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Chapter 1

Correlated electrons in a narrow

band and their metal-insulator

transition

1.1 Introduction

The description of electronic states in solids involves two different calculation schemes,

which concern two physically distinct models, namely the Bloch-wilson band theory

and the localized-particle model or Heitler-London approach. The band picture rep-

resents the electrons as almost free, described by the Bloch wave-fuaction and moving

in an effective peńodic potential . The interaction between electrons a're expressed

through a self-consistent potential. such schemc is successful in describing the elec-

tronic states of normal metals and semiconductors. on the other hand, the localized
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approach provides a purely atomic description of solids. Contrary to the ba"nd picture,

the intra-atomic interaction plays then the crucial roie. It is assumed that these in-

teractions are strong eoough so that the electrons rema.in almost localized on atoms.

This model successfully describes the properties of magnetic insulators, for which

the Heisenberg picture of localized magnetic momeots is appropriate. One needs to

realize that the both above mentioned theories were based on the construction the

appropriate wave functions. So, it might seem almost impossible to construct such

a general theoretical description that would combine in one the nature of localized

a:rd delocalized states. The more so) as it was originally presumed that the Heitler-

London and Bloch-Wilson schemes were just representing different approximations to

the same exact wave furction. Mott [1] was fust to suggested that the source of such a

description dichotomy may come not from mathematical difiiculties, but rather from

deeper physical reasons. The essential points of Mott's arguments were illustrated

on the exa.rople with periodic lattice of hydrogen atoms, each with one electron per

atom l2l. According to the Bloch Wilson theory the systems with a pa.r1ia1ly fltled

band lead to metals. As the lattice constant is steadily increased, the band theory

rvould stili predict a metallic behavior rvhile, in fact, it is intuitively expected that

for 1arge łlalues of the lattice constant one is left with an imulating system of almost

independent hydrogen atoms or molecules. In this manner, one encounters the break-

dorłn of a conveotional, one.e]ectron band theory. In other v,'-olds, Viithin the band

theory a paramagnetic system with an odd number of electrors per atom should be

alrvays metajlic. The other fuldamental achievement of Mott analysis is the analy-

sis based on Thomas-Fermi approach to the screening of electron-electron hteraction.



Namelv. one can fufer from it that electron correlation effects may lead to a first-order

lpansition bet*'een conducting and insulating states. Since the correlation effects d+

pend on the electron densiĘ, Nlott determiled the critica] va]ue of the density, above

which the metallic state is stable, and belorv which the proper ground state is that

of a magnetic ilsulator. Indeed, in practice the metal-irsulator transition may be

induced by cha:oge of pressure, temperature or a material composition. It occurs in a

wide ra.riety of materia]s .ugfo as transition metal ałd ra.re-eańh compounds, organic

salts, heavlJy doped semiconduc[ors, amorphus solids and meta,l-ammonia so]utions -

to name a fe*- [1,2,3,4].

As an exa.mple of a comporrnd whose propeńies carurot be explained by conven-

tional Bloch-\Vilson band theory is MnO. It contains five 3d electrors formula unit.

The band theory predicts then that MnO should be meta.llic. However, the room

temperature conductivity of pure MnO is t0-ts (f) * ctn)-t, placilg it among the

best ilsu]ators occrrrring in nature. Mno is tłrus an exa,mple of a ]vlott i:rsu]ator. It

orders antiferromag-oetically without any change in the nature of electronic states at

the magnetic transition. A la.rge c1ass of transition metal ońdes such as V0z, Vzos,

VaO7, V5Oe, Ti203, Ti4Oz, u-ndergo metal-insulator transitions as a function of tem-

perature pressrrre or doping. In general, the mechanisms that govern those individual

metal-insulator transitions may be quite different. An alternative to the correlation

effects as a driving force of the trarrsition may be lattice distońion, order_disorder

trłnsformation, excitonic insu_1ator formation [3] , etc. The theoretica] interpretation

of these driving mechanisms beh rd some of these transitions still remains a chal-

lenghg problem. Thjs thesis is mainly concerned with the theoretical approach to
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transitions drir'en by electron correjation effects in narrow band systems' The stań_

ing point for this arrĄsis is the Hubbard model formulated first in 1963 [5] ' 
which

will be described briefly next.

1,.2 The Hubbard model

The behańor of a system of N interacting pańicIes is determined by N-particle wave

function obeying the Scbrtidinger equation

tnŁv @r,.'.,'') : }lr}(c1, ..', zg).
OL

The Ha.rniltonian 1l is given by

N1rH-tr@)t rlv@;,q),h:l iłj:\

(1.1)

(1 2)

rvhere T(16) is a kiletic energy operator for a single particle, 7 is the two.body

interaction potential, here taken as the Coulomb repulsive force. Of course, the

solution of the equation (1.1) is in general impossible to find. The reformulation

of the lvhoie problem within the second-quantization tormalism make it possible to

tackle. There are at least two main reasons for implementation of this method. The

first is that the statistical aspect of a problem is included authomaticaly through the

anticommutation relations for anibilation and oeation operators. T'bus one avoids a

procedrrre of antis1metrization of the wave function. of course, in order to eńrart the

one-particle propeńies of a system one has to determine the proper Green furrction.

