−4 for the case of
square lattice for βh = 0.0 (a) and βh = 0.04 (b). The
Coulomb repulsion constant U = 7 J. No antiferromag-
netism was included here.

Fig. 3. Temperature dependence of the superconduct-
ing gap ∆ ≡ ∆±1 and magnetic moment Sz (a), as well
as the chemical potential µ (b), for selected values of βh

parameter. Figures correspond to a stable coexisting
A1+(S)FM phase for the density of states in the start-
ing (non-hybridized) bands appropriate for the square
lattice.

but for a square lattice (with W = 8|t|) are exhibited
in Fig. 2.

It can be seen in the presented diagrams that the
stronger is the hybridization parameter the smaller are
the regions of stability of the superconducting phases for
both density-of-states functions considered. One has to
note that these phase diagrams are still incomplete. This
is because near the half-�lling one can expect the ap-

pearance of stable antiferromagnetic phases [13]. There-
fore, the regime of superconductivity stability may be
restricted to even narrower strips on the phase diagrams.
On the other hand, because of the peaked nature of the
density of states in both cases, ferromagnetism may com-
pete successfully with antiferromagnetism even close to
n ≈ 2. This question requires certainly further studies.
One should notice that the A1+FM phase disappears for
n = 2 even for the case where there is no hybridization,
i.e., only the SFM phase survives then.
For the sake of completness, we display in Fig. 3 the

thermodynamic quantities Sz, ∆ ≡ ∆±1, and µ, all ver-
sus temperature, for selected values of βh. The values
of microscopic parameters n and J have been chosen
so that the A1+(S)FM phase would be the stable one.
As the temperature of considered system is rising one
can observe two phase transitions. The strength of hy-
bridization in�uences the temperatures in which phase
transitions occur. The increase of βh parameter results
in diminution of the critical temperature, TS, and in-
crease of the Curie temperature, TC. What is more the
hybridization makes the magnetic moment smaller in low
temperatures. Let us note that the transition tempera-
ture ratio TC/TS ≈ 5.

4. Conclusions

We have carried out the Hartree�Fock analysis of the
phase diagrams involving the ferromagnetic and spin-
-triplet superconducting phases within the extended two-
-band degenerate Hubbard model. Stable and coexisting
superconducting and ferromagnetic phases have been ob-
tained. We have analyzed in detail the in�uence of inter-
-band hybridization on the stability of these phases, as
well as have provided the temperature dependence of the
order parameters. For particular set of microscopic pa-
rameters, one observes two separate phase transitions as
a function of temperature. The �rst is the transition from
A1+FM phase to FM at TS and the second one is from
FM to NS at TC ∼ 5TS. According to our results, the
hybridization has a negative in�uence on the spin-triplet
superconductivity, as it decreases the critical tempera-
ture and reduces the regime of stability of the supercon-
ducting phases. On the contrary, TC increases with the
increasing hybridization parameter βh. The phase dia-
grams determined by us supplement the corresponding
magnetic phase diagrams [13] with the A and coexistent
A1+FM, A1+SFM phases for theoretical model of the
same class.
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We consider the coexistence of the Hund's-rule-exchange induced spin-triplet paired state with the antifer-
romagnetic ordering by starting from the extended Hubbard model for a doubly degenerate band. We use the
density of states appropriate for the square lattice and treat the problem in the Hartree�Fock approximation.
The temperature dependences of the superconducting gaps, the magnetic moment, and the chemical potential
are presented. The free energy in the considered phase is evaluated, as well as the corresponding free energies in
four additional phases: paramagnetic, ferromagnetic, superconducting of type A and superconducting of type A1
coexisting with ferromagnetism; they occur in the proper range of parameters: band �lling n and the interaction
parameters U/W and J/W . The low temperature values of the superconducting gaps and staggered magnetic
moment are also analyzed as a function of band �lling.

PACS: 74.20.�z, 74.25.Dw, 75.10.Lp

1. Introduction

It is believed that the spin-triplet superconducting
phase appears in Sr2RuO4 [1], UGe2 [2] and URhGe [3].
In the last two compounds the considered type of su-
perconducting phase occurs as coexisting with ferromag-
netism. It has been shown [4�7] that the two phenomena
may possibly have the same origin � the intra-atomic
Hund's rule exchange, which can also lead to the coex-
istence of superconductivity with other type of magnetic
ordering � antiferromagnetism. The coexisting super-
conducting and antiferromagnetic phase is discussed in
this work for the extended two band Hubbard model with
the use of the simplest Hartree�Fock approximation. For
the sake of completeness, we also include some of the ear-
lier results [7] concerning the superconducting phase of
type A and the ferromagnetic phase coexisting with the
superconducting phase of type A1.

2. Model

We consider the extended orbitally degenerate Hub-
bard Hamiltonian, which has the form

Ĥ =
∑

ij(i ̸=j)lσ

tij â
†
ilσâjlσ + U

∑

il

n̂il↑n̂il↓

−J
∑

ill′(l ̸=l′)

(
Ŝil · Ŝil′ +

3

4
n̂iln̂il′

)
, (1)

where l = 1, 2 label the orbitals and the �rst term de-
scribes electron hopping between atomic sites i and j.

∗ corresponding author; e-mail: michal.zegrodnik@gmail.com

The second term describes the intra-atomic Coulomb in-
teraction between electrons on the same orbital. The
third term introduces the (Hund's rule) ferromagnetic
exchange between electrons localized on the same site,
but on di�erent orbitals. In this model we neglect
the interaction-induced intra-atomic singlet-pair hopping
∼ J and the correlation induced hopping [8], as well as
the inter-orbital Coulomb repulsion, as they should not
introduce any important new feature in the considered
here Hartree�Fock approximation. In this model for the
sake of clarity, we neglect also the interorbital hybridiza-
tion.

It can be shown that [4] one can represent the full
exchange term with the help of the real-space pair oper-
ators, in the following manner

J
∑

ill′(l ̸=l′)

(
Ŝil· Ŝil′ +

3

4
n̂iln̂il′

)
≡ 2J

∑

i,m

Â†
imÂim, (2)

which are de�ned in the following way [9]

Â†
i,m ≡





â†
i1↑â

†
i2↑ m = 1

â†
i1↓â

†
i2↓ m = −1

1√
2
(â†

i1↑â
†
i2↓ + â†

i1↓â
†
i2↑) m = 0

. (3)

In our considerations the antiferromagnetic state re�ects
the simplest form of the spin-density-wave state. In this
state, we can divide our system into two interpenetrat-
ing sublattices. We name those sublattices A and B. In
the antiferromagnetic phase, the average magnetic (stag-
gered) moment of electons on each of N/2 sublattice A
sites is equal ⟨Sz

i ⟩ = ⟨Sz
A⟩, whereas the electrons on the

remaining N/2 sublattice B sites have magnetic moment
⟨Sz

i ⟩ = ⟨Sz
B⟩ ≡ −⟨Sz

A⟩. In accordance with the division

(801)
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into the sublattices we de�ne di�erent annihilation oper-
ators for each sublattice, namely

âilσ =

{
âilσA

âilσB
. (4)

We do the same for the creation operators, â†
ilσ. For

modeling purposes, we assume that the bands are iden-
tical and the charge ordering is absent. In this situation,
we can write that

⟨Ŝz
i1A⟩ = ⟨Ŝz

i2A⟩ ≡ S̄z, ⟨Ŝz
i1B⟩ = ⟨Ŝz

i2B⟩ ≡ −S̄z, (5)

⟨n̂i1A⟩ = ⟨n̂i2A⟩ = ⟨n̂i1B⟩ = ⟨n̂i2B⟩ ≡ n/2. (6)

In what follows, we treat the pairing and the Hubbard
part in the mean �eld approximation. Applying (4) to
(1) and making the Hartree�Fock approximation we can
write down the Hamiltonian transformed to reciprocal
(k) space in the following form:

ĤHF =
∑

klσ

(
ϵk

(
â†

klσAâklσB + â†
klσB âklσA

)

−σIS̄z
(
n̂klσA − n̂klσB

))

+
∑

k,m=±1

(
∆∗

mAÂkmA + ∆mAÂ†
kmA

)

+
∑

k,m=±1

(
∆∗

mBÂkmB + ∆mBÂ†
kmB

)

− N̂

4J

(
|∆1A|2 + |∆−1A|2 + |∆1B |2 + |∆−1B |2

)

−N̂

8
(U − 3J)n2 + 2NI(S̄z)2, (7)

where I ≡ U + J is the e�ective magnetic coupling con-
stant, N is the number of atomic sites and ϵk1 = ϵk2 ≡ ϵk

is the dispersion relation in the doubly degenerate band.
One should note that the sum in (7) (and in all the corre-
sponding equations below) is taken over N/2 independent
k states. In the Hamiltonian above we also have intro-
duced the superconducting spin-triplet gap parameters
on the sublattices

∆±1A = −4J

N

∑

k

⟨Âk,±1A⟩,

∆±1B = −4J

N

∑

k

⟨Âk,±1B⟩. (8)

Because we are considering the superconducting phase
coexisting with antiferromagnetism in which all lattice
sites have a nonzero magnetic moment, the Cooper pairs
in the spin-triplet state for m = 0 and spin Sz = 0
(that correspond to the pair operator Âk,0) are not likely
to be created. The phase, in which the gap parame-
ters corresponding to the mentioned spin-triplet state of
the Cooper pairs are nonzero, is not going to be sta-
ble, so we have neglected the term that contains ∆0A =
− 4J√

2N

∑
k⟨Âk,0A⟩ and ∆0B = − 4J√

2N

∑
k⟨Âk,0B⟩.

By introducing the composite fermion creation opera-
tor

f̂
†
k ≡

(
â†

k1↑A, â†
k1↓A, â−k2↑A, â−k2↓A, â†

k1↑B , â†
k1↓B ,

â−k2↑B, â−k2↓B

)
, (9)

we can construct the 8×8 Hamiltonian matrix and write

ĤHF − µN̂ =
∑

k

f̂†
kHkf̂k − 4µN̂ , (10)

where f̂k ≡ (f̂†
k)†, and

Hk =




−IS̄z − µ 0 ∆1A 0 ϵk 0 0 0

0 IS̄z − µ 0 ∆−1A 0 ϵk 0 0

∆∗
1A 0 IS̄z + µ 0 0 0 −ϵk 0

0 ∆∗
−1A 0 −IS̄z + µ 0 0 0 −ϵk

ϵk 0 0 0 IS̄z − µ 0 ∆1B 0

0 ϵk 0 0 0 −IS̄z − µ 0 ∆−1B

0 0 −ϵk 0 ∆∗
1B 0 −IS̄z + µ 0

0 0 0 −ϵk 0 ∆∗
−1B 0 IS̄z + µ




. (11)

In our considerations we limit to the case with the real
gap parameters ∆∗

±1A(B) = ∆±1A(B). After diagonaliza-

tion of (11), we can write down the Hamiltonian in the
following form

ĤHF − µN̂ =
∑

kd

(−1)d+1λkdα̂
†
kdα̂kd − 4µN̂

+
∑

k

(λk2 + λk4 + λk6 + λk8), (12)

where d = 1, 2, 3, . . . , 8 and λkd are the eigenvalues of

the matrix Hamiltonian (11) and α̂kd, α̂†
kd are the quasi-

particle annihilation and creation operators, which can
be expressed by the initial creation and annihilation op-
erators via generalized Bogoliubov transformation, i.e.,

ĝk = Ukf̂k, (13)

with ĝ†
k ≡

(
α̂†

k1, α̂−k2, α̂
†
k3, α̂−k4, α̂

†
k5, α̂−k6, α̂

†
k7, α̂−k8

)

and ĝk = (ĝ†
k)†. Eigenvectors of the Hamiltonian ma-

trix (11) are the columns of the diagonalization ma-
trix Uk. Using the de�nitions of gap parameters ∆±1A,
∆±1B , the average number of particles per atomic site
n =

∑
l⟨n̂il↑A+n̂il↓A⟩, and the average magnetic moment
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per band per site Sz = ⟨n̂il↑A−n̂il↓A⟩/2, we can construct
the set of self consistent equations for all mean-�eld pa-
rameters (∆±1A, ∆±1B, S̄z) and the chemical potential.
The averages that appear in the set of self consistent

equations ⟨α̂†
kdα̂kd⟩ can be replaced by the correspond-

ing Fermi-Dirac distribution function

f((−1)d+1λkd) = 1/[exp(β(−1)d+1λkd) + 1].

The eigenvalues and eigenvectors of matrix (11) are eval-
uated numerically during the procedure of solving the
set of self consistent equations. The detailed procedure
of calculating the free energies and corresponding order
parameters is similar as in our previous work [7]. The
numerical results are obtained by assuming the square
lattice with the hopping t between the nearest neighbors.

3. Results and discussion

In all presented below �gures the energies have been
normalized to the bare band-width W = 8|t|, as well as
T corresponds to the reduced temperature T ≡ kBT/W .

Fig. 1. (a) � temperature dependences of free
energy in phases: coexisting superconducting�
antiferromagnetic (SC+AF), antiferromagnetic (AF),
normal state (NS), ferromagnetic (FM); (b) � free
energies for A, NS, A1+FM and FM phases in the
low-T regime. The free energy for A and A1+FM
phases are not shown in Fig. 1a for the sake of clarity.
For the selected parameters, AF+SC and AF phases are
the only stable phases in proper temperature intervals.

In Fig. 1 we present the temperature dependence of free
energies for the six di�erent phases: NS � normal state,

A � superconducting phase A (∆±1A = ∆±1B ̸= 0),
A1+FM� coexistent superconducting phase A1 (∆1A =
∆1B ̸= 0 and ∆−1A = ∆−1B = 0 ) and the non-
saturated ferromagnetic phase, A1+SFM � coexistent
superconducting A1 and saturated ferromagnetic phase,
SC+AF� coexistent superconducting and antiferromag-
netic phase. Because the free-energy values of the A and
NS phases are very close, we exhibit their temperature
dependences zoomed in Fig. 1b). The same is shown for
the phases A1+FM and FM (bottom part). As one can
see from the Fig. 1, the phase SC+AF has the lowest free
energy below the reduced temperature TS ≈ 0.0123 for
the speci�ed values of the microscopic parameters.

Fig. 2. (a) � temperature dependence of the super-
conducting gaps and the staggered magnetic moment;
(b) � temperature dependence of the speci�c heat for
the to the stable phases.

Temperature dependence of superconducting gaps and
staggered magnetic moment in the SC+AF phase are
shown in Fig. 2. Below TS the staggered magnetic mo-
ment and the superconducting gaps, have all nonzero
values. In the SC+AF phase the gap parameters that
correspond to Cooper pairs with the spin aligned in the
same direction as the magnetic moment on the sublattice
have equal values (∆1A = ∆−1B ≡ ∆+). Gap parame-
ters that correspond to Cooper pairs with spin aligned
in the opposite direction to the magnetic moment on the
sublattice also have equal values (∆−1A = ∆1B ≡ ∆−),
but much smaller than the gap parameters ∆1A, ∆−1B .

In Fig. 2b one can observe that there are two disconti-
nuities in the speci�c-heat temperature dependence. The

mike
Pisanie tekstu
37



804 M. Zegrodnik, J. Spaªek

Fig. 3. (a) � gap parameters ∆+ and ∆− and (b) �
staggered magnetic moment both as a function of band
�lling n. The coexistent phase appears near the half
�lling.

�rst, at lower T , corresponds to the phase transition from
the SC+AF phase to the pure AF phase, while the sec-
ond corresponds to the transition from the AF phase
to the normal phase (NS). Near the Néel temperature,
TN ≈ 0.11, the staggered magnetic moment decreases
continuously to zero. The low temperature values of gap
parameters for the AF+SC phase for di�erent values of
band �lling are presented in Fig. 3. One can see that gap
components ∆+ and ∆− tend to zero when the system
is approaching the half �lling (n → 2). On the contrary,
the staggered magnetic moment S̄z reaches then maxi-
mum. Below the critical value of band �lling, nc ≈ 1.45,
the gap parameters ∆+ and ∆− become equal and the
staggered magnetic moment vanishes. In this regime the
superconducting phase of type A is the stable phase. One
should mention that the easiness, with which the super-
conducting triplet state is accommodated within the an-
tiferromagnetic phase stems from the fact that the SC
gaps have an intra-atomic origin and the spins are paral-
lel. Therefore, the pairs respect the Hund's rule and do
not disturb the staggered-moment structure at the same
time.

4. Conclusions

We have obtained the stable coexistent superconduct-
ing and antiferromagnetic phase within the extended two
band Hubbard model using the Hartree�Fock approxima-
tion. For selected values of the microscopic parameters,
that correspond to zero-temperature stability of SC+AF
phase, with the rise of temperature, one can observe two
phase transitions. The �rst is from the SC+AF phase to
the antiferromagnetic phase and the second form the an-
tiferromagnetic phase to paramagnetic state. The tran-
sition temperature ratio is TN/TS ≈ 9. In the super-
conducting phase coexisting with antiferromagnetism we
have introduced two di�erent gap parameters on di�er-
ent sublattices. The calculated gap parameters ful�ll the
relations

∆1A = ∆−1B ≡ ∆+, ∆−1A = ∆1B ≡ ∆−, ∆+ > ∆−.

Full discussion including details of the phase diagram
that contains all considered here phases will be provided
elsewhere.
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Coexistence of spin-triplet superconductivity with magnetic ordering in an orbitally
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The Hund’s-rule-exchange induced and coexisting spin-triplet paired and magnetic states are considered
within the doubly degenerate Hubbard model with interband hybridization. The Hartree-Fock approximation
combined with the Bardeen-Cooper-Schrieffer (BCS) approach is analyzed for the case of square lattice. The
calculated phase diagram contains regions of stability of the spin-triplet superconducting phase coexisting with
either ferromagnetism or antiferromagnetism, as well as a pure superconducting phase. The influence of the
intersite hybridization on the stability of the considered phases, as well as the temperature dependence of both the
magnetic moment and the superconducting gaps, are also discussed. Our approach supplements the well-known
phase diagrams containing only magnetic phases with the paired triplet states treated on the same footing. We
also discuss briefly how to include the spin fluctuations within this model with real-space pairing.

DOI: 10.1103/PhysRevB.86.014505 PACS number(s): 74.20.−z, 74.25.Dw, 75.10.Lp

I. INTRODUCTION

The spin-triplet superconducting phase is believed to appear
in Sr2RuO4,1 UGe2,2 and URhGe.3 In the last two compounds,
the considered type of superconducting phase occurs as
coexisting with ferromagnetism. Additionally, even though U
atoms in these compounds contain 5f electrons responsible
for magnetism, this multiple-band system can be regarded as a
weakly or moderately correlated electron system, particularly
at higher pressure. Originally, it had been suggested via
a proper quantitative analysis4−6 that the the intra-atomic
Hund’s rule exchange can lead in a natural manner to the
coexistence of superconductivity with magnetic ordering:
ferromagnetism or antiferromagnetism.

The coexisting superconducting and magnetic phases are
discussed in this work within an orbitally degenerate two-
band Hubbard model using the Hartree-Fock approximation
(HF), here combined with the Bardeen-Cooper-Schrieffer
(BCS) approach, i.e., in the vicinity of the ferromagnetism
disappearance, where also the superconductivity occurs. The
particular emphasis is put on the appearance of superconduc-
tivity near the Stoner threshold, where the Hartree-Fock-BCS
approximation can be regarded as realistic. This type of
approach can be formulated also for other systems.7

The alternative suggested mechanism for appearance of
superconductivity in those systems is the pairing mediated
by ferromagnetic spin fluctuations, which can also appear
in the paramagnetic or weakly ferromagnetic phase.8 Here,
the mean-field approximation provides not only the starting
magnetic phase diagram, but also a related discussion of
the superconducting states treated on equal footing. In this
approach, the spin-fluctuation contribution appears as a next-
order contribution. This is the reason for undertaking a revision
of the standard Hartree-Fock approximation. Namely, we
concentrate here on the spin-triplet states, pure and coexisting
with either ferromagnetism or antiferromagnetism, depending

on the relative magnitude of microscopic parameters: the
Hubbard intraorbital and interorbital interactions U and U ′,
respectively, the Hund’s rule ferromagnetic exchange integral
J , the relative magnitude of hybridization βh, and the band
filling n. The bare bandwidth W is taken as unit of energy. In
the concluding section, we discuss briefly how to outline the
approach to include also the quantum fluctuations around this
HF-BCS (saddle-point) state as a higher-order contribution.

The role of exchange interactions is crucial in both the
so-called t-J model of high-temperature superconductivity9

and in the so-called Kondo-mediated pairing in heavy-fermion
systems.10 In this and the following papers, we discuss the idea
of real-space pairing for the triplet-paired states in the regime
of weakly correlated particles and include both the interband
hybridization and the corresponding Coulomb interactions.
We think that this relatively simple approach is relevant to the
mentioned at the beginning ferromagnetic superconductors
because of the following reasons. Although the effective
exchange (Weiss-type) field acts only on the spin degrees of
freedom, it is important in determining the second critical field
of ferromagnetic superconductor in the so-called Pauli limit,11

as the orbital effects in the Cooper-pair breaking process
are then negligible. The appearance of a stable coexistent
ferromagnetic-superconducting phase means that either Pauli
limiting situation critical field has not been reached in the case
of spin-singlet pairing or else the pairing has the spin-triplet
nature, without the component with spin Sz = 0, and then the
Pauli limit is not operative.

The present model with local spin-triplet pairing has its
precedents of the same type in the case of spin-singlet pairing,
i.e., the Hubbard model with U < 0,12 which played the central
role in singling out a nontrivial character of pairing in real
space. Here, the same role is being played by the intra-atomic
(but interorbital) ferromagnetic exchange. We believe that this
area of research unexplored so far in detail opens up new

014505-11098-0121/2012/86(1)/014505(14) ©2012 American Physical Society
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possibilities of studies of weakly and moderately correlated
magnetic superconductors.13

The structure of this paper is as follows. In Sec. II, we
define the model and the full Hartee-Fock-BCS approximation
(i.e., mean-field approximation for magnetic ordering with the
concomitant BCS-type decoupling) for the coexistent two-
sublattice antiferromagnetic and spin-triplet superconducting
phase (cf. also Appendix A for details). For completeness,
in Appendix B, we include also the analysis of a simpler
coexistent superconducting-ferromagnetic phase. In Sec. III,
we provide a detailed numerical analysis and construct the full
phase diagram on the Hund’s rule coupling-band filling plane.
We describe also the physical properties of the coexistent
phases. In Appendix C, we sketch a systematic approach of
going beyond Hartree-Fock approximation, i.e., including the
spin fluctuations, starting from our Hartree-Fock-BCS state.