The second reason of expressing Hamiltonian (1.2) in the second quantization is that,

one can separate it into terrrs rvhose physical psaning is clear. Therefore, for a given



physical situation one ca:r simplify the original problem (1.1) bV retaining only the

terrns that are of main impońance and neglect al] others. This is just what HubbaJd

did when tryilg to ilvestigate the effects of electron correlations in a narrow enerry

band in the simplest situation. The terms ihat are retained express two dominant

processes, that is those responsible for delocalized nature of the states and those

conta.ining the shoń-range Coulomb repuJsion between the particles. Usually the

mode1 is rłritten il the fol1owing form:

H:t >a c!,c1,ł[l T ni,n1'- pN.,
<ź'j>o ź

(1 3)

where qo and Ą are respectively anrrihilatioł and creation opelatols of an e]ectron

on site ii with spi:r o : t1, a.nd. n;, : c:"c., is the particle number operator. The

summation over the < żj > in formula (1.3) indicates that the hoppilg is considered

on1y betrveen the nearest neighboling ato'ns. The last term in is the plodrrĆt of

chemica] potential pl and total number of electrons Ę and serves as a reference

energy for the system.

The first term in (1.3) is the socalled hopping term, since it describes the electron

transpoń through a crystal by hops ofan electron foom given atom to the neighboring

one. This on+pańic}e interaction favors iti_nerant state of electrons as ć < 0. This

term describes also the chemical bonding in small systems. The second term describes

Coulomb repulsion between two electrons *'hen both are on the saloe atom. In the

situation with the dorń1y occupied configuration this term yields an additional enerry

[/. There is a third factor, namely, the Pauli exclusion principle. The competition

betrveen those three factors determines the overall system behavior and, in pańicular,
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the stability of various magnetic phases.

There a.re two firndamental paxameters in the model: the dimensionless ratio, ź/U

(or equivalently, the ratio Wf U, wherc W is the width of the bare band), and the

average electron density per site

": $ D. ,,,': *I.'n' . (1 4)

The total electron number, l{":' cLą", conmutes with the HamiJtonian, tłre elec-

tron density is then a gooa q,r*,rrrrr number and hence, the calculations at different

densities are iudependent. Another quantity that is conserved is the tota.1 spin of the

particles in the system

.:Iro:if c!.c"'ci",, (1.5)
i ;ool

where a : (o,,ae,a,) denotes the Pauli matrices. Thus the consideration of the

states rvith different total magnetic moments decouple. In tbe case rvhen the sys-

tem is placed in the externa'l magletic field Ę, the Hubbard Hami]tonian contains

the Zeema,n term a.nd then the ralio 1.LrH"ft becomes another relevant parameter

(obviously in such treatment we negiect the Landau structure).

Depending on the value U f W the t;wo characteristic limits are reached. In the case

of U.---' 0 (the so-called metallic )imit), one obtains a pure band behavior just due

to the overlap of the atomic wave functions. The Hubbard Hamiltonian reduces then

to a tight-binding Hamiltonian with the hopping integral ź;;. The compiementary

limii U ---+ co represents the so,called limit of strong correlations. There are no

double occupied sites for n : 1 and each atom contails electron localized on it.

The system is called the Mott-Hubbard imulator. The htermediate range of U is
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of particular interest, shce then U - W, i.e. the competition betrveen the band

effects and localization due to correlations is most acute. ivloreover, the theoretical

description il this is not trivial, since the both ternrs in the Ha;miltonian (1.3) are of

comparable magnitude. In the next paragraph we provide a brief summary of some

basic resu]ts obtailed in earlier papers concernirrg the approńmate solution of the

Hubbard modei in the pa.ramagnetic phase.

1.3 Hubbard III solution

The first quartitative treatment of the problem developed by Hubbard [5] was based

on one-pańic1e Green fulction treated within the ąuation of motion method fo1lowed

by a decoupling scheme. Three fundamental features of the model were obtained that

rval'. First, the theory yields the exact solutions in the two opposite iimiting cases:

U : 0 and U - co. Second, and most spectacular feature, is the appea.rance of the

metal-insulator transition. Namely, Hubbard ir his third paper in 1964, [5] shorved

that with hcreasing U f W ratto one encounters a critica"l value (U lW). above wtrich a

singl+band splits into two subbands separated by an energy gap, called later tbe Mott-

Hubbard or the correlation gap. Thus ir a case of a half fllled band (i.e. for n : 1)

and jr a region of Ullv > (UlW)" - 1, the lower band is completely fllled while the

upper is empĘ. The system is in the imulating state. Si_nce the gap decreases slowly

to zero rvith decreasilg U fW ntio, the insulator-metal transition expressed in the

ITubbard's scheme (contrary to the Mott prediction [6] ) is continuous. This graduai

character of the transition at temperature T : 0 could be due to the complete neglect
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of interatomic coulomb terrns, i.e. disregard of the screeni-ng effects invoked by Mott

that made the sharp transition possible.