II. MODEL AND COEXISTENT
ANTIFERROMAGNETIC-SPIN-TRIPLET

SUPERCONDUCTING PHASE: MEAN-FIELD-BCS
APPROXIMATION

We start with the extended orbitally degenerate Hubbard
Hamiltonian, which has the form

Ĥ =
∑

ij (i �=j )ll′σ

t ll
′

ij a
†
ilσ ajl′σ + (U ′ + J )

∑
i

n̂i1n̂i2

+U
∑
il

n̂il↑n̂il↓ − J
∑

ill′(l �=l′)

(
Ŝil · Ŝil′ + 3

4
n̂il n̂il′

)
,

(1)

where l = 1,2 label the orbitals and the first term describes
electron hopping between atomic sites i and j . For l �= l′,
this term represents electron hopping with change of the
orbital (intersite, interorbital hybridization). The next two
terms describe the Coulomb interaction between electrons
on the same atomic site. However, as one can see, the
second term contains the contribution that originates from the
exchange interaction (J ). The last term expresses the (Hund’s
rule) ferromagnetic exchange between electrons localized
on the same site, but on different orbitals. This term is
regarded as responsible for the local spin-triplet pairing in the
subsequent discussion. The components of the spin operator
Ŝil = (Ŝx

il ,Ŝ
y

il ,Ŝ
z
il) used in (1) acquire the form

Ŝ
x,y,z

il = 1
2 ĥ†

ilσx,y,zĥil , (2)

where σx,y,z are the Pauli matrices and h†
il ≡ (a†

il↑,a
†
il↓). In

our considerations, we neglect the interaction-induced intra-
atomic singlet-pair hopping (Ja

†
i1↑a

†
i1↓ai2↓ai2↑ + H.c.) and the

correlation-induced hopping [V n1σ̄ (a†
1σ̄ a2σ̄ + a

†
2σ̄ a1σ̄ ) + 1 ↔

2],13 as they should not introduce any important new qualitative
feature in the considered here spin-triplet paired states. What is
more important, we assume that t12

ij = t21
ij and t11

ij = t22
ij ≡ tij ,

i.e., the starting degenerate bands have the same width (the
extreme degeneracy limit), as we are interested in establishing
new qualitative features to the overall phase diagram, which
are introduced by the magnetic pairing.

As has already been said, the aim of this work is to
examine the spin-triplet superconductivity coexisting with

ferromagnetism and antiferromagnetism as well as the pure
spin-triplet superconducting phase and the pure magnetically
ordered phases. Labels defining the spin-triplet paired phases
(A and A1) that are going to be used in this work correspond
to those defined for superfluid 3He according to Refs. 14
and 8. Namely, in the A phase, the superconducting gaps that
correspond to Cooper pairs with total spin up and down are
equal (�1 = �−1 �= 0, �0 = 0), whereas in the A1 phase the
only nonzero superconducting gap is the one that corresponds
to the Cooper pair with total spin up (�1 �= 0, �−1 = �0 = 0).
In this section, we show the method of calculations that is
appropriate for the superconducting phase coexisting with
antiferromagnetism, as well as pure superconducting phase of
type A and pure antiferromagnetic phase. The corresponding
considerations for the case of ferromagnetically ordered
phases and superconducting phase A1 are deferred to the
Appendix B.

From the start, we make use of the fact that the full exchange
term can be represented by the real-space spin-triplet pairing
operators, in the following manner:

J
∑

ill′(l �=l′)

(
Ŝil · Ŝil′ + 3

4
n̂il n̂il′

)
≡ 2J

∑
i,m

Â
†
imÂim, (3)

which are of the form

Â
†
i,m ≡

⎧⎪⎪⎨
⎪⎪⎩

a
†
i1↑a

†
i2↑, m = 1

a
†
i1↓a

†
i2↓, m = −1

1√
2
(a†

i1↑a
†
i2↓ + a

†
i1↓a

†
i2↑), m = 0.

(4)

Furthermore, the interorbital Coulomb repulsion term can be
expressed with the use of spin-triplet pairing operators and the
spin-singlet pairing operators in the following manner:

(U ′ + J )
∑

i

n̂i1n̂i2 = (U ′ + J )

(∑
i

B̂
†
i B̂i +

∑
im

Â
†
imÂim

)
,

(5)

where

B̂
†
i = 1√

2
(a†

i1↑a
†
i2↓ − a

†
i1↓a

†
i2↑) (6)

are the interorbital, intra-atomic spin-singlet pairing operators
in real space. Using Eqs. (3) and (5), one can write our model
Hamiltonian in the form

Ĥ =
∑

ij (i �=j )ll′σ

t ll
′

ij a
†
ilσ ajl′σ + U

∑
il

n̂il↑n̂il↓

+ (U ′ + J )
∑

i

B̂
†
i B̂i − (J − U ′)

∑
im

Â
†
imÂim. (7)

It should be noted here that for J < U ′, the interorbital
Coulomb repulsion suppresses the spin-triplet pairing mech-
anism and the superconducting phases will not appear in
the system in the weak-coupling (Hartree-Fock) limit. For
3d electrons,15 U ′ = U − 2J , thus the necessary condition
for the pairing to occur in our model is U < 3J . Usually,
for 3d metals, we have U ∼ 3J , so it represents a rather
stringent condition for the superconductivity to appear in
that situation. We use this relation to fix the parameters for
modeling purposes, not limited to 3d systems. This is also
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because, e.g., 5f electrons in uranium compounds lead to a
similar behavior as do 3d electrons. One should note that the
considered here pairing is based on the intra-atomic interorbital
ferromagnetic Hund’s rule exchange. A simple extension to the
situation with nonlocal J has been considered by Dai et al.7

Also, as we consider only the weakly correlated regime, where
the metallic state is stable, no orbital ordering is expected (cf.
Klejnberg and Spałek in Ref. 5).

In our considerations, the antiferromagnetic state represents
the simplest example of the spin-density-wave state. In this
state, we can divide our system into two interpenetrating
sublattices A and B. The average staggered magnetic moment
of electrons on each of the N/2 sublattice A sites is equal,
〈Sz

i 〉 = 〈Sz
A〉, whereas on the remaining N/2 sublattice B

sites, we have 〈Sz
i 〉 = 〈Sz

B〉 ≡ −〈Sz
A〉. In accordance with this

division into two sublattices, we define different annihilation

operators for each sublattice, namely,

ailσ =
{

ailσA for i ∈ A,

ailσB for i ∈ B.
(8)

The same holds for the creation operators a
†
ilσ . We assume that

the charge ordering is absent. In this situation, we can write
that 〈

Sz
i1A

〉 = 〈
Sz

i2A

〉 ≡ S̄z
s ,

〈
Sz

i1B

〉 = 〈
Sz

i2B

〉 ≡ −S̄z
s , (9)

〈ni1A〉 = 〈ni2A〉 = 〈ni1B〉 = 〈ni2B〉 ≡ n/2, (10)

where n is the band filling. In what follows, we treat the
pairing and the Hubbard parts in the combined mean-field
BCS approximation. In effect, we can write the Hamiltonian
transformed in reciprocal (k) space in the form

ĤHF − μN̂ =
∑
klσ

[εk(a†
klσAaklσB + a

†
klσBaklσA) − σI S̄z

s (n̂klσA − n̂klσB)]

+
∑

kll′(l �=l′σ )

εk12(a†
klσAakl′σB + a

†
klσBakl′σA) +

∑
klσ

[
n

8
(U + 2U ′ − J ) − μ

]
(n̂klσA + n̂klσB)

+
∑

k,m=±1

(�∗
mAÂkmA + �mAÂ

†
kmA) +

∑
k,m=±1

(�∗
mBÂkmB + �mBÂ

†
kmB)

+
√

2
∑

k

(�∗
0AÂk0A + �0AÂ

†
k0A) +

√
2

∑
k

(�∗
0BÂk0B + �0BÂ

†
k0B) − N

n2

16
(U + 2U ′ − J )

+ 2NI
(
S̄z

s

)2 − N

2(J − U ′)
(|�1A|2 + |�−1A|2 + |�1B |2 + |�−1B |2 + 2|�0A|2 + 2|�0B |2), (11)

where I ≡ U + J is the effective magnetic coupling constant
and εk1 = εk2 ≡ εk is the dispersion relation. The results
presented in the next section have been carried out for square
lattice with nonzero hopping t between nearest neighbors only.
The corresponding bare dispersion relation in a nonhybridized
band acquires the form

εk = −2t cos kx − 2t cos ky. (12)

As we are considering the doubly degenerate band model
situation, we make a simplifying assumption that the hy-
bridization matrix element ε12k = βhεk, where βh ∈ [0,1] is
the parameter, which specifies the hybridization strength (i.e.,
represents a second scale of electron energies, in addition
to εk). This means that we have just one active atom per
unit cell with a doubly degenerate orbital of the same kind
(their spatial asymmetry is disregarded). One should note that
the sums in (11) (and in all corresponding equations below)
is taken over N/2 independent k states. In the Hamiltonian
written above, we have also introduced the superconducting
spin-triplet sublattice gap parameters

�±1A(B) ≡ −2(J − U ′)
N

∑
k

〈Âk,±1A(B)〉,
(13)

�0A(B) ≡ −2(J − U ′)√
2N

∑
k

〈Âk,0A(B)〉.

The terms N n2

16 (U + 2U ′ − J ) and n
8 (U + 2U ′ − J ) in (11)

can be neglected, as they lead only to a shift of the reference
point of the system energy. One should note that since the real-
space pairing mechanism is of intra-atomic nature, there is no
direct conflict with either ferromagnetic or antiferromagnetic
ordering coexisting with it.

A. Antiferromagnetic (Slater) subbands

The diagonalization of the Hamiltonian (11) can be carried
out in two steps. In the first step, we diagonalize the one-
particle part of the Hartree-Fock Hamiltonian [the first two
sums of (11)]. Note that we have to carry out this step first
since we assume the bands are both hybridized and contain
pairing part. By introducing the four-composite fermion
operator f†

kσ ≡ (a†
k1σA,a

†
k2σA,a

†
k1σB,a

†
k2σB), we can express the

one-particle Hamiltonian in the following form:

Ĥ 0
HF =

∑
kσ

f†
kσ H0

kσ fkσ , (14)

where fk ≡ (f†
k)†, and

H0
kσ =

⎛
⎜⎜⎜⎝

−σI S̄z
s 0 εk εk12

0 −σI S̄z
s εk12 εk

εk εk12 σI S̄z
s 0

εk12 εk 0 σI S̄z
s

⎞
⎟⎟⎟⎠ . (15)
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To diagonalize this Hamiltonian, we introduce a generalized
Bogoliubov transformation to new operators ãklσA and ãklσB

in the following manner:

⎛
⎜⎜⎜⎝

ak1σA

ak2σA

ak1σB

ak2σB

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−U+
kσ U−

kσ V +
kσ −V −

kσ

−U+
kσ −U−

kσ V +
kσ V −

kσ

V +
kσ −V −

kσ U+
kσ −U−

kσ

V +
kσ V −

kσ U+
kσ U−

kσ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ãk1σA

ãk2σA

ãk1σB

ãk2σB

⎞
⎟⎟⎟⎠ ,

(16)

where

U
(±)
kσ = 1√

2

(
1 + σI Ŝz

s√
(εk ± εk12)2 + (

I S̄z
s

)2

)1/2

,

(17)

V
(±)

kσ = 1√
2

(
1 − σI Ŝz

s√
(εk ± εk12)2 + (

I S̄z
s

)2

)1/2

.

One should note that the symbols A and B that appear as
indices of the new quasiparticle operators ãklσA and ãklσB

single out the new, hybridized, quasiparticle subbands and do
not correspond to the sublattices indices A and B as in the case
of operators aklσA and aklσB . The dispersion relations in the
new quasiparticle representation acquire the form

ε̃k1A = −
√

(εk + εk12)2 + (
I S̄z

s

)2
,

ε̃k1B =
√

(εk + εk12)2 + (
I S̄z

s

)2
,

(18)

ε̃k2A = −
√

(εk − εk12)2 + (
I S̄z

s

)2
,

ε̃k2B =
√

(εk − εk12)2 + (
I S̄z

s

)2
.

As one can see, the new dispersion relations do not depend
on the spin quantum numbers of the quasiparticle. In general,
if εk12 is not ∼ εk, we may have four nondegenerate Slater
subbands, which is not the case considered here. To express
the pairing operators that are present in the Hamiltonian (11) in
terms of the new quasiparticle operators, one can use relations
(16) and the definitions (4). The explicit form of the original
pairing operators in terms of the newly created quasiparticle
operators is provided in Appendix A.

B. Quasiparticle states for the coexistent antiferromagnetic and
superconducting phases

In the second step of the diagonalization of (11), a
generalized Nambu–Bogoliubov–de Gennes scheme is intro-
duced to write the complete HF Hamiltonian again in the
matrix form, which allows for an easy determination of its
eigenvalues. With the help of composite creation operator
f̃†
kσ ≡ (ã†

k1σA,ã−k2σA,ã
†
k1σB,ã−k2σB ), we can construct this

new 4 × 4 Hamiltonian matrix and write

ĤHF − μN̂ =
∑
kσ

f̃†
kσ Hkσ f̃kσ + 2

∑
k

(ε̃k2A + ε̃k2B)

− 2μN + C, (19)

with

Hkσ ≡

⎛
⎜⎝

ε̃k1A − μ δ1kσ 0 δ3kσ

δ∗
1kσ −ε̃k2A + μ δ4kσ 0
0 δ∗

4kσ ε̃k1B − μ δ2kσ

δ∗
3kσ 0 δ∗

2kσ −ε̃k2B + μ

⎞
⎟⎠

(20)

and f̃k ≡ (f̃†
k)†. The parameters δlkσ are defined as follows:

δ1kσ = �σAU+
kσU−

kσ + �σBV +
kσV −

kσ ,

δ2kσ = �σAV +
kσV −

kσ + �σBU−
kσU+

kσ ,
(21)

δ3kσ = −�σAU+
kσV −

kσ + �σBU−
kσV +

kσ ,

δ4kσ = −�σAV +
kσU−

kσ + �σBV −
kσU+

kσ .

Constant C contains the last two terms of the right-hand
side of expression (11). Hamiltonian (19) and matrix (20)
have been written under the assumption that �0A = �0B ≡
0. Calculations for the more general case of nonzero gap
parameters for m = 0 have been also done, but no stable
coexisting superconducting and antiferromagnetic solutions
have been found numerically. The only coexisting solutions
that have been found fulfill the relation �0A = �0B ≡ 0. This
fact can be understood by the following argument. As in the
antiferromagnetic state, all lattice sites have nonzero magnetic
moment, the Cooper pairs in the spin-triplet state for m = 0
(i.e., with the total spin Sz = 0, corresponding 〈Âk0〉) are not
likely to appear. Nevertheless, we present the matrix form
of the Hamiltonian (11) for the mentioned most general case
in Appendix A. In our considerations here, we limit also to
the situation with the real gap parameters �∗

±1A(B) = �±1A(B).
Then, the straightforward diagonalization of (20) yields to the
following Hamiltonian:

ĤHF − μN̂ =
∑
klσ

(−1)l+1(λklσAα
†
klσAαklσA

+ λklσBα
†
klσBαklσB) + 2

∑
k

(ε̃k2A + ε̃k2B)

+
∑
kσ

(λk2σA + λk2σB) − 2μN + C, (22)

where λklσA(B) are the eigenvalues of the matrix (20) and
αklσA(B) (α†

klσA(B)) are the quasiparticle annihilation (creation)
operators, related to the original annihilation and creation
operators ãklσ , ã

†
klσ from the first step of our diagonalization,

via generalized Bogoliubov transformation of the form

f̃kσ = U†
kσ gkσ , (23)

with g†
kσ ≡ (α†

k1σA,α−k2σA,α
†
k1σB,α−k2σB). Eigenvectors of

the Hamiltonian matrix (20) are the columns of the diago-
nalization matrix U†

k. Using the definitions of gap parameters
�±1A, �±1B , the average number of particles per atomic site
n = ∑

l〈n̂il↑A + n̂il↓A〉, and the average magnetic moment per
band per site S̄z = 〈n̂il↑A − n̂il↓A〉/2, we can construct the
set of self-consistent equations for the mean-field parameters
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(�±1A, �±1B , S̄z) and for the chemical potential. The
averages that appear in the set of self-consistent equations
〈α†

klσA(B)αklσA(B)〉 can be replaced by the corresponding Fermi
distribution functions

f [(−1)l+1λklσA(B)] = 1/{exp[β(−1)l+1λklσA(B)] + 1}, (24)

where β = 1/kBT . The eigenvalues and the eigenvectors of
(20) are evaluated numerically while executing the numerical
procedure of solving the set of self-consistent equations. For
a given set of microscopic parameters n, J , U , U ′, and
temperature T , the set of self-consistent equations has several
solutions that correspond to different phases.16–18 Free energy
can be evaluated for each of the solutions that have been found,
and the one that corresponds to the lowest value of the free
energy is regarded as the stable phase. The expression for the
free-energy functional in the considered case has the form

F = − 1

β

∑
klσ

[ln(1 + exp[−β(−1)l+1λklσA])

+ ln(1 + exp[−β(−1)l+1λklσB])]

+ 2
∑

k

(ε̃k2A + ε̃k2B) +
∑
kσ

(λk2σA

+ λk2σB) − μ(2 − n)N + C. (25)

Numerical results are carried out for square lattice with
nonzero hopping t between the nearest neighbors only.
The described above numerical scheme is executed for the
following selection of phases:

(i) normal state (NS): �±1A(B) = 0, S̄z
s = 0,

(ii) pure superconducting phase type A (A): �±1A(B) ≡
� �= 0, S̄z

s = 0,
(iii) pure antiferromagnetic phase (AF): �±1A(B) = 0,

S̄z
s �= 0,

(iv) coexistent superconducting and antiferromagnetic
phase (SC + AF): �±1A(B) �= 0, S̄z

s �= 0.

The ferromagnetically ordered phases, which will also be
included in our considerations in the following sections, are
listed below:

(a) pure saturated ferromagnetic phase (SFM): �±1A(B) =
0, S̄z

u = S̄z
u(max) �= 0,

(b) pure nonsaturated ferromagnetic phase (FM):
�±1A(B) = 0, 0 < S̄z

u < S̄z
u(max),

(c) saturated ferromagnetic phase coexistent with su-
perconductivity of type A1 (A1 + SFM): �1A(B) ≡ �1 �= 0,
�−1A(B) = 0, S̄z

u = S̄z
u(max) �= 0,

(d) nonsaturated ferromagnetic phase coexistent with su-
perconductivity of type A1 (A1 + FM): �1A(B) ≡ �1 �= 0,
�−1A(B) = 0, 0 < S̄z

u < S̄z
u(max).

It should be noted that S̄z
u refers to the uniform magnetic

moment per band per site in the ferromagnetically ordered
phases, whereas S̄z

s is the staggered magnetic moment that
corresponds to the antiferromagnetic phases. One could also
consider the so-called superconducting phase of type B for
which all superconducting gaps (including �0A(B)) are equal
and different from zero. However, this phase never coexists
with magnetic ordering. What is more important in the
absence of magnetic ordering the superconducting phase A

has always lower free energy than the B phase. Therefore,
the superconducting B phase is absent in the following
discussion.

III. RESULTS AND DISCUSSION

We assume that U ′ = U − 2J and U = 2.2J , so there are
actually two independent parameters in the considered model:
n and J . The energies have been normalized to the bare
bandwidth W = 8|t |, and T expresses the reduced temperature
T ≡ kBT /W .

A. Overall phase diagram: Coexistent magnetic-paired states

In Figs. 1(a)–1(d), we present the complete phase diagrams
in coordinates (n,J ) for different values of the hybridization
parameter βh. They comprise sizable regions of stable spin-
triplet superconducting phase coexisting with either ferromag-
netism or antiferromagnetism, as well as pure superconducting
phase A. In the phase SC + AF, the calculated gap parameters
fulfill the relations

�+1A = �−1B ≡ �+,

�−1A = �+1B ≡ �−, (26)

�+ > �−.

For the singlet paired state, one would have �+1A = −�−1A,
which is not the case here. For the case of half-filled band
n = 2, the superconducting gaps �+ and �− vanish and only
pure (Slater-type) AF survives. The appearance of the AF state
for n = 2 corresponds to the fact that the bare Fermi-surface
topology has a rectangular structure with Q = (π,π ) nesting.
This feature survives also for βh �= 0. Also, the symmetry of
the phase diagrams with respect to half-filled band situation is
a manifestation of the particle-hole symmetry since the bare
density of states is symmetric with respect to the middle point
of the band. This feature of the problem provides an additional
test for the correctness of the numerical results.

It is clearly seen from the presented figures that the influence
of hybridization is significant quantitatively when it comes to
the superconducting phase A, as the region of its stability
narrows down rapidly with the increase of βh. The stability
areas of A1 + FM and NS phases expand on the expense
of A and A1 + SFM phases. With the further increase of
the hybridization, the stability of A phase is completely
suppressed, as shown in Fig. 1(d). The regions of stable
antiferromagnetically ordered phase do not alter significantly
with the increasing hybridization. To relate the appearance of
superconductivity with the onset of ferromagnetism, we have
marked explicitly in Fig. 2 the Stoner threshold on the phase
diagram. One sees clearly that only the A1 phase appearance
is related to the onset of ferromagnetism. What is more
important, the FM phase coexisting with the paired A1 phase
becomes stable for slightly lower J values than the Stoner
threshold for appearance of pure FM phase. The A1 + FM
coexistence near the Stoner threshold can be analyzed by
showing explicitly the magnetization and superconducting gap
evolution with increasing J . This is shown in Figs. 3 and 4. One
sees explicitly that the nonzero magnetization appears slightly
below the Stoner threshold and is thus induced by the onset of
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FIG. 1. (Color online) Phase diagrams in space (n,J ) for T = 10−4 and for different values of the βh parameter: (a) βh = 0.00, (b)
βh = 0.04, (c) βh = 0.06, (d) βh = 0.11. Labels representing different phases are described in the main text. One sees that practically all
magnetic phases here are in fact the coexistent phases with superconductivity except the half-filled situation where we have pure AF phase.

A1 paired state. In other words, superconductivity enhances
magnetism. But the opposite is also true, i.e., the gap increases
rapidly in this regime, where magnetization changes. The
situation is preserved for nonzero hybridization. The transition
A→A1 + FM is sharp, as detailed free-energy plot shows.
For βh = 0.11 in a certain range of J , the superconducting
solutions A1 + FM and A can not be found by the numerical
procedure. That is why the curves representing the gap
parameters � and free energy suddenly break. The most
important and surprising conclusion is that in the A1 + FM
phase, only the electrons in spin-majority subband are paired.
This conclusion may have important practical consequences
for spin filtering across NS/A1 + FM interface, as discussed
at the end. Nevertheless, one should note that the partially
polarized (FM) state appears only in a narrow window of
J values near the Stoner threshold, at least for the selected
density of states.

Summarizing, we have supplemented the well-known
magnetic phase diagrams with the appropriate stable and
spin-triplet paired states. A relatively weak hybridization
of band states destabilizes pure paired states but stabilizes

coexistent superconducting-magnetic phases except for the
half-filled band case, when the appearance of the Slater gap at
the Fermi level excludes any superconducting state. A very
interesting phenomenon of pairing for one-spin (majority)
electrons occurs near the Stoner threshold for the onset
of FM phase and extends to the regime slightly below
threshold.

B. Detailed physical properties

In Figs. 5 and 6, we show the low-temperature values of
superconducting gaps and the staggered magnetic moment
as a function of band filling. In the SC + AF phase, both
gap parameters �+ and �− decrease continuously to zero
as the system approaches the half-filling. On the contrary, the
staggered magnetic moment S̄z

s reaches then the maximum.
For the case of βh = 0.0, below the critical value of band
filling nc ≈ 1.45, the gap parameters �+ and �− are equal
and the staggered magnetic moment vanishes. In this regime,
the superconducting phase of type A is the stable one. For the A
phase, the superconducting gap decreases with the band-filling
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FIG. 2. (Color online) Phase diagrams zoomed in space (n,J )
with the dashed line marking the Stoner threshold for the onset of
pure ferromagnetism. The values of the hybridization parameter are
βh: (a) βh = 0.00, (b) βh = 0.11, while the temperature is T = 10−4.

decrease and becomes zero for some particular value of n.
Below that value, the NS (paramagnetic state) is stable. It
is clearly seen that the appearance of two gap parameters
above nc is connected with the onset of the staggered-moment
structure, as above nc we have Sz

s �= 0 [cf. Fig. 5(b)]. For
comparison, we also show the staggered moment for pure
AF in Figs. 5(b) and 6(b) (dashed line). As one can see, the
appearance of SC increases slightly the staggered moment in
SC + AF phase. For βh = 0.11 below some critical value of
band filling nc ≈ 1.473 in a very narrow range of n, a pure
AF phase is stable. The inset in Fig. 6(a) shows that there
is a weak first-order transition between the AF + SC and SC
phases as a function of doping. The A phase is not stable in
this case.

One should mention that the easiness with which the
superconducting triplet state is accommodated within the
antiferromagnetic phase stems from the fact that the SC gaps
have an intra-atomic origin and the corresponding spins have
then the tendency to be parallel. Therefore, the pairs respect the
Hund’s rule and do not disturb largely the staggered-moment
structure, which is of interatomic character.

In Fig. 7,we show temperature dependence of the free
energy for the six considered phases for the set of microscopic
parameters selected to make the SC + AF phase stable at

(a)

(b)

FIG. 3. (Color online) Magnetic moment (per orbital per site),
ground-state energy, and superconducting gap as a function of J

near the Stoner threshold for n = 1 and βh = 0.0. Black vertical line
in the inset marks the onset of saturated magnetism at the Stoner
threshold.

T = 0 and for βh = 0. Because the free-energy values of the
A and NS phases are very close, we exhibit their temperature
dependencies zoomed in Fig. 7(b). The same is done for
the free energy of phases A1 + FM and FM. For the same
values of n, J , U , and U ′, the temperature dependence of the
superconducting gaps and the staggered magnetic moment in
SC + AF phase are shown in Fig. 8 for selected βh values. For
given βh below the superconducting critical temperature TS ,
the staggered magnetic moment and the superconducting gaps
have all nonzero values, which means that we are dealing with
the coexistence of superconductivity and antiferromagnetism
in this range of temperatures. Both �+ and �− vanish at
TS , while the staggered magnetic moment vanishes at the
Néel temperature TN � TS . In Fig. 9, one can observe that
there are two typical mean-field discontinuities in the specific
heat at TS and TN for a given βh. The first of them, at TS ,
corresponds to the phase transition from the SC + AF phase
to the pure AF phase, while the second, at TN , corresponds to
the transition from the AF phase to the NS phase. The values
of the ratios of the specific heat jump (�c/cN ) at TC that
correspond to βh = 0.0, 0.4, 0.6 are 15.075, 16.298, 17.375,
respectively. No antiferromagnetic gap is created since we have
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(a)

(b)

FIG. 4. (Color online) Magnetic moment (per orbital per site),
ground-state energy, and superconducting gap as a function of J near
the Stoner threshold for n = 1 and βh = 0.11. Black vertical line in
the inset marks the onset of magnetism at the Stoner threshold.

number of electrons n < 2. The specific-heat discontinuity at
the AF transition is due to the change of spin entropy near TN .
For n = 2, the formation of the Slater gap at TN makes the
superconducting transition to disappear. As one can see form
Figs. 8 and 9, with the increase of βh, the critical temperature
TS is decreasing slightly, while the Néel temperature increases,
but the ratio remains almost fixed, TN/TC ≈ 10.

Temperature dependence of free energies of relevant
phases are presented in Fig. 10 (βh = 0) for the microscopic
parameters selected to make the A1 + FM phase stable at
T = 0. Free energies for A and A1 + FM phases are drawn
only in the low-T regime [Fig. 10(b)] for the sake of
clarity. The corresponding temperature dependence of the
superconducting gaps, magnetic moment, and specific heat
in A1 + FM phase for three selected values of βh are shown in
Fig. 11. Analogously as in the SC + AF case, the system un-
dergoes two phase transitions. The influence of hybridization
on the temperature dependencies is also similar to that in
the case of coexistence of superconductivity with antiferro-
magnetism. With the increasing βh, the critical temperature
TS is decreasing slightly, whereas the Curie temperature TC

is slightly increasing, but still TC/TS ≈ 5. The values of
the ratios of the specific heat jump (�c/cN ) at TC that

(a)

(b)

FIG. 5. (Color online) Low-temperature values of the supercon-
ducting gaps and the staggered magnetic moment both as a function
of band filling for βh = 0 and J = 0.175. The stable phases are
appropriately labeled in the regimes of their stability. Note that
�− � �+, i.e., the paired state is closer to A1 state than to A state
in the coexistent regime.

correspond to βh = 0.0, 0.2, 0.4 are 1.329, 1.421, 0.793,
respectively.

For the sake of completeness, in Fig. 12 we provide the
temperature dependence of superconducting gap for the values
of parameters that correspond to stable pure superconducting
phase of type A at T = 0 and for three different values of
βh. In this case, neither the antiferromagnetically ordered
nor the pure ferromagnetic phases exist. As in previous
cases, the increasing hybridization decreases TS . It should be
noted that the values of βh are very close to zero. This is
necessary to assume for the A phase to appear. The values
of the ratios of the specific heat jump (�c/cN ) at TC that
correspond to βh = 0.0, 0.035, 0.006 are 1.382, 1.326, 1.202,
respectively.

In Table I we have assembled the exemplary values
of mean-field parameters, chemical potential, as well as
free energy for two different sets of values of microscopic
parameters corresponding to the low-temperature stability of
two considered here superconducting phases: SC + AF and
A1 + FM. For the two sets of values of n and J , the free-energy
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(a)

(b)

FIG. 6. (Color online) Low-temperature values of the supercon-
ducting gaps and the staggered magnetic moment as a function of
band filling for βh = 0.11 and J = 0.175. Note the disappearance of
the pure A phase and that again �− � �+. The inset in (b) illustrates
the fact that a pure AF phase appears in a very narrow regime of n

before the SC + AF phase becomes stable, whereas the inset in (a)
shows the free energy of those two phases for n close to nC when a
weak first-order transition occurs.

difference between the stable and first unstable phases is of
order 10−3. The values for the stable phases are underlined.

IV. CONCLUSIONS AND OUTLOOK

We have carried out the Hartree-Fock-BCS analysis of
the hybridized two-band Hubbard model with the Hund’s-
rule induced magnetism and spin-triplet pairing. We have
determined the regions of stability of the spin-triplet paired
phases with �0 ≡ 0, coexisting with either ferromagnetism
(A1 + FM) or antiferromagnetism (SC + AF), as well as pure
paired phase (A). We have analyzed in detail the effect of
interband hybridization on stability of the those phases. The
hybridization reduces significantly the stability regime of the
superconducting phase A, mainly in favor of the paramagnetic
(normal) phase NS. For a large enough value of βh (βh >

0.08), the A phase disappears altogether. When it comes to
magnetism, with the increase of βh, the stability regime of

(a)

(b)

FIG. 7. (Color online) (a) Temperature dependence of the free
energy for considered phases for n = 1.9 and J = 0.175 when the
SC + AF phase is stable at T = 0. The free-energy values of A and
NS phases are very close, so we exhibit their temperature dependence
blown up in part (b).

the saturated ferromagnetically ordered phase is reduced in
favor of the nonsaturated. The influence of the hybridization
on the low-temperature stability of the SC + AF phase is not
significant. When the system is close to the half-filling, the
SC + AF phase is the stable one. However, for the half-filled
band case (n = 2), the superconductivity disappears and only
pure antiferromagnetic state survives since the nesting effect
of the two-dimensional band structure prevails then.

We have also examined the temperature dependence of
the order parameters and the specific heat. For both co-
existent superconducting and magnetically ordered phases
(SC + AF and A1 + FM), one observes two separate phase
transitions with the increasing temperature. The first of them,
at substantially lower temperature (TS), is the transition from
the superconducting-magnetic coexistent phase to the pure
magnetic phase and the second, occurring at much higher tem-
perature (TN or TC), is from the magnetic to the paramagnetic
phase (NS). The hybridization has a negative influence on
the spin-triplet superconductivity since it reduces the critical
temperature for each type of the spin-triplet superconducting
phase considered here. On the other hand, the Curie (TC) and
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the Néel (TN ) temperatures are increasing with the increase of
the βh parameter, as it generally increases the density of states
at the Fermi level (for appropriate band fillings).

One should note that since the pairing is intra-atomic
in nature, the spin-triplet gaps �m are of the s type. This
constitutes one of the differences with the corresponding
situation for superfluid 3He, where they are of p type.8

It is also important to note that the paired state appears
both below and above the Stoner threshold for the onset of
ferromagnetism (cf. Fig. 2), although its nature changes (A
and A1 states, respectively). In the ferromagnetically ordered
phase, only the spin-majority carriers are paired. This is not the
case for the AF + SC phase. It would be very interesting to try
to detect such highly unconventional SC phase. In particular,
the Andreev reflection and, in general, the NS/SC conductance
spectroscopy will have an unusual character. We should see
progress along this line of research soon.

As mentioned before, all the results presented in the
previous section have been obtained assuming that U = 2.2J

and U ′ = U − 2J . Having said that, the value of JH = J − U ′
determines the strength of the pairing mechanism, while
I = U + J is the effective magnetic coupling constant, one

(a)

(b)

FIG. 8. (Color online) Temperature dependencies of the super-
conducting gaps �+, �− and of the staggered magnetic moment for
n = 1.9, J = 0.175 and for selected values of the βh parameter. Note
that TS � TN .

FIG. 9. (Color online) Temperature dependence of the specific
heat for n = 1.9, J = 0.175, and for selected values of βh parameter.
The behavior is almost independent of βh value and the ratio
TN/TS ≈ 10.

(a)

(b)

FIG. 10. (Color online) Temperature dependence of the free
energy for n = 1.0 and J = 0.31625 when the A1 + FM phase is
stable at T = 0. AF phases do not appear in this case. Free energies
for A and A1 + FM phases are shown in the low-T regime (b) for the
sake of clarity.
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(a)

(b)

FIG. 11. (Color online) Temperature dependence of the super-
conducting gaps �+, �−, magnetic moment (a), and specific heat
(b) for n = 1.0, J = 0.31625, and for selected values of βh.
Qualitative features do not alter appreciably even for βh = 0.4. The
ratio TC/TS ≈ 5.

can roughly predict how will the change in the relations
between U , U ′, and J result. It seems reasonable to say that the
larger J is with respect to U ′, the stronger the superconducting
gap in the paired phases. This would also result in the increase
of TC and a corresponding enlargement of the area occupied
by the superconducting phases on the diagrams. Furthermore,
the increase of U with respect to J should result in the
increase of the ratios TC/TS and TN/TS . This is because in
that manner we make the magnetic coupling stronger with
respect to the pairing. If we, however, increase U but do not
change JH , then the strength of the pairing would be the
same but the magnetic coupling constant would be stronger so
this would favor the coexistent magnetic and superconducting
phases with respect to the pure superconducting phase. Quite a
stringent necessary condition for the pairing to appear J > U ′
(equivalent to 3J > U if we assume U ′ = U − 2J , as has
been done here) indicates that only in specific materials one
would expect for the Hund’s rule to create the superconducting
phase. This may explain why only in very few compounds
the coexistent ferromagnetic and superconducting phase has
been indeed observed. Obviously, one still has to add the
paramagnon pairing (cf. Appendix C).

FIG. 12. (Color online) Temperature dependencies of the super-
conducting gaps �+, �− (a), and the specific heat (b) for n = 1.25,
J = 0.175, and for selected values of βh parameter.

It should be noted that more exotic magnetic phases may
appear in the two-band model.19 Here, we neglect those phases
because of two reasons. First the lattice selected for analysis
is bipartite, with strong nesting (AF tendency). Second the
additional ferrimagnetic, spiral, etc., phase might appear if we
assumed that the second hopping integral t ′ �= 0. Inclusion of
t ′ would require a separate analysis, as the lattice becomes
frustrated then.

TABLE I. Exemplary values of the mean-field parameters, the
chemical potential, and the free energy of the considered phases at
T = 10−4 for two different sets of values of microscopic parameters:
n, J . The underlined values correspond the stable phases. The
numerical accuracy is better than the last digit.

n = 1.9 n = 1.0
Parameter Phase J = 0.175 J = 0.31625

� A 0.0097911 0.0208481
� A1 + FM 0.0056821 0.0482677
�+ SC + AF 0.0210081
�− SC + AF 0.0017366

Sz
u A1 + (S)FM 0.1134254 0.2500000

Sz
u (S)FM 0.1144301 0.2500000

Sz
s SC + AF 0.3340563

Sz
s AF 0.3314687

μ A −0.0107669 −0.1815757
μ NS −0.0094009 −0.1799612
μ A1 + (S)FM −0.0175982 −0.2530000
μ (S)FM −0.0178066 −0.253000
μ SC + AF −0.1708890
μ AF −0.1859011

F A −0.4050464 −0.3286443
F NS −0.4048522 −0.3282064
F A1 + (S)FM −0.4062039 −0.3314652
F (S)FM −0.4061793 −0.3291425
F SC + AF −0.4489338
F AF −0.4469097
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APPENDIX A: HAMILTONIAN MATRIX FORM IN THE
COEXISTENT SC + AF PHASE AND QUASIPARTICLE

OPERATORS

In this appendix, we show the general form of the
Hamiltonian matrix Hk and the pairing operators expressed

in terms of the quasiparticle creation operators from the first
step of the diagonalization procedure discussed in Sec. II.

For the case of nonzero gap parameters �0A(B), we have to
use eight element composite creation operator

f̃†
k ≡ (ã†

k1↑A,ã
†
k1↓A,ã−k2↑A,ã−k2↓A,ã

†
k1↑B,

ã
†
k1↓B,ã−k2↑B,ã−k2↓B ),

to write the Hamiltonian (11) in the matrix form

ĤHF − μN̂ =
∑

k

f̃†
kHkf̃k + 2

∑
k

(ε̃k2A + ε̃k2B) − 2μN + C,

(A1)

where f̃k ≡ (f̃†
k)†, and

Hk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε̃k1A − μ 0 δ1k↑↑ δ1k↑↓ 0 0 δ3k↑↑ δ3k↑↓
0 ε̃k1A − μ δ1k↓↑ δ1k↓↓ 0 0 δ3k↓↑ δ3k↓↓
δ∗

1k↑↑ δ∗
1k↓↑ −ε̃k2A + μ 0 δ4k↑↑ δ4k↓↑ 0 0

δ∗
1k↑↓ δ∗

1k↓↓ 0 −ε̃k2A + μ δ4k↑↓ δ4k↓↓ 0 0

0 0 δ∗
4k↑↑ δ∗

4k↑↓ ε̃k1B − μ 0 δ2k↑↑ δ2k↑↓
0 0 δ∗

4k↓↑ δ∗
4k↓↓ 0 ε̃k1B − μ δ2k↓↑ δ2k↓↓

δ∗
3k↑↑ δ∗

3k↓↑ 0 0 δ∗
2k↑↑ δ∗

2k↓↑ −ε̃k2B + μ 0

δ∗
3k↑↓ δ∗

3k↓↓ 0 0 δ∗
2k↑↓ δ∗

2k↓↓ 0 −ε̃k2B + μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

The δlkσσ ′ are the generalization of parameters introduced
earlier in Eq. (16):

δ1kσσ ′ = �σσ ′AU+
kσU−

kσ ′ + �σσ ′BV +
kσV −

kσ ′ ,

δ2kσσ ′ = �σσ ′AV +
kσV −

kσ ′ + �σσ ′BU+
kσU−

kσ ′,
(A3)

δ3kσσ ′ = −�σσ ′AU+
kσV −

kσ ′ + �σσ ′BV +
kσU−

kσ ′ ,

δ4kσσ ′ = −�σσ ′AV +
kσU−

kσ ′ + �σσ ′BU+
kσV −

kσ ′ ,

where �↑↑A(B) = �+1A(B), �↓↓A(B) = �−1A(B), �↓↑A(B) =
�↑↓A(B) = �0A(B).

In the following, we present the pairing operators expressed
in terms of the quasiparticle creation operators that we
have introduced during the first step of the diagonalization
procedure of the Hamiltonian (11):

Â
†
kσA = U+

kσU−
kσ ã

†
k1σAã

†
−k2σA + V +

kσV −
kσ ã

†
k1σBã

†
−k2σB

−U+
kσV −

kσ ã
†
k1σAã

†
−k2σB − V +

kσU−
kσ ã

†
k1σBã

†
−k2σA,

Â
†
kσB = U+

kσU−
kσ ã

†
k1σBã

†
−k2σB + V +

kσV −
kσ ã

†
k1σAã

†
−k2σA

+U+
kσV −

kσ ã
†
k1σBã

†
−k2σA + V +

kσU−
kσ ã

†
k1σAã

†
−k2σB, (A4)

Â
†
k0A = 1√

2

∑
σ

(U+
kσU−

kσ̄ ã
†
k1σAã

†
−k2σ̄A

+V +
kσ V −

kσ̄ ã
†
k1σBã

†
−k2σ̄B − V −

kσU+
kσ̄ ã

†
k1σBã

†
−k2σ̄A

−U+
kσV −

kσ̄ ã
†
k1σAã

†
−k2σ̄B),

Â
†
k0B = 1√

2

∑
σ

(V +
kσV −

kσ̄ ã
†
k1σAã

†
−k2σ̄A

+U+
kσU−

kσ̄ ã
†
k1σBã

†
−k2σ̄B + U−

kσV +
kσ̄ ã

†
k1σBã

†
−k2σ̄A

+V +
kσ U−

kσ̄ ã
†
k1σAã

†
−k2σ̄B). (A5)

APPENDIX B: HAMILTONIAN MATRIX AND
QUASIPARTICLE STATES FOR THE COEXISTENT

FERROMAGNETIC-SPIN-TRIPLET SUPERCONDUCTING
PHASE

In this appendix, we show briefly the approach to the
coexistent ferromagnetic-spin-triplet superconducting phase
within the mean-field-BCS approximation. In analogy to the
situation considered in Sec. II, we make use of relations (3) and
(5) and transform our Hamiltonian into the reciprocal space
to get

ĤHF − μN̂ =
∑
klσ

(
εk − μ − σISz

u

)
n̂klσ

+
∑

kll′(l �=l′)σ

ε12ka
†
klσ akl′σ

+
∑

k,m=±1

(�∗
mÂk,m + �mÂ

†
k,m)

+
√

2
∑

k

(�∗
0Âk,0 + �0Â

†
k,0)

+N

{ |�1|2 + |�−1|2 + 2|�0|2
J − U ′ + 2I

(
Sz

u

)2
}
,

(B1)
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where Sz
u is the uniform average magnetic moment and this

time the sums are taken over all N independent k points, as here
we do not need to perform the division into two sublattices.
In the equation above, we have omitted the terms that only
lead to the shift of the reference energy. Next, we diagonalize
the one-particle part of the HF Hamiltonian by introducing
quasiparticle operators

ãk1σ = 1√
2

(ak1σ + ak2σ ),

(B2)

ãk2σ = 1√
2

(−ak1σ + ak2σ ),

with dispersion relations

ε̃k1σ = εk − μ − σISz + |ε12k|,
(B3)

ε̃k2σ = εk − μ − σISz − |ε12k|.
Using the four-component composite creation operator
f̃†
k ≡ (ã†

k1↑,ã
†
k1↓,ã−k2↑,ã−k2↓), we can construct the 4 × 4

Hamiltonian matrix and write it in the following form:

ĤHF − μN̂ =
∑

k

f̃†
kH̃kf̃k +

∑
kσ

ε̃k2σ + C, (B4)

where

H̃k =

⎛
⎜⎝

ε̃k1↑ 0 �1 �0

0 ε̃k1↓ �0 �−1

�∗
1 �∗

0 −ε̃k2↑ 0
�∗

0 �∗
−1 0 −ε̃k2↓

⎞
⎟⎠ , (B5)

with f̃k ≡ (f̃†
k)†. Symbol C refers to the last two terms of

the right-hand side of expression (B1). After making the
diagonalization transformation of (B5), we can write the HF
Hamiltonian as

ĤHF − μN̂ =
∑
klσ

λklσ α
†
klσ αklσ +

∑
kσ

(ε̃k2σ − λk2σ ) + C,

(B6)

where we have again introduced the quasiparticle operators
αklσ and α

†
klσ . Assuming that �0 = 0 and that the remaining

gap parameters are real, we can write the dispersion relations
for the quasiparticles λklσ in the following way:

λk1↑ =
√

(εk − μ − ISz)2 + �2
1 + βh|εk|,

λk1↓ =
√

(εk − μ + ISz)2 + �2
−1 + βh|εk|,

(B7)
λk2↑ =

√
(εk − μ − ISz)2 + �2

1 − βh|εk|,

λk2↓ =
√

(εk − μ + ISz)2 + �2
−1 − βh|εk|.

In this manner, we have obtained the fully diagonalized
Hamiltonian analytically for the case of superconductivity
coexisting with ferromagnetism. Next, in the similar way as for
the antiferromagnetically ordered phases, we can construct the
set of self-consistent equations for the mean-field parameters
�±1, Sz

u and for the chemical potential, as well as construct
the expression for the free energy.

APPENDIX C: BEYOND THE HARTREE-FOCK
APPROXIMATION: HUBBARD-STRATONOVICH

TRANSFORMATION

In outlining the systematic approach going beyond the
Hartree-Fock approximation, we start with Hamiltonian (7)
with the singlet pairing part ∼ (U ′ + J )

∑
i B

†
i Bi neglected,

i.e.,

Ĥ = Ĥ0 + U
∑
il

n̂il↑n̂il↓ − JH
∑
im

Â
†
imÂim, (C1)

where Ĥ0 contains the hopping term, and JH ≡ J − U ′. We
use the spin-rotationally invariant form of the Hubbard term

n̂il↑n̂il↓ = n̂2
il

4
− ( �μil · Ŝil)

2, (C2)

where n̂il = ∑
σ n̂ilσ and �μi is an arbitrary unit vector

establishing local spin quantization axis. One should note that,
strictly speaking, we have to make the Hubbard-Stratonovich
transformation twice for each of the last two terms in (C2)
separately. The last term will be effectively transformed in the
following manner:

−JH
∑
im

Â
†
imÂim

→ −
∑
im

(Â†
im�im + Âim�∗

im − |�im|2/JH ), (C3)

where �im is the classical (Bose) field in the coherent-state
representation. The term (C2) can be represented in the
standard form through the Poisson integral

exp

(
α̂2

i

2

)
= 1√

2π

∫ ∞

−∞
dxi

(
− x2

i

2
+ α̂ixi

)
. (C4)

In effect, the partition function for the Hamiltonian (C1) will
have the form in the coherent-state representation

Z =
∫

D[ailσ ,a
†
ilσ ,�im,�∗

im,λil]

× exp

(
−

∫ β

0
dτ

{∑
ij ll′σ

a
†
ilσ

[
t ll

′
ij +

(
∂

∂τ
− μ

)
δij δll′

]
ajl′σ

−
∑
im

[
�im(τ )Â†

im(τ ) + �∗
im(τ )Âim(τ ) − |�im(τ )|2

JH

]

−
∑
il

√
2λil �μil · Ŝil + λ2

il

})
, (C5)

where we have included only the spin and the pairing
fluctuations. In this paper, t ll

′
ij = tij δll′ + (1 − δll′ )t12

ij . Also,
the integration takes place in imaginary-time domain and
the creation and annihilation operators are now Grassman
variables.20 In this formulation, �im and λi represent local
fields which can be regarded as mean (Hartree-Fock) fields
with Gaussian fluctuations.
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With the help of (C5), we can define “time-dependent”
effective Hamiltonian

Ĥ (τ ) ≡
∑
ij ll′σ

t ll
′

ij a
†
ilσ (τ )ajl′σ (τ ) − JH

∑
im

[
�im(τ )Â†

im(τ )

+�∗
im(τ )Âim(τ ) − |�im(τ )|2

]

−U
∑

i

[
�λil(τ ) · Ŝil(τ ) +

�λ2
il(τ )

2

]
, (C6)

where now the fluctuating dimensionless fields are defined as

�λil(τ ) ≡
√

2 �μilλil(τ )

U
, �im(τ ) ≡ �im(τ )

JH
. (C7)

Note that the magnetic molecular field ∼ U �λil(τ ) is sub-
stantially stronger than the pairing field ∼ JH �im(τ ). In
the saddle-point approximation �λil(τ ) ≡ λilez, �im(τ ) =

�∗
im(τ ) ≡ �, and we obtain the Hartree-Fock-type approxi-

mation. Therefore, the quantum fluctuations are described by
the terms

−U
∑
il

�δλil(τ ) · Ŝil(τ )

−JH
∑
im

[δ�im(τ )Â†
im(τ ) + δ�∗

im(τ )Âim(τ )]. (C8)

The first term represents the quantum spin fluctuations of the
amplitude �δλil(τ ) ≡ �λil(τ ) − λez, and the second describes
pairing fluctuations. Both fluctuations are Gaussian due to

the presence of the terms ∼ �δλ2
il(τ ) and |δ�im(τ )|2. In

other words, they represent the higher-order contributions
and will be treated in detail elsewhere. In such manner, the
mean-field part (real-space pairing) and the fluctuation part
(pairing in k space) can be incorporated thus into a single
scheme.
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Hund’s rule induced spin-triplet superconductivity coexist-
ing with magnetic ordering in the degenerate band Hubbard
model

Michał Zegrodnik
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and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

Supervisor: Jozef Spałek

The Hartree-Fock approximation combined with the Bardeen-Cooper-Schrieffer
(BCS) method is applied for the degenerate band Hubbard model to analyze the
coexistence of spin-triplet superconductivity with ferromagnetism and antiferro-
magnetism. In the presented approach the Hund’s rule exchange term is responsi-
ble for both pairing mechanism and magnetic ordering. The proper phase diagrams
are presented and the influence of the intersite hybridization on the stability of
considered phases is discussed. Additionally, the calculated temperature depen-
dences of superconducting gaps and magnetic moment are shown.

It is believed that Sr2RuO4
1, UGe2 2, and

URhGe3 are the candidates for the spin-
triplet superconductors. The last two are par-
ticularly interesting as the paired state ap-
pears inside the ferromagnetic phase. It has
been suggested by a proper qualitative anal-
ysis4–6 that the intra-atomic Hund’s rule can
lead to the coexisting superconducting and
magnetically ordered phases. In this letter
we further discuss the idea of real-space spin-
triplet pairing in the regime of weakly cor-
related particles and include both inter-band
hybridization and corresponding Coulomb in-
teractions. We think that this relatively sim-
ple approach is relevant to the mentioned at
the beginning ferromagnetic superconductors
because of the following reasons. Even though
the effective exchange (Weiss-type) field acts
only on the spin degrees of freedom, it is
important in determining the second criti-
cal field of ferromagnetic superconductor in
the so-called Pauli limit7–9, as the orbital ef-
fects in the Cooper-pair breaking process are
then negligible. The appearance of a sta-
ble coexistent ferromagnetic-superconducting
phase means, that either Pauli limiting situa-
tion critical field has not been reached in the
case of spin-singlet pairing or else, the pairing
has the spin-triplet nature, without the com-
ponent with spin Sz = 0, and then the Pauli
limit is not operative.

We begin with the extended orbitally de-
generate Hubbard Hamiltonian which has the
following form

Ĥ =
∑

ij(i 6=j)ll′σ
tll

′
ij a
†
ilσajl′σ + U

∑

il

n̂il↑n̂il↓

+ (U ′ + J)
∑

i

n̂i1n̂i2

− J
∑

ill′(l 6=l′)

(
Ŝil· Ŝil′ +

3

4
n̂iln̂il′

)
,

(1)

where l=1,2 label the orbitals. The first term
describes electron hopping between atomic
sites i and j. For l 6= l′ this term corresponds
to inter-site, inter-orbital hybridization. Next
two terms describe the Coulomb repulsion be-
tween electrons on the same atomic site. As
one can see the third term contains the con-
tribution that originates from the exchange
interaction (J). The last term expresses the
(Hund’s rule) ferromagnetic exchange and is
going to be regarded as responsible for the
spin-triplet pairing mechanism. It can be ex-
pressed in terms of the spin-triplet pairing op-
erators

Â†i,m ≡





a†i1↑a
†
i2↑ m = 1,

a†i1↓a
†
i2↓ m = −1,

1√
2
(a†i1↑a

†
i2↓ + a†i1↓a

†
i2↑) m = 0.

(2)
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The results presented here have been car-
ried out for the case of square lattice with
nonzero hopping t between nearest neighbors
only. As we are considering the doubly de-
generate band model, we make a simplifying
assumption that the hybridization matrix el-
ement εk12 = βhεk, where βh ∈ [0,1] is the
parameter, which specifies the hybridization
strength. After applying the Hartree-Fock ap-
proximation to (1) and performing the trans-
formation to the reciprocal space, one gets the
following mean-field parameters in the result-
ing Hamiltonian

∆±1 ≡ −
(J − U ′)
WN

∑

k

〈Âk,±1〉,

∆0 ≡ −
(J − U ′)√

2WN

∑

k

〈Âk,0〉,
(3)

Szl ≡
1

2N

∑

k

(
〈n̂kl↑〉 − 〈n̂kl↓〉

)
, (4)

where N is the number of atomic sites and
W is the bare band width. The ∆m parame-
ters have the interpretation of spin-triplet su-
perconducting gaps, while Szl is the expecta-
tion value of the magnetic moment per site,
per band. Because the considered bands are
equivalent the magnetic moment fulfills the
relation Sz1 =Sz2 ≡Sz. Mean field parameters
(3) and (4) are used to define the following
phases

• normal state (NS): ∆±1 =0, Sz=0

• pure superconducting phase type A (A):
∆±1≡∆ 6= 0, Sz=0

• pure saturated ferromagnetic phase
(SFM): ∆±1 =0, Sz=Szmax 6= 0

• pure nonsaturated ferromagnetic phase
(FM): ∆±1 =0, 0<Sz<Szmax

• saturated ferromagnetic phase coexis-
tent with superconductivity of type A1
(A1+SFM):
∆1 6= 0, ∆−1 =0, Sz=Szmax 6= 0

• nonsaturated ferromagnetic phase coex-
istent with superconductivity of type A1
(A1+FM):
∆1 6= 0, ∆−1 =0, 0<Sz<Szmax

One could also consider the so called super-
conducting phase of type B for which ∆0 =
∆±1 6= 0. However this phase never coexists
with magnetic ordering. Moreover in the ab-
sence of magnetic ordering the A phase has
always lower free energy than the B phase.
Therefore the superconducting B phase is ab-
sent in the following discussion.

In the case of antiferromagnetic ordering
one has to divide the system into two inter-
penetrating sublattices A and B. The aver-
age staggered magnetic moment of electrons
on each of the N/2 sublattice A sites is equal,
〈Szi 〉 = 〈SzA〉, whereas on the remaining N/2
sublattice B sites we have 〈Szi 〉 = 〈SzB〉 ≡
−〈SzA〉. Following this division one has to in-
troduce the sublattice gap parameters ∆±1A
and ∆±1B which are defined analogically as
(3) but with regard to each of the sublat-
tices separately. The sublattice gap param-
eters fulfill the relations

∆+1A = ∆−1B ≡ ∆+,

∆−1A = ∆+1B ≡ ∆−,
(5)

The considered here antiferromagnetically or-
dered phases are defined as follows

• pure antiferromagnetic phase (AF):
∆±1A(B) =0, Szs 6= 0

• coexistent superconducting and antifer-
romagnetic phase (SC+AF): ∆±1A(B) 6=
0, Szs 6= 0

where the Szs is the so-called staggered mag-
netic moment. By using the Bogolubov-
Nambu-de Gennes scheme one can diagonal-
ize the Hartree-Fock Hamiltonian and con-
struct the set of self consistent equations for
all the mean field parameters and chemical
potential. For given values of the microscopic
parameters U , U ′, J , βh, n, the set of self-
consistent equations has several solutions that
correspond to different phases. The free en-
ergy can be evaluated for each of the solutions
and the one that corresponds to the lowest
free energy is regarded as the stable phase.

The numerical calculations have been car-
ried out for U ′=U−2J , which is usual for 3d
electrons. For U ′>J the interorbital Coulomb
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repulsion suppresses the pairing mechanism,
so the necessary condition for the spin-triplet
paired phases to appear in our model is U <
3J . It represents a rather stringent condi-
tion as usually for 3d metals we have U∼3J .
This may explain why only in few compounds
the coexistent superconducting and ferromag-
netic phase has been indeed observed.

Figure 1: Phase diagrams in (n, J) space for
kBT/W = 10−4; βh = 0,0 (a) and βh = 0,11
(b).

In Fig. 1 we present the phase diagrams in
(n, J) space for two different values of the βh
parameter. It can be seen that they contain
regions of stability of pure spin-triplet super-
conducting phase as well as superconducting
phase coexisting with either ferromagnetism
or antiferromagnetism. The appearance of
the AF state for half filling (n = 2) corre-
sponds to the fact that the bare Fermi-surface
topology has a rectangular structure with Q=
(π, π) nesting. The symmetry of the phase
diagrams with respect to half-filled band sit-
uation is a manifestation of the particle-hole

symmetry, since the bare density of states is
symmetric with respect to the middle point
of the band. One can see from the presented
diagrams that the influence of hybridization
is significant quantitatively when it comes to
the superconducting phase A, as for βh=0,11
the region of stability of this phase has disap-
peared completely from the diagram mainly
in favor of the NS phase. Moreover due to
hybridization the region of stability of the
A1+SFM phase narrows down in favor of
the A1+FM phase. Antiferromagnetically or-
dered phase is not affected much by the rise
of the βh parameter. The diagram in (n, T )
space (Fig. 2) shows how the critical temper-
ature corresponding to A and SC+AF phases
depends on the band filling.

The temperature dependences of the gap
parameters and staggered magnetic moment
in the SC+AF phase for selected values of
n and J are shown in Fig. 3. It is clearly
seen from the plots that while the temper-
ature is being raised the system undergoes
two phase transitions. The first one is the
transition from SC+AF to AF, when the su-
perconducting gaps ∆+ and ∆− close in the
critical temperature TS . The second one is
the transition from AF to NS, when the stag-
gered structure of the system is destroyed in
the Néel temperature TN . With the increase
of the hybridization strength the critical tem-
perature TS decreases slightly, while the Néel
temperature increases. The transition tem-
perature ratio TN/TS ≈ 10. In Fig. 4 we
show similar plots but for the case of super-
conductivity coexisting with ferromagnetism.

Figure 2: Phase diagrams in (n, T ) space for
J=0,175; βh=0,0 (a) and βh=0,11 (b).
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Analogously as in the case of SC+AF, the sys-

Figure 3: The temperature dependences of
superconducting gaps (a) and magnetic mo-
ment (b) corresponding to the SC+AF phase
for n=1,9; J=0,175.

tem undergoes two phase transitions. The in-
fluence of hybridization on the temperature
dependences is also similar as in the case of
SC+AF phase. This time the transition tem-
perature ratio TC/TS≈5.

Figure 4: The temperature dependences of
the superconducting gap and magnetic mo-
ment corresponding to A1+FM phase for n=
1,0; J=0,31625.

In this letter we have carried out the
Hartree-Fock analysis of the hybridized de-
generate band Hubbard model with both
spin-triplet pairing and magnetism induced
by the Hund’s rule. We have determined the
regions of stability of the pure paired phase
as well as paired phase coexisting with mag-
netic ordering. We have discussed the effect of

hybridization which reduces significantly the
stability regime of the A phase as well as de-
creases the critical temperature of all the su-
perconducting phases considered. The influ-
ence of hybridization on the region of stability
of SC+AF phase is not significant. It should
be mentioned that the easiness with which
the superconducting phase is accommodated
within the antiferromagnetic phase is the re-
sult of the fact that the SC gaps have a in-
traatomic origin and the corresponding spins
have then the tendency to be parallel. There-
fore the spins do not disturb largely the stag-
gered structure, which is of interatomic char-
acter.
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00. J.S. acknowledges the financial support
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degenerate correlated electrons:
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Abstract. An orbitally degenerate two-band Hubbard model is analyzed with
inclusion of the Hund’s rule induced spin-triplet even-parity paired states and their
coexistence with magnetic ordering. The so-called statistically consistent Gutzwiller
approximation (SGA) has been applied to the case of a square lattice. The
superconducting gaps, the magnetic moment, and the free energy are analyzed as
a function of the Hund’s rule coupling strength and the band filling. Also, the
influence of the intersite hybridization on the stability of paired phases is discussed.
In order to examine the effect of correlations the results are compared with those
calculated earlier within the Hartree-Fock (HF) approximation combined with the
Bardeen-Cooper-Schrieffer (BCS) approach. Significant differences between the two
used methods (HF+BCS vs. SGA+real-space pairing) appear in the stability regions
of the considered phases. Our results supplement the analysis of this canonical model
used widely in the discussions of pure magnetic phases with the detailed elaboration
of the stability of the spin-triplet superconducting states and the coexistent magnetic-
superconducting states. At the end, we briefly discuss qualitatively the factors that
need to be included for a detailed quantitative comparison with the corresponding
experimental results.
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Coexistence of spin-triplet superconductivity with magnetism 2

1. Introduction

The question of coexistence of magnetism and superconductivity appears very often
in correlated electron systems. In this context, both the spin-singlet and the spin-
triplet paired states should be considered. A general motivation for considering the
spin-triplet pairing is provided by the discoveries of superconductivity in Sr2RuO4

[1, 2], UGe2 [3, 4], URhGe [5], UIr [6], and UCoGe [7, 8, 9]. In the last four
compounds, superconductivity indeed coexists with ferromagnetism. Moreover, for
both, the spin-singlet high-temperature superconductors and the heavy-fermion systems,
the antiferromagnetism and the superconductivity can have the same origin. Hence,
it is natural to ask whether ferromagnetism and spin-triplet superconductivity also
have the same origin in the itinerant uranium ferromagnets. A related and a very
nontrivial question is concerned with the coexistence of antiferromagnetism with triplet
superconducting state as in UNi2Al3 [10, 11, 12] and UPt3 [13, 14].

It has been argued earlier [15, 17, 18, 19] that for the case of indistinguishable
fermions, the intra-atomic Hund’s rule exchange can lead in a natural manner to the
coexistence of spin-triplet superconductivity with magnetic ordering - ferromagnetism
or antiferromagnetism in the simplest situations. This idea has been elaborated
subsequently by us [20, 21, 22] by means of the combined Hartree-Fock(HF)-Bardeen-
Cooper-Shrieffer(BCS) approach. In particular, the phase diagrams have been
determined which contain regions of stability of the pure superconducting phase of
type A (i.e., the equal-spin-paired phase), as well as superconductivity coexisting with
either ferromagnetism or antiferromagnetism.

The HF approximation, as a rule, overestimates the stability of phases with a
broken symmetry. Therefore, in this work, we apply the Gutzwiller approximation for
the same selection of phases in order to go beyond the HF-BCS analysis and examine
explicitly the effects of interelectronic correlations. The extension of the Gutzwiller
method to the multi-band case [23, 24, 25] provides us with the so-called renormalization
factors for our degenerate two-band model. With these factors, we construct an effective
Hamiltonian by means of the statistically consistent Gutzwiller approximation, SGA,
in which additional constraints are added to the standard Gutzwiller approximation
(GA) and with the incorporation of which the single-particle state has been determined
(see [26, 27, 28, 29] for exemplary applications of the SGA method). The detailed
phase diagram and the corresponding order parameters are calculated as functions
of the microscopic parameters such as the band filling, n, the Hund’s rule exchange
integral, J , and the intra- and inter-orbital Hubbard interaction parameters, U and
U ′, respectively. The obtained results are compared with those coming out from the
Hartree-Fock approximation. In this manner, the paper extends the discussion of
itinerant magnetism within the canonical (extended Hubbard) model, appropriate for
this purpose, to the analysis of pure and coexisting superconducting-magnetic states
within a single unified approach. It should be noted that theoretical investigations
regarding the spin-triplet pairing have been performed recently also for other systems
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[30, 31, 32, 33, 34, 35].
The present model is based on assuming that the starting (bare) bands originate

from equivalent orbitals and become inequivalent when the interband hybridization
is included. The real 3d or 4d orbitals are anisotropic, so the model requires some
extensions to become applicable in a quantitative manner for real materials. We can say
that here we discuss thus some universal stability conditions of the paired and coexistent
magnetic-paired states, as well as provide some basic quantitative characteristics. This is
because, as we show explicitly below, the order parameters and related other quantities
are determined by a minimization of the ground-state or free-energy functional which is
obtained by integrating ln Z, where Z is the effective grand-canonical partition function,
over the single-particle effective band energies. Hence, the global energies are averaged
out over the band states. In other words, the present model with symmetric bands can be
regarded as reflecting qualitative features of Sr2RuO4 within a two-band approximation.
Nevertheless, it is directly applicable for discussing the superfluidity and magnetism in
the two-orbital SU(4) model of multicomponent ultracold fermions [36, 37, 38] as there
the orbitals are identical and the general orbital and the spin symmetry combine to
SU(N) symmetry.

The extension of the present model to the uranium system such as UGe2 would
require considering orbitally degenerate and correlated 5f 2 − 5f 3 quasi-atomic states
due to U and hybridized with the uncorrelated conduction band states. This means that
we must have minimally a three-orbital system with two partially occupied 5f quasi-
atomic states (so the Hund’s rule becomes operative) and at least one extra conduction
band. Such situation may lead to a partial Mott-localization phenomenon, i.e., to a
spontaneous decomposition of 5fn (n > 1) configuration of electrons into the localized
and the itinerant parts [39]. In such a situation, it is possible that the localized electrons
are the source of ferromagnetism, whereas the itinerant particles are paired [9]. This is
not the type of coexistent phase we have in mind here, since in the model considered
by us all the system electrons are indistinguishable in the quantum-mechanical sense.
These considerations lead to the conclusion that one would require minimally a periodic
Anderson model with degenerate 5fn states, to mimic the uranium-based ferromagnetic
superconductors. This variant of the multiple-band model is also very useful in the
discussion of heavy-fermion compounds. Moreover, in the systems represented by this
model, the coexistence of antiferromagnetism and superconductivity has been shown to
appear in both experiment [40] and theory [41].

In relation to the even-parity spin-triplet real-space pairing induced by the Hund’s
rule, one should also mention the spin fluctuations (SF) as another possible mechanism
of spin-triplet pairing in liquid 3He systems [42]. In that case the spin-triplet pairing
is taking place in a single band system and thus the pair states must be of odd-
parity. Within the present approach the spin fluctuations should be treated as quantum
fluctuations around the present self-consistently renormalized mean field state [43]. The
real-space and the spin-fluctuation contributions may become of comparable magnitude
in the close vicinity of the quantum critical point, where the ferro- or antiferro- states
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disappear under e.g. pressure.
The paper is composed as follows. In Sec. II we provide the principal aspects of

real-space spin-triplet pairing induced by the Hund’s rule coupling, and introduce the
band-renormalization factors for our two-band model. Furthermore, in subsections A
and B of Sec. II we explain how the effective Hamiltonian is constructed, according to
the statistically consistent Gutzwiller approximation, for all the phases considered in
this work. In Sec. III we discuss the phase diagram, and the principal order parameters
in the considered phases, whereas Sec. IV contains the concluding remarks.

2. Model and method

We consider the extended orbitally-degenerate Hubbard Hamiltonian, which has the
form

Ĥ =
∑

ij(i6=j)ll′σ

tll
′

ij ĉ
†
ilσ ĉjl′σ + (U ′ + J)

∑

i

n̂i1n̂i2

+ U
∑

il

n̂il↑n̂il↓ − J
∑

ill′(l 6=l′)

(
Ŝil· Ŝil′ +

3

4
n̂iln̂il′

)

= Ĥ0 + Ĥat ,

(1)

where l = 1, 2 label the orbitals and the first term describes electron hopping between
atomic sites i and j. For l 6= l′ this term represents electron hopping with change
of the orbital (i.e., hybridization in momentum space). The next two terms describe
the Coulomb interactions between electrons on the same atomic site. However the
second term contains also the contribution, originating from the exchange interaction
(J). The last term expresses the Hund’s rule i.e., the ferromagnetic exchange between
electrons localized on the same site, but on different orbitals. This term contributes
to magnetic coupling and is responsible for the spin-triplet pairing leading to magnetic
ordering, superconductivity and coexistent magnetic-superconducting phases. In the
Hamiltonian (1), we have disregarded the pair hopping term (J/2)

∑
il 6=l′ ĉ

†
il↑ĉ

†
il↓ĉil′↓ĉil′↑

and the so-called correlated hopping term ∼ V
∑

il 6=l′ n̂ilσ̄(ĉ†
ilσ ĉil′σ + H.C.). This is

because their magnitude depends on the double occupancy probability which is small
for U > W (see below), where W is the bare bandwidth. Additionally the coupling
constant V for eg, 3d orbitals is smaller than J ≈ 4V [44].

In our variational method we assume that the correlated state |ΨG〉 of the system
can be expressed in the following manner

|ΨG〉 = P̂G|Ψ0〉 , (2)

where |Ψ0〉 is the normalized non-correlated state to be determined later and P̂G is the
Gutzwiller correlator selected in the following form

P̂G =
∏

i

P̂G|i =
∏

i

∑

I,I′

λ
(i)
I,I′|I〉ii〈I ′| . (3)
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Here, λ
(i)
I,I′ are the variational parameters, which are assumed to be real. In the two-band

situation the local basis consists of 16 states (see Table 5), which are defined as follows

|I〉i = Ĉ†
i,I |0〉i ≡

∏

γ∈I

ĉ†
iγ|0〉i = ĉ†

iγ1
...ĉ†

iγ|I|
|0〉i , (4)

where γ = 1, 2, 3, 4 labels the four spin-orbital states (in the lσ notation: 1 ↑, 1 ↓, 2 ↑, 2 ↓,
respectively) and |I| is the number of electrons in the local state |I〉. In general, an index
I can be interpreted as a set in the usual mathematical sense. The creation operators
in (4) are placed in ascending order, i.e., γ1 < ... < γ|I|. In an analogous manner, one
can define the product of annihilation operators

Ĉi,I =
∏

γ∈I

ĉiγ = ĉiγ1 ...ĉiγ|I| , (5)

which are placed in descending order γ1 > ... > γ|I|.

Table 1. The local basis consisting of 16 configurations containing Ne = 0, ..., 4

electrons, which are enumerated as shown below.
|0, 0〉 1 |0, ↓〉 5 | ↓, ↓〉 9 | ↑↓, ↑〉 13
| ↑, 0〉 2 | ↑↓, 0〉 6 | ↑, ↓〉 10 | ↓, ↑↓〉 14
|0, ↑〉 3 |0, ↑↓〉 7 | ↓, ↑〉 11 | ↑↓, ↓〉 15
| ↓, 0〉 4 | ↑, ↑〉 8 | ↑, ↑↓〉 12 | ↑↓, ↑↓〉 16

The operator |I〉ii〈I ′| can be expressed in terms of Ĉ†
I and ĈI in the following

manner
m̂I,I′|i ≡ |I〉ii〈I ′| = Ĉ†

i,IĈi,I′n̂h
I∪I′|i , (6)

where
n̂h

I∪I′|i =
∏

γ∈I∪I′

(1 − n̂iγ) . (7)

In the subsequent discussion, we write expectation values with respect to |Ψ0〉 as

〈Ô〉0 = 〈Ψ0|Ô|Ψ0〉 , (8)

while the expectation values with respect to |ΨG〉 will be denoted by

〈Ô〉G =
〈ΨG|Ô|ΨG〉
〈ΨG|ΨG〉 . (9)

The most important step within the Gutzwiller approach is to derive the formula for the
expectation value of the Hamiltonian K̂ = Ĥ − µN̂ with respect to |ΨG〉. This can be
done in the limit of infinite dimensions by a diagrammatic approach [25] which uses the
variational analog of Feynmann diagrams. By applying this method to the interaction
part of the Hamiltonian (1), which is completely of intra-site character, one obtains

〈Ĥat〉G = L
∑

I1,I4

ĒI1,I4〈m̂I1,I4〉0 , (10)
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where
ĒI1,I4 =

∑

I2,I3

λI1,I2λI3,I4〈I2|Ĥat|I3〉 , (11)

and L is the number of atomic sites. In (10) we have assumed that our system is
homogeneous. Note that, with the use of Wick’s theorem, the purely local expectation
values 〈m̂I1,I4〉0 can be expressed in terms of the local single-particle density matrix
elements 〈ĉα

iγ ĉ
α′
iγ′〉0. Here, ĉα

iγ are either creation or annihilation operators.
The expectation value of the single-particle part in the Hamiltonian (1) can be cast

to the form
〈Ĥ0〉G =

∑

ij(i6=j)

∑

γγ′γ̃γ̃′

tγγ′
ij

(
qγγ̃qγ′γ̃′ − q̄γγ̃ q̄γ′γ̃′

)
〈ĉ†

i,γ̃ ĉj,γ̃′〉0 (12)

where we have assumed that the renormalization factors q and q̄ are real numbers and
tγγ′

= tγ
′γ. Moreover, in the equation above we have neglected the part containing

the inter-site pairing terms 〈ĉ†
i,γ ĉ

†
j,γ′〉0 and 〈ĉi,γ ĉj,γ′〉0 as we are going to concentrate

on the Hund’s rule induced intra-site spin-triplet paired states. The inter-site pairing
amplitudes are much smaller than the intra-site terms, in the considered model. The
renormalization factors, introduced in (12), have the form

qγγ̃ =
∑

I(γ̃ /∈I)

[∑

I′

fsgn(γ̃, I)m
0(γ̃)
I,I′ c

∗
I∪γ̃,I′|γ +

∑

I′(γ̃ /∈I′)

fsgn(γ̃, I)m0
I′,I∪γ̃c

∗
I′,I|γ

]
, (13)

where m0
I,I′ = 〈m̂I,I′〉0 and m

0(γ̃)
I,I′ = 〈m̂(γ̃)

I,I′〉0. Here we have introduced the operator

m̂
(γ)
I,I′ = Ĉ†

i,IĈi,I′n̂h
I∪I′∪γ|i . (14)

The parameters c∗
I1,I2|γ in (13) are defined as

c∗
I1,I2|γ =

∑

I(γ /∈I)

fsgn(γ, I)λI1,I∪γλI,I2 , (15)

where we introduced the fermionic sign function

fsgn(γ, I) ≡ 〈I ∪ γ|ĉ†
γ|I〉 . (16)

The renormalization factors q̄γγ̃ have to be included in (12), when there are nonzero gap
parameters (〈ĉαĉα〉0 6= 0) in |Ψ0〉, which is the case considered here. The form of q̄γγ̃ is
as follows

q̄γγ̃ =
∑

I(γ̃ /∈I)

[∑

I′

fsgn(γ̃, I)m
0(γ̃)
I′,I c∗

I′,I∪γ̃|γ +
∑

I′(γ̃ /∈I′)

fsgn(γ̃, I)m0
I∪γ̃,I′c∗

I,I′|γ

]
. (17)

The remaining part of 〈K̂〉G that has to be derived is the expectation value 〈N̂〉G. Also
in this case, the diagrammatic evaluation in infinite dimensions gives the proper formula,

〈N̂〉G =
∑

iγ

〈n̂iγ〉G , (18)
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where
〈n̂iγ〉G =

∑

I1,I4

Nγ
I1,I4

m0
I1,I4

, (19)

and
Nγ

I1,I4
=

∑

I(γ /∈I)

λI1,I∪γλI∪γ,I4 . (20)

The pairing densities in the correlated state that are going to be useful in the subsequent
discussion can be expressed in the following way

〈ĉiγ ĉiγ′〉G =
∑

I1,I4

Sγγ′
I1,I4

m0
I1,I4

, (21)

where
Sγγ′

I1,I4
=

∑

I(γγ′ /∈I)

λI1,IλI∪(γγ′),I4fsgn(γ, I)fsgn(γ′, I)fsgn(γ′, γ) . (22)

Using (10), (12), and (18) one can express 〈K̂〉G in terms of the variational
parameters λI,I′ , local and non-local single particle density matrix elements ,〈ĉα

iγ ĉ
α′
iγ′〉0,

〈ĉ†
i,γ ĉj,γ′〉0, and the matrix elements of the atomic part of the atomic Hamiltonian

represented in the local basis 〈I|Ĥat|I ′〉.
The formula for 〈K̂〉G, obtained in the way described above, can be written as an

expectation value of an effective Hamiltonian K̂GA, evaluated with respect to |Ψ0〉

K̂GA =
∑

ij(i6=j)

∑

γγ′γ̃γ̃′

tγγ′
ij

(
qγγ̃qγ′γ̃′ − q̄γγ̃ q̄γ′γ̃′

)
ĉ†
i,γ̃ ĉj,γ̃′

− µ
∑

iγ

qs
γn̂iγ + L

∑

I1,I4

ĒI1,I4〈m̂I1,I4〉0,
(23)

where qs
γ = 〈n̂iγ〉G/〈n̂iγ〉0. There is no guarantee that the condition

〈n̂iγ〉G = 〈n̂iγ〉0 , (24)

is fulfilled. It turns out that it is fulfilled for the paramagnetic and the magnetically
ordered phases of our two-band system, however it is not for the superconducting phases.
Physically it is most sensible to fix 〈n̂〉G instead of 〈n̂〉0, during the minimization. This
is the reason why we include the term −µN̂ already at the beginning of our derivation in
〈K̂〉G. In this manner the chemical potential µ refers to the initial correlated system, not
to the effective non-correlated one (for which the chemical potential can be different).

Having in mind that there are 16 states in the local basis there could be up to
16 × 16 = 256 variational parameters λI,I′ . However, for symmetry reasons many of
these parameters are zero. The finite parameters can be identified by the following rule

λI,I′ 6= 0 ⇔ 〈m̂I,I′〉0 6= 0 ∨ 〈I|Ĥat|I ′〉 6= 0; . (25)
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It should also be noted that, as shown in [25], the variational parameters are not
independent since they have to obey the constrains

〈P̂ 2
G|i〉0 = 1,

〈ĉ†
iγP̂

2
G|iĉiγ′〉0 = 〈ĉ†

iγ ĉiγ′〉0,

〈ĉ†
iγP̂

2
G|iĉ

†
iγ′〉0 = 〈ĉ†

iγ ĉ
†
iγ′〉0,

〈ĉiγP̂
2
G|iĉiγ′〉0 = 〈ĉiγ ĉiγ′〉0 ,

(26)

which are going to be used to fix some of the parameters λI,I′ .
The results presented in this work have been obtained for the case of a square lattice

with the band dispersions

ε1k = ε2k ≡ εk = 2t(cos (kx) + cos (ky)) , (27)

and also
ε12k = ε21k = βhεk , (28)

where βh ∈ [0, 1]. The orbital degeneracy and spatial homogeneity allow us to write

〈n̂i1〉G = 〈n̂i2〉G ≡ nG/2,

〈Ŝz
i1〉G = 〈Ŝz

i2〉G ≡ Sz
G ,

(29)

where

Ŝz
il ≡ 1

2

(
n̂il↑ − n̂il↓

)
,

n̂il ≡ n̂il↑ + n̂il↓ .
(30)

Similar expressions as in (29) can be introduced for the expectation values in the non-
correlated state |Ψ0〉.

Before discussing the principal magnetic and/or spin-triplet superconducting
phases, we introduce first the exact expression of the full exchange operator (the last
term of our Hamiltonian) via the local spin-triplet pairing operators (Â†

im, Âim) namely

∑

ll′(l 6=l′)

(
Ŝil· Ŝil′ +

3

4
n̂iln̂il′

)
=

∑

m

Â†
imÂim , (31)

where

Â†
i,m ≡





a†
i1↑a

†
i2↑ m = 1

a†
i1↓a

†
i2↓ m = −1

1√
2
(a†

i1↑a
†
i2↓ + a†

i1↓a
†
i2↑) m = 0 .

(32)

We see that those two representations are mathematically equivalent, so the phase
with Sz

G = 〈Ŝz
il〉G 6= 0 and that with the corresponding off-diagonal order parameter

〈Âim〉G 6= 0 (or 〈Â†
im〉G 6= 0) should be treated on equal footing.
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2.1. Statistically-consistent Gutzwiller method for superconducting and coexistent
superconducting-ferromagnetic phases

In this subsection we will describe the SGA approach as applied to the selected phases
characterized by the following order parameters

• Superconducting phase of type A1 coexisting with ferromagnetism (A1+FM):
Sz

G|u 6= 0, ∆G
1 6= 0, ∆G

−1 = ∆G
0 = 0,

• Pure type A superconducting phase (A):
Sz

G|u = 0, ∆G
1 = ∆G

−1 6= 0, ∆G
0 = 0,

• Pure ferromagnetic phase (FM):
Sz

G|u 6= 0, ∆G
1 = ∆G

−1 = ∆G
0 = 0,

• Paramagnetic phase (NS):
Sz

G|u = 0, ∆G
1 = ∆G

−1 = ∆G
0 = 0,

where Sz
G|u refers to the uniform magnetic moment and

∆G
m = 〈Âim〉G, (∆G

m)∗ = 〈Â†
im〉G , (33)

are the spin-triplet local gap parameters which are assumed as real here.
The (correlated) order parameters which have been used above to define the relevant

phases can also be defined for the non-correlated state |Ψ0〉. With these, we can
determine which of the matrix elements 〈m̂I,I′〉0 are equal to zero for the considered
phases. The assumption (25) then allows us to choose the non-diagonal variational
parameters, λI,I′ , that have to be taken into account during the calculations. We list
their indexes (I, I ′) in Table 2.

Table 2. Nonzero, off-diagonal local variational parameters (λI,I′ = λI′,I) that are
used in the calculations for the considered phases.

I 1 2 3 4 5 8 9 8 10 1 1
I ′ 16 15 14 13 12 16 16 9 11 8 9

As one can see from Table 2, the off-diagonal variational parameters correspond to
the creation or annihilation of the Cooper pair in the proper spin-triplet states |1 ↑, 2 ↑〉
and |1 ↓, 2 ↓〉 (phase A). Because in the A1 phase only electrons with spin-up are
paired one can assume that λ1,16, λ2,15, λ3,14, λ8,16, λ8,9 are zero (and their transoposed
corespondants - λI,I′ = λI′,I). For the FM and NS unpaired states only λ10,11 and λ11,10

are nonzero. They correspond to the two non-diagonal matrix elements of the atomic
Hamiltonian, 〈I|Ĥat|I ′〉. With the information contained in Table 2, one obtains the
following relations regarding the band-narrowing renormalization factors

qlσ,l′σ′ 6= 0 ⇔ l = l′ ∧ σ = σ′,

q̄lσ,l′σ′ 6= 0 ⇔ l 6= l′ ∧ σ = σ′ ,
(34)
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where we have again used the γ = lσ notation. Due to the degeneracy of our bands we
find

q1σ,1σ = q2σ,2σ ≡ qσ ,

q̄1σ,2σ = −q̄2σ,1σ ≡ q̄σ ,

qs
1σ = qs

2σ ≡ qs
σ .

(35)

Using the equations above we can rewrite the Hamiltonian (23) in the more explicit
form, in reciprocal space

K̂GA =
∑

klσ

(Qσεk − qs
σµ)n̂klσ +

∑

kll′(l 6=l′)σ

Qσεk12ĉ
†
klσ ĉkl′σ + L

∑

I1,I4

ĒI1,I4〈m̂I1,I4〉0 , (36)

where the renormalization factors Qσ are defined as

Qσ ≡ q2
σ − q̄2

σ . (37)

Having the formula for K̂GA, given by (36), one can introduce next the so-called
statistically-consistent Gutzwiller approximation (SGA). In this method, the mean fields
(such as the expectation values for magnetization or superconducting gaps) are treated
as variational mean-field order parameters with respect to which the energy of the system
is minimized. However, in order to make sure that they coincide with the corresponding
values calculated self-consistently, additional constraints have to be introduced with the
help of the Lagrange-multiplier method [26, 27, 28, 29]. This leads to supplementary
terms in the effective Hamiltonian of the following form

K̂λ = K̂GA −
∑

m=±1

[
λm

( ∑

k

Âkm − L∆0
m

)
+ H.C.

]

− λS

( ∑

kl

Ŝz
kl − 2LSz

0

)
− λn

( ∑

klσ

qs
lσn̂klσ − LnG

)
,

(38)

where the Lagrange multipliers λm, λs, and λn are introduced to assure that the
averages 〈Âkm〉, 〈Ŝkl〉 and 〈n̂klσ〉 calculated either from the corresponding self-consistent
equations or variationally, coincide with each other, which guarantees the fulfillment of
the fundamental Bogoliubov principle (otherwise violated in some cases [29]). In this
manner we do not alter any of the infinite-dimension features of the approach, used to
derive the effective ground-state (or the free energy) functional, but instead form the
consistent (renormalized) mean field theory of the correlated fermion system at hand.

Introducing the four-component representation of single-particle operators

f̂ †
kσ = (ĉ†

k1σ, ĉ
†
k2σ, ĉ−k1σ, ĉ−k2σ) , (39)

we can write down the effective Hamiltonian in the following form

K̂λ =
1

2

∑

kσ

f̂ †
kσM̂kσ f̂kσ +

∑

kσ

ε̃kσ + 2L
∑

m=±1

λm∆0
m + 2LλSSz

0 + LλnnG

+ L
∑

I1,I4

ĒI1,I4〈m̂I1,I4〉0 ,
(40)
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where M̂kσ is a 4x4 orthogonal matrix

M̂kσ =




ε̃kσ Qσεk12 0 λσ

Qσεk12 ε̃kσ −λσ 0

0 −λσ −ε̃kσ −Qσεk12

λσ 0 −Qσεk12 −ε̃kσ


 . (41)

Here we introduced λ↑ and λ↓ which correspond to the Lagrange parameters λm=1 and
λm=−1, respectively. The bare quasiparticle energies ε̃klσ are defined as

ε̃kσ = Qσεk − qs
σ(µ + λn) − 1

2
σλS . (42)

The diagonalization of the matrix (41) yields the quasiparticle eigen-energies in the
paired states of the following form

Ek1σ =
√

ε̃2
kσ + λ2

σ − Qσεk12 ,

Ek2σ =
√

ε̃2
kσ + λ2

σ + Qσεk12 ,

Ek3σ = −
√

ε̃2
kσ + λ2

σ − Qσεk12 ,

Ek4σ = −
√

ε̃2
kσ + λ2

σ + Qσεk12 .

(43)

The first two energies correspond to the doubly degenerate spin-split quasiparticle
excitations in the A phase, whereas the remaining two are their quasihole
correspondents.

Even though the Gutzwiller approach was derived for zero temperature, we may
construct the grand-potential function Fλ (per atomic site) that corresponds to the
effective Hamiltonian (40), i.e.,

Fλ = − 1

Lβ

∑

klσ

ln
[
1 + e−βEklσ

]
+

1

L

∑

kσ

ε̃kσ + 2
∑

m=±1

λm∆0
m + 2λSSz

0 + (λn + µ)nG

+
∑

I1,I4

ĒI1,I4〈m̂I1,I4〉0 .

(44)

The values of the mean fields, the variational parameters, and the Lagrange multipliers
are found by minimizing the Fλ functional, i.e., the necessary conditions for minimum
are

∂Fλ

∂ ~A
= 0 ,

∂Fλ

∂~ΛV

= 0 ,
∂Fλ

∂~ΛL

= 0 , (45)

where ~A, ~ΛV , ~ΛL denote collectively the mean fields in the non-correlated state, the
variational parameters and the Lagrange multipliers respectively. Additionally, the
chemical potential, µ enters through the relation

∂Fλ

∂nG

= µ . (46)
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After solving the complete set of equations, one still has to calculate the mean fields in
the correlated state with the use of their analogs in the non-correlated state and the
variational parameters using (19) and (21).

With the SGA method one minimises the variational ground state energy 〈K̂〉G with
respect to the variational parameters λI,I′ and the single-particle states |Ψ0〉. Note that
an alternative way for this minimization has been introduced, e.g., in [45]. Beyond the
ground-state properties of K̂ one is often also interested in the (effective) single-particle
Hamiltonian (40) because its eigenvalues are interpreted as quasi-particle excitation
energies [46].

2.2. Statistically-consistent Gutzwiller method for the coexistent
antiferromagnetic-spin-triplet superconducting phase

To consider antiferromagnetism in the simplest case, we divide our system into two
interpenetrating sublattices A and B. In accordance with this division, we define the
annihilation operators on the sublattices

ĉilσ =

{
ĉilσA for i ∈ A ,

ĉilσB for i ∈ B .
(47)

The same holds for the creation operators. Next, the Gutzwiller correlator can be
expressed in the form

P̂G =
∏

i(A)

P̂
(A)
G|i

∏

i(B)

P̂
(B)
G|i , (48)

where
P̂

(A/B)
G|i =

∑

I,I′

λ
(A/B)
I,I′ |I〉ii〈I ′| . (49)

If we assume that charge ordering is absent, we have

〈Ŝz
ilA〉G ≡ Sz

G|s, 〈Ŝz
ilB〉G ≡ −Sz

G|s , (50)

〈n̂ilA〉G = 〈nilB〉G ≡ nG/2 . (51)

Similar expressions can be obtained for the case of expectation values taken in the
state |Ψ0〉. As one can see from (49), we have introduced separate sets of variational
parameters (λA

I,I′ and λB
I,I′) for the two sublattices. Fortunately, it does not mean that

we have twice as many variational parameters as in the preceding subsection. The
parameters λA

I,I′ are related to the corresponding λB
I,I′ through

λ
(A)
I1,I2

= λ
(B)
I3,I4

, (52)

where the states I1 and I2 have opposite spins to those in the I3 and I4 states,
respectively. The same division has to be made for the renormalization factors q, q̄
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and qs. They fulfill the transformation relations

qA
γ,γ′ = qB

γ̄,γ̄′ ,

q̄A
γ,γ′ = q̄B

γ̄,γ̄′ ,

qs
γA = qs

γ̄B ,

(53)

where γ and γ̄ are spin-orbitals with opposite spins. The coexistent superconducting-
antiferromagnetic phase (SC+AF) can be defined in the following way

∆G
1A = ∆G

−1B ≡ ∆G
+ 6= 0 ,

∆G
−1A = ∆G

1B ≡ ∆G
− 6= 0 ,

Sz
G|s 6= 0 .

(54)

Considerations analogical to those presented in subsection 2 lead to the conclusion that
for both sublattices the non-diagonal variational parameters, λA

I,I′ and λB
I,I′ , that have

to be used in the calculations, appropriate for the SC+AF phase, are the same as those
listed in Table 2. This fact, and the degeneracy of our bands, allow us to apply (35) for
both sets of renormalization factors (for A and B sublattices), as we have

qA
1σ,1σ = qA

2σ,2σ = qB
1σ̄,1σ̄ = qB

2σ̄,2σ̄ ≡ qσ ,

q̄A
1σ,2σ = −q̄A

2σ,1σ ≡ q̄σ; q̄B
1σ̄,2σ̄ = −q̄B

2σ̄,1σ̄ ≡ q̄σ ,

qs
1σA = qs

2σA = qs
1σ̄B = qs

2σ̄B ≡ qs
σ ,

(55)

where σ̄ represents the spin opposite to σ. Now, we can write down the Hamiltonian
K̂GA for the case of SC+AF phase

K̂GA =
∑

klσ

Qεk(ĉ
†
klσAĉklσB + ĉ†

klσB ĉklσA) +
∑

kll′(l 6=l′)σ

Qεk12(ĉ
†
klσAĉkl′σB + ĉ†

klσB ĉkl′σA)

− µ
∑

klσ

(qs
σn̂klσA + qs

σ̄n̂klσB) +
L

2

∑

I1,I4

ĒA
I1,I4

〈m̂A
I1,I4

〉0 +
L

2

∑

I1,I4

ĒB
I1,I4

〈m̂B
I1,I4

〉0 ,

(56)

where
Q = q↑q↓ − q̄↑q̄↓ . (57)

It should be noted that the sums in (56) are taken over all L/2 independent k states.
As before, we apply the SGA method which leads to the effective Hamiltonian with the
statistical-consistency constraints of the form

K̂λ = K̂GA − λS

[∑

klσ

1

2
σ(n̂klσA − n̂klσB) − 2LSz

0|s

]

− λ+

[∑

k

(Âk1A + Âk−1B) − L∆0
+ + H.C.

]

− λ−

[∑

k

(Âk−1A + Âk1B) − L∆0
− + H.C.

]

− λn

[∑

klσ

(qs
σn̂klσA + qs

σ̄n̂klσB) − LnG

]

(58)
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Introducing now the eight-component composite operator

f̂ †
kσ ≡ (ĉ†

k1σA, ĉ†
k2σA, ĉ†

k1σB, ĉ†
k2σB, ĉ−k1σA, ĉ−k2σA, ĉ−k1σB, ĉ−k2σB) , (59)

we can write down the effective Hamiltonian K̂λ in the following form

K̂λ =
1

2

∑

kσ

f̂ †
kσM̂kσ f̂kσ − (µ + λn)(qs

↑ + qs
↓)L

+ 2Lλ+∆0
+ + 2Lλ−∆0

− + 2LλSSz
0|s + LλnnG

+
L

2

∑

I1,I4

ĒA
I1,I4

〈m̂A
I1,I4

〉0 +
L

2

∑

I1,I4

ĒB
I1,I4

〈m̂B
I1,I4

〉0 ,

(60)

where the explicit form of the 8x8 matrix is

M̂kσ =




η−
σ 0 Qεk Qεk12 0 λA

σ 0 0

0 η−
σ Qεk12 Qεk −λA

σ 0 0 0

Qεk Qεk12 −η+
σ 0 0 0 0 λB

σ

Qεk12 Qεk 0 −η+
σ 0 0 −λB

σ 0

0 −λA
σ 0 0 −η−

σ 0 −Qεk −Qεk12

λA
σ 0 0 0 0 −η−

σ −Qεk12 −Qεk
0 0 0 −λB

σ −Qεk −Qεk12 η+
σ 0

0 0 λB
σ 0 −Qεk12 −Qεk 0 η+

σ




, (61)

and

λA
↑ = λB

↓ ≡ λ+ ; λA
↓ = λB

↑ ≡ λ− ,

η−
σ = −1

2
σλS − qs

σ(µ + λn) ; η+
σ = −1

2
σλS + qs

σ(µ + λn) .
(62)

Diagonalization of (61) leads to the quasi-particle energies Eklσ (l = 1, 2, 3, ..., 8). The
corresponding grand potential function Fλ per atomic site now has the form

Fλ = − 2

Lβ

∑

klσ

ln
[
1 + e−βEklσ

]
− µ(qs

↑ + qs
↓)

+ 2λ+∆0
+ + 2λ−∆0

− + 2λSSz
0|s + (λn + µ)nG

+
L

2

∑

I1,I4

ĒA
I1,I4

〈m̂A
I1,I4

〉0 +
L

2

∑

I1,I4

ĒB
I1,I4

〈m̂B
I1,I4

〉0 .

(63)

As before, we minimize the Fλ function to determine the values of the mean fields, the
variational parameters and the Lagrange parameters. The necessary conditions for the
minimum are again expressed by (45) and (46). In the subsequent discussion we consider
also the pure antiferromagnetic phase (AF), for which Sz

G|s 6= 0 but ∆+ = ∆− ≡ 0. The
number of equations that need to be solved is different for different phases considered
in this work. In Table III we show how many equations are included in (45) and (46)
for all phases discussed.
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Table 3. Number of equations that have to be solved in the case of all considered here
phases. To reduce the number of equations for particular phases we have used certain
symmetry relations regarding the mean field parameters, the Lagrange multipliers, and
the variational parameters.

phase A A1+FM SC+AF AF NS FM
No. of Eqs. 16 17 22 12 8 13

3. Results and discussion

Equations (45) and (46) have been solved numerically for all phases by means of the
hybrd1 subroutine from the MINPACK library, which performs a modification of the
Powell hybrid method. The maximal estimated error of the procedure was set to 10−7.
The derivatives in Eq. (45) and (46) were computed by using a 5-step stencil method
with the step equal to x = 10−4. For the sake of clarity, we have provided the acronyms
representing the considered here phases In Table 4.

Table 4. Acronyms representing the considered phases.
A pure type A superconducting phase

A1+FM superconducting phase type A1 coexisting with ferromagnetism
SC+AF superconducting phase coexisting with antiferromagnetism

FM Pure ferromagnetic phase
AF Pure antiferromagnetic phase
NS Paramagnetic phase

We concentrate now on the detailed numerical analysis of the phase diagram and the
microscopic characterization of the stable phases. Having in mind that for 3d orbitals
U ′ = U − 2J , one obtains the HF condition for the pairing to occur, U < 3J (see [22]).
We discuss thus first and foremost the limit U < 3J , as it allows for a direct comparison
of SGA with the HF solution. In this manner we can single out explicitly the role of
correlations in stabilizing the relevant phases. One should note that in the considered
regime (U < 3J) we have a model with intraatomic interorbital attractions leading to
spin-triplet pairs. As the main attractive force is of intraatomic nature, we focus here
on the local (s-wave) type of pairing only. In other words, as we discuss the situation
with no or small hybridization, the intersite part of the pairing can be disregarded.

The calculations have been carried out for U ′ = U −2J , U = 2.2J , kBT/W = 10−4.
This leaves us still with three independent microscopic parameters in our model: nG,
J , and βh. All the energies have been normalized to the bare band-width W = 8|t|
(as we consider the square lattice with nearest neighbor hopping). For comparison, we
also show the results calculated by means of the combined HF-BCS≡HF approximation.
This method is described in detail in our previous paper for the same model as considered
here. We can also reproduce the HF results by using the Gutzwiller method described
in this work and setting λI,I′ = δI,I′ .
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Figure 1. (Color online) Stable phases evolution vs. band filling. The
superconducting gap parameter, magnetic moment and free energies as a function
of band filling both for the HF and SGA, for J = 0.299: a, b, c and J = 0.4545: d, e, f.
The results are for βh = 0.0. The shaded regions represent the stability regions of the
respective phases according to the SGA calculations. In Figs. a and d we show only
the free energies of stable phases. The arrows in a and d mark the transitions points
between phases.

In Fig. 1 we display the free energy, superconducting gaps, and magnetic moments
for the two values J = 0.299 and J = 0.4545. As one can see from the free-energy plots
(Figs. 1a and 1d), below some certain value of band filling, the pure superconducting
phase of type A is stable for the SGA method. The increase of the number of electrons
in the system, enhances the gap in this region (Figs. 1b and 1e). Above the critical
band filling nc, the staggered moment structure is created and a division into two gap
parameters (∆+ and ∆−) appears, as can be seen in Figs. 1b, 1e, 1c, and 1f. In this
regime the SC+AF phase becomes stable.

When approaching half filling, both gaps gradually approach zero and for n = 2

we are left with a pure AF phase, which is of Slater insulating type evolving towards
the Mott-Hubbard insulating state with the increasing U. As the staggered magnetic
moment is rising (with the increase of nG), the renormalization factor is approaching
unity (cf. Insets to Fig. 1a and 1d). This is a consequence of the fact that for large
values of Sz

G, the configurations with two electrons of opposite spin, on the same orbital,
are ruled out.

Comparing Figs. 1a, 1b, 1c with Figs. 1d, 1e, 1f one sees that by increasing J

we make the value of nc smaller. However, the decrease in nc is not as significant in
SGA as it is in the HF case. In general the results presented Figs. 1b, 1c, 1e, 1f
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Figure 2. (Color online) The superconducting gaps (a) and the free energies (b) as
a function of band filling for J = 0.4545 and βh = 0.1. The shaded regions represent
stability of respective phases according to the SGA calculations. The vertical arrows
mark the phase borders.

look similar from the qualitative point of view for both methods. For SGA, the onset
of antiferromagnetically ordered phase appears closer to half filling than for the HF
method. Another difference between HF and SGA is that for the former the staggered
moment in the SC+AF phase is increased by the appearance of SC for the whole range
of band fillings, whereas in SGA calculations the staggered moment is slightly stronger
in the AF phase than in the SC+AF phase for a small region close to the half-filled
situation (inset of Fig. 1f).
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Figure 3. (Color online) The superconducting gaps and magnetic moment as a
function of the hybridization strength, βh, for n = 1.9, J = 0.4545, for the case of
SC+AF and AF phases.

Significant differences between HF and SGA can be seen in Figs. 1c and 1f.
While changing the band filling from 0 to 2, in the case of SGA calculations we move
consecutively through the regions of stability of NS (for J = 0.299), A, SC+AF phases,
and for n = 2 we have pure antiferromagnetism. The situation is different in the
HF approximation, where in between the regions of stability of A and SC+AF phase,
we have also the stable A1+FM phase. It should be also noted that the free energy
calculated in SGA is lower than the one for the HF situation, as one should expect,
since the correlations are accounted more accurately in the former method. It is also
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very interesting that having the system with U < 3J , no pure ferromagnetism appears
in this canonical model of itinerant magnetism.

In Fig. 2, we present the results for the case with nonzero hybridization parameter,
βh = 0.1. In this case there are no pure superconducting solutions below some certain
value of the band filling (cf. Fig. 2a) and an extended region of NS stability occurs.
The influence of the hybridization on the antiferromagnetically ordered phases is weak,
as can be seen more clearly in Fig. 3. The changes in the superconducting gap and
the magnetic moment in the coexistent phase triggered by the hybridization, are quite
small even for larger values of βh. It should be noted that the hybridization leads to
inequivalent bands. Hence the pairing is robust against the Fermi wave vector mismatch
for the carriers composing the Cooper pair, at least not for too large βh.

Next, we discuss the J dependence of the superconducting gap, the free energy and
the magnetic moment for selected values of band filling. As in the case of n-dependences
the gap parameters and the magnetic moments in both SGA and HF approximation are
qualitatively similar. In Fig. 4 we can see that for n = 1.9 even the free-energy plots and
regions of stability of certain phases are comparable for both calculation schemes used.
For the quarter-filled case (cf. Fig. 5) the A1+FM phase is stable above some value of
J , according to the HF results. However, this is not the case in the SGA approximation,
where the A phase has lower free energy even than the saturated ferromagnetic phase
coexisting with superconductivity. Comparing Figs. 5b and 5d (as well as 1d and 2b)
one sees that the region of stability of the A phase narrows down in favor of the NS
phase, due to the influence of hybridization.

It is important to check whether the itinerant magnetic phases are stable in the
regime U ′ > J (U > 3J), i.e., when the superconductivity is absent in the HF
approximation. For this purpose, in Fig. 6 we provide the band-filling dependence
of the free energy corresponding to stable phases for U = 4J . Indeed, the paramagnetic
and the magnetically ordered phases are stable for both methods of calculations.
Therefore, for U > 3J we recover the magnetic phase diagram for this model, which was
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Figure 4. (Color online) The superconducting gaps in the SC+AF phase (a) and free
energies of stable phases (b) as a function of Hund’s coupling for n = 1.9 and βh = 0.1.
The shaded region represent the stability of NS phase according to the SGA results.
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Figure 5. (Color online) The superconducting gaps in the A phase as a function of
the Hund’s coupling for n = 1.0 (a-for βh = 0.0 and c-for βh = 0.1) and free energies
of stable phases corresponding to SGA and HF approximations (b-for βh = 0.0 and
d-for βh = 0.1). The shaded regions represent the stability of the NS phase according
to the SGA. The vertical arrows mark the border points between respective phases.
Insets: Bandwidth renormalization factor for βh = 0 (upper) and βh = 0.1 (lower).

considered originally only in the context of magnetism. The free energy of the saturated
ferromagnetic phase calculated by the SGA is very close to the one obtained by the
HF approach. This is again caused by the circumstance that in the saturated state all
of the spins are parallel and the double occupancies on the same orbital are absent.
In this situation, the intra-orbital Coulomb interaction is automatically switched off.
For the sake of completeness, we have plotted in Fig. 7a and 7b the double occupancy
probability d, both in HF (d0) and SGA (dG) treatments. One should note a drastic
reduction of d in SGA with the increasing J (and hence U). This is the reason why we
have neglected both the so-called correlated-hopping and the pair-hopping terms in the
starting Hamiltonian. It would be interesting to determine the stability of the coexistent
phases in this regime (U ′ > J). Work along this line is in progress.

4. Conclusions

The principal purpose of this paper was to formulate a many-particle method which
allows to investigate the spin-triplet real-space pairing in correlated system with an
orbital degeneracy. To this end, we have carried out a detailed analysis using the
statistically-consistent Gutzwiller approximation (SGA) for the two-band degenerate
Hubbard model with the spin-triplet superconductivity and itinerant magnetism
included, both treated on equal footing. Also, in our approach we have discussed
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Figure 6. (Color online) The free energies of the stable phases for SGA and HF
methods for J = 0.4, U = 1.6 and βh = 0. The shaded regions in the inset mark
the stability of certain phases according to the SGA approach. Note the appearance
of ferromagnetic phase for U = 4J (i.e., for U > 3J) in the filling range 1.45 ÷ 1.75,
sandwiched in between paramagnetic and antiferromagnetic phases.
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Figure 7. (Color online) The average double occupancies d0 = 〈n̂il↑n̂il↓〉0 and
dG = 〈n̂il↑n̂il↓〉G vs. band filling (a) and Hund’s coupling (b) corresponding to the
normal state (NS) for the parameters: J = 0.4, U = 1.6, βh = 0 - (a) and U = 4J ,
n = 1, βh = 0 - (b).

explicitly the nature of ordered phases. Previous analysis [31, 47] carried out in the
dynamic mean-field approach addressed only the instability of the normal phase against
the formation of the pure paired states. We compare our results with those coming from
the Hartree-Fock approximation amended with the Bardeen-Cooper-Schrieffer (BCS)
approach. The obtained Hund’s coupling and band filling dependences of the magnetic
moment and the superconducting gap parameters are often similar from the qualitative
point of view with those evaluated by means of the HF approximation. However,
the stability regions of the considered phases are significantly different for the two
applied methods. In SGA, the stable coexisting superconducting-ferromagnetic phase is
absent while it appears in the HF approximation in a certain range of J and n values.
Furthermore, the coexistence of the paired state with antiferromagnetism appears much
closer to the half-filled situation in SGA than in HF approximation. For n = 2 the
superconductivity disappears and only the pure antiferromagnetism survives; this state
can be termed a correlated Slater-Mott-insulator state, as it evolves gradually into the
Mott-Hubbard insulating state with increasing U > 1 and Sz

G|s → 1/2.
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Table 5. Exemplary values of the order parameters, the chemical potential, the free
energy, and the band renormalization factors corresponding to the considered phases,
for two different sets of values of the microscopic parameters n and J . The underlined
values correspond the stable phases. The numerical accuracy is on the level of the last
digit specified.

n = 1.0 n = 1.9

parameter phase J = 0.299 J = 0.299

∆ A 0.0450027 0.1701940
∆ A1+FM 0.0426749 0.1307664
∆+ SC+AF - 0.1638992
∆− SC+AF - 0.0161868
Sz

u A1+FM 0.000317 0.1092674
Sz

s SC+AF - 0.3902738
Sz

s AF - 0.3885899
µ A -0.1382377 0.16078601
µ NS -0.1377649 0.1875964
µ A1+FM -0.1379700 0.18222514
µ SC+AF - -0.0421144
µ AF - -0.0893963
F A -0.3106091 -0.3118381
F NS -0.3105145 -0.2992516
F A1+FM -0.3105586 -0.3020254
F SC+AF - -0.3576542
F AF - -0.3509731
Q↑ A1+FM 0.8845776 0.6751619
Q↓ A1+FM 0.8839251 0.6282452
Q A 0.8845136 0.6736373
Q NS 0.8840340 0.6421089
Q SC+AF - 0.9211224
Q AF - 0.9293567

The influence of hybridization for both approximations is similar. With an increase
of the βh parameter, the region of stability of the superconducting type-A phase narrows
down in favor of the NS state. On the other hand, the antiferromagnetic phase is not
affected in any significant manner by an increase of βh.

The band renormalization factors approach unity as the interaction constants J , U

and U ′ tend to zero, what represents an additional test of correctness of our numerical
results. Generally, in the weak-coupling limit our present results reduce to those
obtained in HF approximation analysed by us in [22], as it should be.

It is important to emphasize that for both approaches (SGA and HF) the phase
diagrams have been obtained for U < 3J , i.e. for relatively low value of the Hubbard
interaction U, or equivalently, for a relatively high value of the Hund’s rule exchange
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integral. We call this regime as the one with attractive pairing interaction. A complete
analysis of the present model would require studying the stability of the spin-triplet
superconductivity and its coexistence with magnetic ordering in the complementary
regime U > 3J , where the magnetism may be favored against superconductivity. This
regime has been the subject in a number of earlier papers [24, 48, 49], as then both the
intraorbital, as well as the interorbital interaction is repulsive, and lead in a natural
manner to magnetic ordering. We should see progress along this line soon.
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Even-parity spin-triplet pairing for orbitally degenerate correlated electrons by purely
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We demonstrate the stability of a spin-triplet paired s-wave (with an admixture of extended s-
wave) state for the case of purely repulsive interactions in a degenerate two-band Hubbard model.
We further show that near half-filling the considered kind of superconductivity can coexist with
antiferromagnetism. The calculations have been carried out with the use of the so-called statistically
consistent Gutzwiller approximation for the case of a square lattice. The absence of a stable paired
state when analyzed in the Hartree-Fock-BCS approximation allows us to claim that the electron
correlations in conjunction with the Hund’s rule exchange play the crucial role in stabilizing the
spin-triplet superconducting state. A sizable hybridization of the bands suppresses the paired state.

PACS numbers: 74.20.-z, 74.25.Dw, 75.10.Lp

Introduction.—Spin-triplet superconductivity was
postulated to occur in Sr2RuO4

1,2, in uranium
compounds3−5, and in iron pnictides6,7. All these
multi-band systems have moderately (Sr2RuO4 and
the pnictides) or strongly correlated (URhGe, UPt3)
electrons, d and f , respectively. Earlier, the spin-triplet
pairing has been used successfully to describe the su-
perfluidity of liquid 3He8,9 and that of the neutron-star
crust10. In the last two cases of fermionic systems,
which are considered as paramagnets with an enhanced
susceptibility, a single-component (a single-band) Lan-
dau Fermi-liquid picture was taken as a starting point
and the pairing of the odd parity (p-wave) was due to
the exchange of a paramagnon. Such an approach is
limited to weak correlations and was also applied to
weakly ferromagnetic superconducting systems11 and to
Sr2RuO4

12.
In the correlated and orbitally degenerate systems

the intraatomic ferromagnetic (Hund’s rule) exchange
interaction of magnitude J ∼ 0.1eV, appears natu-
rally in the extended Hubbard model and is essen-
tial for the description of ferromagnetism, for moder-
ately and strongly correlated electrons. On the other
hand, its significance in the spin-triplet pairing has
been emphasized in general13−18, as well as for both
the pnictides6 and Sr2RuO4

19−20. In most cases, the
Hund’s rule and other local Coulomb interactions are ei-
ther treated in the Hartree-Fock approximation21 and/or
semi-phenomenological negative-U intersite attraction22

is introduced. A number of experimental results can be
successfully interpreted in this manner, often assuming
pairing with odd angular momentum, though the situa-
tion in this respect is not yet completely clear. In effect,
it is very important to scrutinize a global stability of the
spin-triplet phase against an onset of either magnetism
or the coexistent states within this canonical model of
correlated electrons while treating both the magnetism
and the pairing in real space on equal footing.

We have recently analyzed a microscopic model with

the Hund’s-rule induced spin-triplet pairing, in both
the Hartree-Fock21 and the Gutzwiller approximation23.
In the Hartree-Fock-BCS limit, the paired states (of-
ten coexisting with magnetism) appear only in the limit
U ′−J = U −3J < 0, where U ′ is the intraatomic interor-
bital magnitude of the Coulomb repulsion. This limit can
be called as that with attractive interactions. In the cor-
related Gutzwiller state and under the same conditions,
superconductivity, both pure and coexistent with antifer-
romagnetism, is also stable23. The stability of supercon-
ducting phases comes not as a surprise in this parameter
regime, since it resembles a single band model with neg-
ative U. In the course of this study, however, it became
apparent to us that the spin-triplet paired state can also
become stable in the much more realistic regime of purely
repulsive interactions U ′ − J > 0, a typical situation for
the correlated 3d and 4d electrons. This regime has been
considered for a similar model with the use of the dynam-
ical mean-field theory in Ref.16, where only the normal-
state instability with respect to the spin-triplet pairing
was analyzed. Here we show explicitly that the s-wave
(with an admixture of an extended s-wave) solution, i.e.,
with even parity, is stable (also against ferromagnetism)
and therefore should be considered in the analysis of the
spin-triplet superconductivity in the orbitally degener-
ate and correlated systems. We would like to underline
that this is a generic microscopic approach in which the
electronic correlations play a decisive role in stabilizing
the spin-triplet even-parity state. Namely, the supercon-
ductivity induced by such pairing mechanism does not
appear at all in the Hartree-Fock-BCS type of approach.
This situation arises also for high-temperature supercon-
ductors, where purely repulsive Hubbard model leads to
a spin-singlet d-wave pairing24.

In connection with the proposed microscopic pairing
one should also note the extensive studies of pairing in
multicomponent cold-atom fermionic systems (see e.g.
Refs.25−27). In distinction to those works, we discuss
here the spin-triplet paired state in correlated lattice
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system and beyond the mean-field (BCS) approximation
within a concrete source of pairing (the Hund’s rule ex-
change), as well as analyze explicit its stability (and co-
existence) with magnetism.

Model.—The starting Hamiltonian has the form of the
extended Hubbard model, i.e.,

Ĥ =
∑

ij(i 6=j)ll′σ

tll
′

ij ĉ†
ilσ ĉjl′σ + U ′ ∑

i

n̂i1n̂i2

+ U
∑

il

n̂il↑n̂il↓ − J
∑

ill′(l 6=l′)

(
Ŝil· Ŝil′ +

1

4
n̂iln̂il′

)
,

(1)

where l = 1, 2 labels the orbitals. The first term includes
intraband (l = l′) and interband (hybridization, l 6= l′)
hopping terms, the second and third represent the in-
terorbital and intraorbital Coulomb repulsion, whereas
the last represents the full form of the Hund’s rule ex-
change interaction. The Hamiltonian (1) can be rewrit-
ten in a alternative form using the real-space representa-
tion for the pairing parts

Ĥ =
∑

ij(i 6=j)ll′σ

tll
′

ij ĉ†
ilσ ĉjl′σ + U

∑

il

n̂il↑n̂il↓

+ (U ′ + J)
∑

i

B̂†
i B̂i + (U ′ − J)

∑

im

Â†
imÂim ,

(2)

where the spin-triplet Âim and spin-singlet B̂i pairing
operators are defined as follows

Â†
i,m ≡





ĉ†
i1↑ĉ

†
i2↑ m = 1 ,

ĉ†
i1↓ĉ

†
i2↓ m = −1 ,

1√
2
(ĉ†

i1↑ĉ
†
i2↓ + ĉ†

i1↓ĉ
†
i2↑) m = 0 ,

(3)

B̂†
i ≡ 1√

2
(ĉ†

i1↑ĉ
†
i2↓ − ĉ†

i1↓ĉ
†
i2↑) . (4)

As one can see, for U ′ > J the interaction energy that
corresponds to the creation of a single pair in either spin-
triplet or spin-singlet states on a atomic site, is positive.
For an orbitally degenerate case, where the standard hi-
erarchy of couplings is U > U ′ > J , the interorbital local
spin-triplet type of pairing, if any, may be favored over
the singlet one. The factor favoring the triplet over the
singlet pairing is the Hund’s rule exchange, but as we
show, the electronic correlations are equally important
to stabilize the paired state globally.

Method.—As said above, electronic correlations turn
out to be crucial in this system. To include them in our
study we use the modified Gutzwiller approximation. In
this method, one assumes that the correlated state |ΨG〉
of the system can be expressed in the following manner

|ΨG〉 = P̂G|Ψ0〉 , (5)

where |Ψ0〉 is the normalized non-correlated state to be
defined below, whereas P̂G is the Gutzwiller correlator,

which we have selected in the form

P̂G =
∏

i

P̂G|i ≡
∏

i

∑

I,I′

λI,I′ |I〉ii〈I ′| . (6)

Here, {|I〉} is a basis of the local (atomic) Hilbert space
(16 states) and λI,I′ are variational parameters, which we
assume to be real. In the subsequent discussion, we write
the expectation values with respect to |Ψ0〉 as 〈Ô〉0 ≡
〈Ψ0|Ô|Ψ0〉, while the expectation values with respect to
|ΨG〉 will be denoted by

〈Ô〉G ≡ 〈ΨG|Ô|ΨG〉
〈ΨG|ΨG〉 =

〈Ψ0|P̂GÔP̂G|Ψ0〉
〈Ψ0|P̂ 2

G|Ψ0〉
. (7)

We focus on the pure superconducting phase of type A
for which 〈Âi,1〉G = 〈Âi,−1〉G 6= 0 and 〈Âi,0〉G ≡ 0. This
is because one would expect that the equal spin state
(ESP) is favored by the local ferromagnetic exchange.
Note that the expectation values in the correlated state,
|ΨG〉 of the respective pairing operators are nonzero only
if the corresponding expectation values in the noncor-
related state |Ψ0〉 are also nonzero. For simplicity, we
assume that t11 = t22 ≡ t and t12 = t21 ≡ t′ for the
nearest neighbors. The expectation value of the grand
Hamiltonian K̂ = Ĥ − µN̂ in the correlated state has
been derived in the limit of infinite dimensions by a dia-
grammatic approach28 and has the form

〈K̂〉G =
∑

ijlσ

Q tij〈ĉ†
ilσ ĉjlσ〉0 +

∑

ijll′σ

Q t′ij〈ĉ†
ilσ ĉjl′σ〉0

+
∑

ijσ

Q̃ tij(〈ĉ†
i1σ ĉ†

j2σ〉0 + 〈ĉj2σ ĉi1σ〉0)

+ L
∑

I,I′

ĒI,I′〈m̂I,I′〉0 − µ
∑

ilσ

qs
lσ〈n̂ilσ〉0 ,

(8)

where Q and Q̃ are the renormalization factors, L is the
number of atomic sites, µ refers to the chemical potential,
qs
lσ = 〈n̂ilσ〉G/〈n̂ilσ〉0, and m̂I,I′ ≡ |I〉〈I ′|. The factors Q

and Q̃, as well as ĒI,I′ , can be expressed with the use of
the variational parameters λI,I′ , the local single particle
density matrix elements 〈ĉα

ilσ ĉα′
il′σ′〉0, and the matrix ele-

ments of the atomic part of (1) represented in the local
basis, 〈I|Ĥat|I ′〉. Here ĉα

ilσ are either creation or anihila-
tion operators. The expression for 〈K̂〉G can be rewritten
as the expectation value of the effective single-particle
Hamiltonian K̂GA, evaluated with respect to |Ψ0〉, i.e.,

K̂GA =
∑

ijlσ

Q tij ĉ
†
ilσ ĉjlσ +

∑

ijll′σ

Q t′ij ĉ
†
ilσ ĉjl′σ

+
∑

ijσ

Q̃ tij(ĉ
†
i1σ ĉ†

j2σ + ĉj2σ ĉi1σ)

+ L
∑

I,I′

ĒI,I′〈m̂I,I′〉0 − µ
∑

ilσ

qs
lσn̂ilσ .

(9)

The first three terms of (9) originate from the single par-
ticle part of (2), while the fourth originates from its in-
teraction part. It can be seen that the intraatomic part
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has been taken as its average, in accordance with the gen-
eral philosophy of the Gutzwiller approach. Again, the
Q and Q̃ factors are the renormalization factors of the
respective dynamic processes. The first two refer to the
narrowing of the quasiparticle bands, whereas the Q̃ pa-
rameter corresponds to the intersite pairing amplitude.
It should be emphasized that in our initial Hamiltonian
(1) there are no intersite interaction terms and so the in-
tersite pairing that is present in (9) is due to correlations
(a non-BCS factor). Also, the factor Q̃ is nonzero only
when the local expectation values 〈Âi,±1〉G (and the cor-
responding 〈Âi,±1〉0) are also nonzero. As a result, the
intersite pairing appears concomitantly with the intrasite
one.

In the statistically consistent Gutzwiller approach
(SGA)29−31 the mean fields are treated as variational
parameters, with respect to which the free energy of the
system is minimized. Hence, in order to assure that the
self-consistent and the variational procedures yield the
same results, additional constraints have to be introduced
with the help of the Lagrange-multiplier method. This
leads to supplementary terms in the effective Hamilto-
nian so that now it takes the form

K̂λ = K̂GA − λn

(∑

ilσ

qs
lσn̂ilσ − L〈n̂〉G

)

−
∑

m=±1

[
λm

( ∑

i

Âim − L〈Âim〉0
)

+ H.C.
]

,
(10)

where the Lagrange multipliers λm and λn are introduced
to assure that the averages 〈Âim〉 and 〈n̂〉 calculated ei-
ther from the corresponding self-consistent equations or
variationally, coincide with each other. One should also
note that it is natural to fix 〈n̂〉G instead of 〈n̂〉0 during
the minimization procedure. This is the reason why we
put the term −µN̂ already at the beginning of out deriva-
tion. The values of the mean fields, the variational pa-
rameters, the and the Lagrange multipliers, are all found
by minimizing the free energy functional F̂λ that is de-
rived with the help of the effective Hamiltonian K̂λ in a
standard statistical-mechanical manner. For the consid-
ered two-band model there can be up to 256 variational
parameters λI,I′ . Fortunately, for symmetry reasons, one
can reduce their number significantly. It should also be
noted that not all of the parameters are independent, as
certain constraints have to be obeyed23,28. In effect, we
have to minimize only 16 variables in this pure supercon-
ducting state of type A.

From Eqs.(9) and (10) it can be seen that the Lagrange
multipliers λm have an interpretation of the intrasite gap
parameters, while the symmetry of the intersite gap pa-
rameter is fully determined by the bare band dispersion
relation. By assuming the dispersion relation for a square
lattice with nonzero hopping t between nearest neighbors
only

εk = −2t(cos kx + cos ky) , (11)

one obtains the following form of the gap parameter

∆k = ∆(0) + ∆(1)(cos kx + cos ky) , (12)

where ∆(0) ≡ λ1 = λ−1 (as we are considering an ESP
state) while ∆(1) ≡ 2Q̃t is the intersite pairing amplitude.
In this manner, we have obtained a mixture of the s-wave
and the extended s-wave pairing symmetry.

In order to check if the stable spin-triplet paired phases
can indeed appear in the repulsive-interaction regime, we
have performed first the calculations taking into account
only the intrasite pairing for the following selection of
phases: type A superconducting (A), pure ferromagnetic
(FM), paramagnetic (NS), superconducting coexisting
with antiferromagnetism (SC+AF), and pure antiferro-
magnetic (AF). The antiferromagnetic ordering consid-
ered by us has a simple two-sublattice form. We have
also considered the so-called A1 superconducting phase
(〈Â1〉G 6= 0 and 〈Â−1〉G = 〈Â0〉G ≡ 0) coexisting with
ferromagnetism. However, this phase turned out not to
be stable for the whole range of model parameters ex-
amined. Therefore, it is not included in the subsequent
discussion. Detailed information concerning the above
phases can be found in23, where we have analyzed the
intrasite paired states in the regime of attractive interac-
tion, i.e., for U ′ − J < 0.

Results.—The calculations have been performed as-
suming that the hybridization matrix element has the
form ε12k ≡ βhεk, where βh ∈ [0, 1], specifies the inter-
band hybridization strength. The interorbital Coulomb
repulsion constant U ′ was set to U ′ = U − 2J . All the
energies have been normalized to the bare band-width,
W = 8|t|, and the presented results were obtained for
kBT/W = 10−4 emulating the T = 0 state.

In Fig. 1 we show that the superconducting phases,
both pure and coexisting with antiferromagnetism, are
stable for purely repulsive interactions regime (U ′ − J >
0). With the increasing Coulomb repulsion U , the re-
gions of stability of the paired phases are becoming nar-
rower. Note that the Hartree-Fock calculations lead only
to the stability of magnetically ordered phases in this
regime. The appearance of the paired states is there-
fore a genuine many-particle effect which is caused by
the electronic correlations and taken into account in the
SGA method.

Next, we discuss the superconducting A phase with in-
clusion of the intersite part of the pairing. In Fig. 2 we
plot the superconducting gap components as a function of
the effective pairing constant Jeff ≡ U ′ −J . As the value
of the Jeff parameter changes sign to positive, the intra-
site interaction corresponding to the spin-triplet-pair cre-
ation on a single atomic site changes from attractive to
repulsive. As one could expect, according to the Hartree-
Fock-BCS results, the intrasite gap parameter vanishes
before Jeff reaches zero and the intersite pairing does not
appear. The situation is different in the SGA. Namely,
the paired solution survives for Jeff > 0 and the pairing
has both the intra- and the inter-site components. How-
ever, the ∆(1) parameter is an order of magnitude smaller

mike
Pisanie tekstu
82



4

0 0.5 1 1.5 2
BAND FILLING, n

-0.2

0

0.2

F
R
E
E
E
N
E
R
G
Y
,
F

NS (SGA)
A (SGA)
FM (SGA)
SC+AF (SGA)
AF (SGA)
FM (HF)
AF (HF)

-0.2

-0.1

0
F
R
E
E
E
N
E
R
G
Y
,
F

NS (SGA)
A (SGA)
SC+AF (SGA)
FM (HF)
AF (HF)

(a)

(b)

NS A SC+AF

NS A FM

SC
+
AF

AF

J=0.4
U=1.3

h=0.0

J=0.4
U=1.6

h=0.0

AF

FIG. 1. (Color online) Ground-state energy of stable phases
as a function of the band filling for the case when only the in-
trasite pairing is included (i.e., for ∆(1) ≡ 0). For comparison,
plots obtained in the H-F approximation are also shown. The
shaded regions mark the stability of corresponding phases ac-
cording to the SGA method. Pure AF state is stable for n = 2
(marked by arrow).

than ∆(0). The phase A has a lower value of energy than
the normal phase for the whole range of Jeff presented in
Fig. 2. Exemplary values of the order parameters, the
renormalization factors, and the free energy for T → 0,
are all listed in Table I.
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FIG. 2. (Color online) The intrasite (left scale) and the inter-
site (right scale) gap components as a functionof the effective
coupling constant Jeff = U ′ − J . For comparison, we provide
also the results obtained in the Hartree-Fock approximation.
Additionally, the band renormalization factor is shown in the
inset. Note that ∆(1) = Q̃/4.

In Fig. 3a we plot the J dependences of the gap param-
eters for Jeff = 0.1. For larger values of J the difference
in magnitude between the intra- and the inter-site con-
tributions to the pairing is not that large. The influence
of the hybridization on the considered type of supercon-
ductivity is shown in Fig. 3b. The superconducting gaps
are not affected by the increase of the βh parameter up

TABLE I. Representative values of the gap parameters, the
renormalization factors and the free energies for J = 0.4, n =
1.2 and βh = 0.0, for three different values of the effective
pairing constant, Jeff. For comparison, we have provided the
values of the renormalization factor and the free energy for
the superconducting phase of type A and the normal phase,
NS. The subscripts refer to these two phases. The numerical
accuracy is better that the last digit specified.

Jeff ∆(0) ∆(1) QA QNS FA FNS

−0.1 0.02325 0.00191 0.74669 0.74401 -0.255481 -0.255067
0.1 0.00357 0.00073 0.72164 0.72157 -0.179725 -0.179705
0.15 0.00200 0.00054 0.71454 0.71453 -0.161874 -0.161867

to the critical value βC
h ≈ 0.0379 at which both of them

suddenly drop to zero. Therefore, a sizable hybridization
is detrimental to the spin-triplet pairing and the effect
is strong. It means that this type of pairing suppresses
the energy gain due the interorbital hopping and hence
is possible only for weakly hybridized systems, where the
condensation energy is dominant, 2(∆(0))2/J >∼ βh/8.
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FIG. 3. (Color online) Intrasite (∆(0)) and intersite (∆(1))
gap parameters as a function of the Hund’s exchange integral
(a) and the hybridization parameter (b). In the inset of (a)
the J dependence of the band narrowing factor is shown.

Conclusions.—By using the SGA approach, we have
shown that the intrasite spin-triplet paired states, both
pure (A type) and coexistent with antiferromagnetism
(SC+AF phase) can become stable in the orbitally de-
generate Hubbard model, in the limit of purely repul-
sive interactions (U ′ − J > 0). The coexistent SC+AF
phase is possible for the systems close to the half filling
(the case of pnictides), whereas the pure A phase appears
when n ≈ 1.2 for doubly or when n ≈ 1.8 for triply de-
generate band which corresponds roughly to the case of
Sr2RuO4 in the hole language. One can say that both the
Hund’s rule and the correlations induced change of band
energy contribute to the spin-triplet pairing mechanism;
they correspond to the BCS (potential energy gain) and
the non-BCS (kinetic energy gain) factors stabilizing the
paired state32. The intersite (extended s-wave) part of
the pairing is related to the intrasite (s-wave) one. This
can be seen from Figs. 2 and 3a, where ∆(0) and ∆(1)

reach zero for the same values of model parameters. The
hybridization is detrimental to the superconducting A-
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phase stability when the spin-triplet pairing condensation
energy becomes smaller than the Pauli-principle-allowed
kinetic-energy gain. The present model, while not being
material-specific provides universal features of the pair-
ing. This is because the order parameter is calculated
by minimizing the total energy averaged over the band
energies. Also, the considered here phase complements
the discussion of combined spin-orbital ordering in the
strong-correlation limit33.
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Abstract. The intrasite and intersite spin-triplet pairing gaps induced by the

interband Hund's rule coupling and the correlations are analyzed in the doubly

degenerate Hubbard Hamiltonian. To include the e�ect of correlations the Statistically

Consistent Gutzwiller (SGA) approximation is used. In this approach the consistency

means that the averages calculated from the self-consistent equations and those

determined variationally coincide with each other. The emphasis is put on the solution

for which the average particle number is conserved when carrying out the Gutzwiller

projection. The method leads to a stable equal-spin paired state in the so-called

repulsive interactions limit (U > 3J) in the regime of moderate correlations. The

interband hybridization introduces an inequivalence of the bands which, above a critical

magnitude, suppresses the paired state due to both the Fermi-wave vector mismatch

for the Cooper pair and the Pauli-principle-allowed interband hopping.
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Spin-triplet pairing: fully statistically consistent Gutzwiller approach 2

1. Introduction

The theoretical investigations concerning spin-triplet pairing are motivated by the

discoveries of the superconducting phases in Sr2RuO4 [1, 2], in iron pnictides [3, 4],

and in uranium compounds [5, 6, 7]. It has been proposed [8, 9, 10, 11, 12] that

the Hund's rule exchange coupling can lead in a natural manner to various spin-

triplet paired states in the orbitally degenerate systems. In our recent papers we

have investigated this kind of pairing mechanism in the doubly degenerate Hubbard

model with inclusion of the interband hybridization by using both Hartree-Fock (HF)

[13] and the statistically consistent Gutzwiller (SGA) [14, 15] approximations. It has

been shown that by applying the latter method one obtains a combination of intrasite

and intersite contributions to the pairing in the so-called purely repulsive interactions

regime. However, the method applied in those calculations does not guarantee the

conservation of the average particle number when carrying out the Gutzwiller projection,

which transforms the system composed of noncorrelated electrons into a nonstandard

quasiparticle Fermi liquid representing e�ectively the correlated state. The average

particle number conservation should be a characteristic of the Fermi liquid and it is worth

a separate analysis. This is because at the outset of the Landau Fermi-liquid theory is the

one-to-one correspondence of the bare and quasiparticle states. This matter has already

been discussed [17, 18, 19] with respect to the original Gutzwiller approximation for a

single band. In these considerations the so-called fugacity factors have been introduced,

which compensate the particle-number reduction appearing during the execution of the

Gutzwiller projection. The fugacity factors were also used by Gebhard [20], Laughlin

[21], and Wang et al [22]. Moreover, a similar approach, but in conjunction with the SGA

method, has been performed recently to study the coexistence of antiferromagnetism and

superconductivity both in the t−J model [23] as well as in the Anderson-Kondo lattice

model [24, 25]. It should be noted that di�erent choices of fugacity factors have been

considered, imposing local and global as well as spin-dependent and spin-independent

forms of the particle-number conservation. They all have been compared by Fukushima

[19]. Moreover, it seems reasonable to say that in the case of multiband models the

orbital-dependence of the fugacity factors should also be introduced. However, the

di�erences between all these approaches are immaterial when one considers the situation

of a homogeneous system without either magnetic or orbital ordering, as is the case here.

The present formulation allows us to compare our results with those obtained earlier and

in this manner discuss explicitly a degree of insensitivity of the Gutzwiller approach to

the solution details. In any case, the incorporation of the fundamental principle makes

the SGA approach we have proposed fully statistically consistent.

In this paper we focus on the particle number conservation with respect to the

statistically consistent Gutzwiller approximation that has been used by us recently

in the study of the Hund's rule induced spin-triplet pairing in the doubly degenerate

Hubbard model. As described in the following section, we propose the inclusion of an

additional term in the e�ective Hamiltonian that forces the particle number conservation
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Spin-triplet pairing: fully statistically consistent Gutzwiller approach 3

without introducing the fugacity factors [19]. We discuss also the role of the interorbital

hybridization, which introduces the bads inequivalence and is detrimental to the stability

of the considered kind of paired phase when su�ciently strong.

2. Model and method

We consider the doubly degenerate Hubbard Hamiltonian, which has the form

Ĥ =
∑

ijll′σ

tll
′

ij ĉ
†
ilσ ĉjl′σ + U ′

∑

i

n̂i1n̂i2

+ U
∑

il

n̂il↑n̂il↓ − J
∑

ill′(l ̸=l′)

(
Ŝil· Ŝil′ +

1

4
n̂iln̂il′

)
,

(1)

where l = 1, 2 labels the orbitals. The �rst term corresponds to intraband (l = l′) and

interband (hybridization, l ̸= l′) hopping terms, the second and the third include the

direct interorbital and intraorbital Coulomb repulsion, whereas the last represents the

Hund's rule exchange interaction. One has to mention that in the interaction part we

have neglected both the so-called local correlated hopping and the two-particle hopping

terms, as they are very small for U > W (W is the bare bandwidth) limit which is

considered here. We can rewrite the Hamiltonian (1) in the alternative form

Ĥ =
∑

ijll′σ

tll
′

ij ĉ
†
ilσ ĉjl′σ + U

∑

il

n̂il↑n̂il↓

+ (U ′ + J)
∑

i

B̂†
i B̂i + (U ′ − J)

∑

im

Â†
imÂim ,

(2)

where the spin-triplet {Âim} and the spin-singlet B̂i local pairing operators are de�ned

as follows

Â†
i,m ≡





ĉ†
i1↑ĉ

†
i2↑ m = 1 ,

ĉ†
i1↓ĉ

†
i2↓ m = −1 ,

1√
2
(ĉ†

i1↑ĉ
†
i2↓ + ĉ†

i1↓ĉ
†
i2↑) m = 0 ,

(3)

B̂†
i ≡ 1√

2
(ĉ†

i1↑ĉ
†
i2↓ − ĉ†

i1↓ĉ
†
i2↑) . (4)

From the above form of the starting Hamiltonian one can intuitively see that the spin-

triplet pairing, if any, is favored as U ′ = U − 2J for 3d and 4d orbitals. This can

be considered as obvious in the U < 3J limit when we have an e�ectively attractive

interaction (U ′ − J < 0) which leads to the pairing in a straightforward manner. We

do not make this assumption here and consider the case when U > 3J , since it is

more realistic for 3d and 4d orbitals. As in our previous paper, we are using the SGA

method in which one starts from the correlated Gutzwiller state |ΨG⟩ of the system in

the following form [16]

|ΨG⟩ = P̂G|Ψ0⟩ , (5)
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Spin-triplet pairing: fully statistically consistent Gutzwiller approach 4

where |Ψ0⟩ is the non-correlated reference state with broken symmetry, as discussed

below, whereas P̂G is the Gutzwiller projection operator, which has been selected in the

form

P̂G =
∏

i

P̂G|i ≡
∏

i

∑

I,I′

λI,I′|I⟩ii⟨I ′| . (6)

Here, λI,I′ are the variational parameters which are assumed to be real and {|I⟩} is the

basis of the local (atomic) Fock space composed of 16 states containing Ne = 0, 1, ..., 4

electrons. Such choice of the projection operator allows for the situation in which the

expectation values of the number of particles before and after the projection may di�er

for some states. The presented here approach is thus so far the same as the one we have

used earlier [14, 15]. We brie�y summarize it and next show the modi�cation of the

method which guarantees the average particle number conservation. In the following

discussion we denote the expectation values with respect to |Ψ0⟩ as ⟨Ô⟩0 ≡ ⟨Ψ0|Ô|Ψ0⟩,
whereas the expectation values with respect to |ΨG⟩ are determined as

⟨Ô⟩G ≡ ⟨ΨG|Ô|ΨG⟩
⟨ΨG|ΨG⟩ =

⟨Ψ0|P̂GÔP̂G|Ψ0⟩
⟨Ψ0|P̂ 2

G|Ψ0⟩
≡ ⟨P̂GÔP̂G⟩0

⟨P̂ 2
G⟩0

. (7)

The term on the right has a principal importance, as it expresses the average of the

operator Ô in the correlated state through the averages in the non-correlated state and

thus can be factorized into the single-particle (two-site at most) contributions (according

to the Wick's theorem). The particle conservation condition can be now expressed

simply as ⟨n̂⟩0 = ⟨n̂⟩G, where n̂ =
∑

ilσ n̂ilσ/L (L is the number of atomic sites).

The superconducting A phase (the equal spin polarized state, ESP) which we

consider in this paper is de�ned by the relations ⟨Âi,1⟩G = ⟨Âi,−1⟩G ̸= 0 and

⟨Âi,0⟩G ≡ 0. These de�nitions are analogical when taken with respect to |Ψ⟩0, namely

⟨Âi,1⟩0 = ⟨Âi,−1⟩0 ̸= 0 and ⟨Âi,0⟩0 ≡ 0. As shown earlier [14, 15] the paired A phase is

stable against ferromagnetism and the coexistent superconducting-ferromagnetic phase

in the proper range of model parameters. In order to simplify the situation, we assume

equivalence of the orbitals t11 = t22 ≡ t and t12 = t21 ≡ t′. It has been argued

[14, 15] that the expectation value of the initial grand Hamiltonian K̂ = Ĥ − µN̂ in

the correlated state can be considered as an expectation value of the e�ective grand

Hamiltonian K̂GA in the non-correlated state (⟨K̂⟩G = ⟨K̂GA⟩0) in the limit of in�nite

dimensions. Explicitly, the e�ective Hamiltonian has the following form

K̂GA =
∑

ijlσ

Q tij ĉ
†
ilσ ĉjlσ +

∑

ijll′(l ̸=l′)σ

Q t′ij ĉ
†
ilσ ĉjl′σ

+
∑

ijσ

Q̃ tij(ĉ
†
i1σ ĉ

†
j2σ + ĉj2σ ĉi1σ)

+ L
∑

I,I′

ĒI,I′⟨m̂I,I′⟩0 − µqs

∑

ilσ

⟨n̂ilσ⟩0 ,

(8)

where L is the number of atomic sites, qs = ⟨n̂⟩G/⟨n̂⟩0, whereas Q and Q̃ are the

renormalization factors of the respective dynamic processes. The �rst two terms of (8)
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Spin-triplet pairing: fully statistically consistent Gutzwiller approach 5

correspond to the hopping in the renormalized quasiparticle bands and the third term

is responsible for the intersite spin-triplet pairing which is induced by both the intrasite

Hund's coupling and the correlations. The fourth term originates from the intraatomic

interaction part of the initial Hamiltonian (1) and is taken as an average, in accordance

with the general philosophy of the Gutzwiller approach. Here, m̂I,I′ ≡ |I⟩⟨I ′|, whereas
the qs, Q, Q̃, and ĒI,I′ parameters can be expressed by the mean �eld parameters,

variational parameters, and the matrix elements of the atomic part of (1) represented in

the local basis, ⟨I|Ĥat|I ′⟩. These expressions were derived by using the diagrammatic

approach in the limit of in�nite dimensions [16]. Note that for qs < 1, we have

a reduction of the average site occupancy in the correlated state, a very nontrivial

situation, which is taken care of by introducing the particle conservation constraint as

shown below.

Now, we can construct the K̂a
λ e�ective Hamiltonian according to the statistically

consistent variant of the Gutzwiller approximation (SGA). In this approach, the mean-

�eld averages are treated as variational parameters with respect to which the free energy

of the system is minimized. Such procedure is equivalent to selecting the type of the

noncorrelated wave function |Ψ0⟩. Additionally, we introduce the supplementary terms

(called the statistical-consistency conditions) to the e�ective Hamiltonian so that the

averages ⟨Âim⟩ and ⟨n̂⟩ calculated either from the corresponding self-consistent equations

or variationally, coincide with each other. For this purpose, the Lagrange multiplier

method is used. As a result, the next-generation e�ective Hamiltonian K̂a
λ takes the

following form

K̂a
λ ≡ K̂GA − λn

(
qs

∑

ilσ

n̂ilσ − L⟨n̂⟩G

)

−
∑

m=±1

[
λm

( ∑

i

Âim − L⟨Âim⟩0

)
+ H.C.

]
,

(9)

where λn and λm are the Lagrange multipliers. In the considered method all the

mean �elds, the variational parameters and the Lagrange multipliers are found by

minimizing the free energy functional obtained from the K̂a
λ Hamiltonian. Since usually

the correlated state is the one that we want to discuss, it is convenient to �x ⟨n̂⟩G instead

of ⟨n̂⟩0. That is why the e�ective Hamiltonian contains the Lagrange constraint with

the average particle number in the correlated state (the second term of K̂a
λ). In this

manner ⟨n̂⟩G is treated as a model parameter (the band �lling) and ⟨n̂⟩0 is adjusted

during the minimization procedure.

At this point we make the �nal modi�cation which guarantees the ful�llment of the

condition ⟨n̂⟩0 = ⟨n̂⟩G. With this respect a constraint to the Hamiltonian is added with

yet another Lagrange multiplier Λ, i.e.,

K̂b
λ ≡ K̂a

λ − Λ(⟨n⟩0 − ⟨n⟩G) . (10)

One can see that the superscripts a and b di�erentiate the Hamiltonians without and

with the constraint on the particle number conservation, respectively. It should be noted
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Spin-triplet pairing: fully statistically consistent Gutzwiller approach 6

that the additional term in (10) does not contain any operators, but only expectation

values. In this manner, it is introduced in the same spirit, as the Gutzwiller variational

parameters. The minimization over the Lagrange parameter Λ is going to assure that

the average particle number is conserved during the projection operation even though

the explicit form of the projection operator is not changed with respect to that used

earlier [14, 15]. This constitutes the di�erence between this approach and the one which

modi�es the projection operator by introducing the fugacity factors [19]. Nevertheless,

one additional equation has to be solved when applying this method. Note that the

presence of the condition ⟨n̂⟩0 = ⟨n̂⟩G restricts the parameter space of available solutions

and hence makes the appearance of any broken-symmetry state less favorable. In e�ect,

the free energy of the ground-state within the present approach may not be lower than

that discussed by us earlier. It should be also noted that in general, to make the method

proposed here consistent with the one that uses the spin/orbital-dependent or position-

dependent fugacity factors [19], one would have to impose similar dependences on the

respective Lagrange parameters. However, as it has already been said, in the present

situation of a homogeneous system with no magnetic/orbital ordering, the mentioned

corrections are not required. The model with the e�ective Hamiltonian (10) constitutes

our fully statistically consistent Gutzwiller approach (f-SGA).

The Hund's rule coupling, together with the correlations taken into account in SGA,

lead to the s-wave pairing (intrasite) with an admixture of the extended s-wave pairing

(intersite). The respective gap parameter has the form

∆k = ∆(0) + ∆(1)(cos kx + cos ky) , (11)

where ∆(0) ≡ λ1 = λ−1 (as we are considering an ESP state) and ∆(1) ≡ 2Q̃t is

the intersite pairing amplitude. As one can see, the Lagrange parameters λ±1 have

the interpretation of the intrasite gap parameters. The symmetry of the intersite gap

parameter is fully determined by the bare band dispersion relation, which has been

chosen in the form

ϵk = −2t(cos kx + cos ky) , (12)

and corresponds to the square lattice with the nearest-neighbor electron hopping only.

In the ESP state, after performing the full diagonalization of the e�ective Hamiltonian

(10), one obtains the following dispersion relations

Ek = ±
√

(ϵk − µ − λn)2 + ∆2
k + ϵ12k , (13)

which correspond to the quasiparticle (+) and quasihole (−) excitations. Here, ϵ12k is

the hybridization matrix element. In what follows, we solve the model, what amounts

of solving 16 integral equations with the method and accuracy characterized earlier

[14, 15].
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Spin-triplet pairing: fully statistically consistent Gutzwiller approach 7

3. Results and discussion

The calculations were performed for the interorbital Coulomb repulsion constant U ′

set to U ′ = U − 2J and assuming that the hybridization matrix element has the form

ϵ12k ≡ βhϵk, where βh ∈ [0, 1], speci�es the interband hybridization strength. Moreover,

all the energies have been normalized to the bare band-width, W = 8|t| and the reduced

temperature was set to kBT/W = 10−4 emulating the T = 0 state. In this section

the results corresponding to ⟨n̂⟩0 ̸= ⟨n̂⟩G (qs < 1) and ⟨n̂⟩0 = ⟨n̂⟩G (qs = 1) cases are

compared explicitly. They have been obtained by using the Hamiltonians K̂a
λ and K̂b

λ,

respectively. It should be noted that in the calculations without the average particle

number constraint, the band �lling n refers to ⟨n̂⟩G, whereas ⟨n̂⟩0 is adjusted when

carrying out the minimization procedure.
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Figure 1. The Hund's rule coupling dependence of the intrasite (∆(0)) and intersite

(∆(1)) gap parameters (a), the renormalization factors (b), and the free energy

di�erence ∆F = F b−F a (c). The results that correspond to the solution with nG ̸= n0

are labeled with the a index, whereas those corresponding to the nG = n0 solution are

labeled with the index b. In the inset to (b) the J dependence of the ratio qs = nG/n0

is shown and the Lagrange multiplier Λ is presented in the inset to (c).

In Fig. 1a we have plotted the superconducting gap components ∆(0) and ∆(1) vs.

Hund's exchange coupling J . Their magnitudes are essentially reduced when the particle
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conservation constraint is imposed. The di�erences between these two approaches is

getting smaller, as the value of the J parameter diminishes and the superconductivity

is becoming weaker. The renormalization factors are displayed in Fig. 1b, where also

the particle number ratio qs = ⟨n⟩G/⟨n⟩0 is presented in the inset. It should be noted

that in the normal state the constraint added in Ĥb
λ is not needed as the condition

⟨n̂⟩0 = ⟨n̂⟩G is ful�lled automatically. Fig. 1c exhibits that the free energy of the

solution corresponding to Ĥa
λ is smaller than that corresponding to Ĥb

λ, which does not

come as a surprise, since the available variational parameter space is richer in the former

case. However, the superconducting solution in both situations has lower values of the

free energy than either the normal or the ferromagnetic phases within the range of model

parameters studied.

The following physical conclusions should be drawn from the results shown in

Fig. 1. First, a small deviation of the value qs (renormalizing the occupancy) from

unity (cf. inset in b) leads to the essential reduction of the gap components so,

while the coupling constant J remains the same, to bring their magnitude to realistic

values, it may be necessary to preserve the particle conservation, on expense of the

computing time and increased complexity. Second, as discussed already [15], this

solution for physically signi�cant regime (U > 3J) does not appear in the Hartree-

Fock approximation so the paired state is driven to an equal extent by the Hund's rule

and the correlations. Moreover, this mechanism leads not only to intra- but also to

inter-site pairing component.
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Figure 2. Hybridization magnitude βh dependence of the gap parameters for the

case when nG ̸= n0 (a) and nG = n0 (b). The hybridization is detrimental to the

superconductivity.

Next, we analyze the in�uence of the hybridization on the stability of the paired

state. The corresponding dependence of the gap vs. βh is plotted in Fig. 2. No

qualitative di�erences are seen between the ⟨n̂⟩0 = ⟨n̂⟩G and ⟨n̂⟩0 ̸= ⟨n̂⟩G. In both cases a

sizable hybridization is detrimental to the pairing. However, for the case indicated by the

a index superconductivity survives for substantially larger values of the βh parameter,

because the gap parameters obtained in this situation are larger (by factor 2÷3). There
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Spin-triplet pairing: fully statistically consistent Gutzwiller approach 9

are two reasons why the hybridization is detrimental to the superconductivity. First,

the bands become inequivalent when βh ̸= 0. This fact is demonstrated explicitly by

kx

k
y

(a)

-
-

kx

k
y

(b)

-
-

Figure 3. Fermi surface topology in to the normal state for the model parameters

U = 1.3, J = 0.4, n = 1.3 for two di�erent values of the hybridization strenght βh = 0

- (a) and βh = 0.11 - (b). The two Fermi surface sheets are visible for the case

with non-zero hybridization corresponding to bonding and antibonding states. The

distance between the sheets de�nes the Fermi-wave-vector mismatch which is small in

this circumstances.

plotting the Fermi surface topology for n ≈ 4/3 in Fig. 3. We see that in the case

βh ̸= 0 we have two Fermi surface sheets corresponding to the inequivalent hybridized

bands ϵ̃k1,2 = ϵk ± ϵ12k. Therefore, the corresponding Fermi wave vectors are di�erent,

kF1 ̸= kF2. As we have the symmetry ϵ̃kα = ϵ̃−kα, there is a Fermi wave-vector mismatch

between kF1 and −kF2 when the Cooper pair is formed within our interband pairing

mechanism. This is the reason of the superconducting state disappearance at critical

value of ∆k ≡ kF1 − kF2. The collapse of the homogeneous Cooper-pair state at the

critical value of βh may signal a possibility of a spontaneous formation of the Fulde-

Ferrell-Larkin-Ovchinnikov (FFLO) type of inhomogeneous state with the wave vector

Q = ±∆k. This state has not been analyzed in the present paper.

The additional reason why the homogeneous ESP state collapses at critical βh is

caused by the circumstance that by breaking the inter-band ESP state we enhance the

inter-band hopping for the opposite spins of electrons and thus diminish the system

energy in the normal state. These processes will also destabilize orbitally ordered state,

which is disregarded here as for the considered band �lling the itineracy destabilizes an

alternant occupancy of the orbitals (antiferromagnetic orbital ordering).

For the sake of completeness, we have plotted in Fig 4 the renormalized band

structure, both in the normal (a) and in the superconducting (b-d) states. The bands

are narrowed by the factor of Q ≈ 0.7 with respect to the bare band states. Furthermore,

in the superconducting phase the gaps are of the same magnitude still for βh = 0.11,

so the Fermi wave vector mismatch is not yet strong enough to destabilize the uniform

superconducting state in a almost discontinuous manner (cf. Fig. 2b ).
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Figure 4. The quasiparticle energies in the normal state - (a) and the superconducting

A phase (for ⟨n̂⟩0 = ⟨n̂⟩G) - (b) for two values of the βh parameter. For a given set of

model parameters one can see the doubly degenerate spin-split quasiparticle excitation

and its quasihole correspondent in (b). The characteristic points of the Brillouin zone

are the following: Γ = (0, 0), M = (π, π), Y = (0, π). In (c), (d), (e), and (f) the QP

energies are shown zoomed around two points of the Brillouin zone that are marked

by squares in (a) and (b).

4. Conclusions

We have proposed a modi�ed SGA approach in which we impose the condition for the

average particle number conservation when carrying out the Gutzwiller projection to

the correlated state. The calculated results were compared with those obtained earlier

[15]. It has been shown that the di�erences between these two methods are signi�cant

when the superconducting pairing is strong. The gap parameter is strongly reduced in

the case when the condition ⟨n⟩0 = ⟨n⟩G is imposed for larger coupling constants, J .

It is amazing that a small free energy di�erence ∆F ∼ 10−3W ∼ 1meV leads to such

remarkable quantitative di�erences of the physically meaningful parameters even though

their qualitative trends remains similar. It should be also noted that the average number

of particle ratio qs is very close to unity. The in�uence of the interband hybridization

is qualitatively similar for both approaches. The Fermi-surface topology and the quasi-

particle energies have been also analyzed. Large Fermi wave vector mismatch between

the hybridized bands can be the source of a transition to a spontaneous inhomogeneous

spin-triplet state of the FFLO type, which has not been analyzed here.

In our study we have taken the band �lling n ≡ 1.3 ≈ 4/3. Due to the electron-

hole symmetry the same results should be obtained for n ≈ 8/3. Such band �lling

emulates the corresponding band �lling n ≈ (4/3)(3/2) = 2 or n ≈ 4 in the electron-

hole symmetric systems with three bands. The last �lling corresponds to that of 3d4
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con�guration of a triply-degenerate-band state for Sr2RuO4. The modeling of this

system via a doubly-degenerate band state has been discussed in [26].

The stable ESP solution can be obtained in the Hatree-Fock approximation only

for U < 3J [15], while in the SGA approach, i.e., when the correlations are taken into

account, this rather stringent and unrealistic condition is unnecessary. In connection

with this we should mention the two papers [29, 30] in which the instability of the

normal state with respect spin-triplet state has been discussed within the Dynamical

Mean Field Approximation. In our paper, we analyze explicitly the ordered phase. This

is an essential extension of the whole approach as it can provide a starting microscopic

basis for the analysis of the spin-triplet pairing in e.g. Sr2RuO4. So far the successful

models for this compound are based on negative-U assumption [27, 28] which may turn

unrealistic in this case of 4d orbitals due to the Ru atoms. Obviously, to make our

model quantitatively valid we have to include the strongly anisotropic nature of the 4d

orbitals, as well as a sizable spin orbit coupling. Nevertheless, the present approach

represents, in our view, the �rst complete microscopic treatment in a model situation

which may form a staring point for calculations in a realistic situation. These realistic

calculations will contain many more Gutzwiller variational parameters which may make

the numerics quite cumbersome. Nonetheless, the overall features should be preserved

as the variational calculations require only total energy, averaged out over quasiparticle

bands. Also, it is rewarding that the considered microscopic pairing mechanism allows

for the formation of not only the pure spin-triplet superconducting phase, but also the

superconductivity coexisting with magnetic ordering [15], depending on the value of

microscopic parameters, as well as, most probably, on the details of the band structure.
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