The original Hubbard solutions w-as aralyzed (and criticized) by other authors.

It was pointed out by Fdwards and Hewson [7], that even ir the metallic ptrase (i.e.

for U << W) the Fermi surface is rot properly defired. Next, since the Hubbard

restricted his discussion to spatially udform solutions, the magnetic effects were not

taken into account. The simple decoupling scheme a]so fai]s to reduce to the Hańree

Fock approńmation il the ljmit of week futeraction [B]. Thjs is because, strict1y

speaking the Hubbard solution is exact only i-n the ]imits: U : 0 or ć;l : 0. A]so, the

Hubbard results are in contradictior with the exact results of Lieb and wu in one

climersional case [9]. In general, one needs to use a self consistent method that allows

for a determination of the system gro'rid-state enerry in the mean-field approximation

and then calculate the fluctuation corrections arould that state. The next section

is devoted to discussion of the Gutzrviller solution, i.e. to the raniational method

proposed fust by Gutzwi11er [10]. This a.i]ows to determine the grouncl state propeńies

of correlated electrons and defirie the order parameter characterizing the metallic

phase. Also, it will be shown later tirat this approximate solution corresponds to the

mean-field approximation withil the slave-bmon approach in the parariagnetic case.

L.4 Gutzwiller solution and the quasiparticles

The simplest non-peńurbative, mean-field solution is provided by the Hańre+Fock

approńmation. This approach is based on the assumption that for a given operators



6r and 6z we neglect their correlation fluctuations, i.e. put

[6'- < Ą >]@r- <G, >] - 0' (1.6)

where < ?r ), ( 6z ) are the mean field lzlue of the relevant operator in the non-

interałtilg ground state. So' the two-particle interaction is replaced by effective

singl+pa.rticle term, namely

It is well known that with the increasing Hubbard U, the Hartre+Fock solution

favors a magnetic state [11]. To understand the reason for this, it is convenient to

express the repuJsive Hubba.rd term iu terms of ttre pańicle number operator n;6 and

the magnetizatiot ma :2,9f , where Sf is the z-component of the spil operator and

expressed in the second qua.ntization representation takes the form ,91' : l(n,i, -nłr).

Thus n;o : nź - osi, where nł : Don;,. We choose the energy sca]e in such a way

that pr : 0. The Hubbard Haniltonian (1.3) takes the form

6, .du -< d' > Gr+ <d2 > 6'- 1d' ż 1d, ż .

H:t D c!,ci" ł!Doł --7.
<ż,j>o ź

(1.7)

(1,8)

The form (1.8) shorvs that fluctuations in the local density munber ?2i, causes ar

increase in repuJsive energy, whereas the onset of magnetic moment leads to the

lowering in potential energ-y and hence might be stabilized. In the Hartree-Fock

approximation the term in the electron density is in fact irrelevant, since it leads only

to a constant shift of the total energy. The important contribution, however, is the

magnetization, which prońdes a ploper order parameter for the problem. Indeed,

the appearance of a molecular field, 11- - U (m;), favors moments orientation in
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a spontaneously chosen direcbion. The system is ferromagnetic if such a magnetic

moment is spatiaiiy homogenous. For band fliling n, the Hańre+Fock approximation

gives the probabi[ty of fudilg two electrons on the same lattice site, (ńrrńrr) _

źn'. l, the lirrit U >> t, this causes the strong enhancement in tota] energy of

the system through the contribution of itln2. Thus the system is forced to order

magnetically, since the magnetic moment formation ({m) ł 0) correlations reduces

the Hubbard repulsion. Gutzwiller showed [10] that there are already correlations in

the paramagnetic phase, which reduce energetically expensive Hubbard repulsion. To

realize that he considered a trial wave fimction for the grourd state by starling with

the Bioch function Vs, for non-hteracting electrons and then reduced the number of

doubly occupied sites by means o[ a projecrion operaLor. Tbe wave function lor the

correlated state, V6, is assumed as

I rl.) :II [1 - (1 - s)n.;,n,i,l Vs),
ź

(1.e)

v,'here g, (0 ś g < 1), is the pararneter that needs to be determined va.riationally.

State j q/0), is the uncorrelated state that corresponds to wave function Vo, namely,

the Slater determinant of Bloch wave functions (transformed to the Wannier repre-

sentation). The operator n1rą.,, haS a ł'a]ue of unity when site i is occupied by the

electrons rvith spin up and down, or has a va.lue of zero otherwise. Thus, in the sense

of the system average configuration, the state with double occupied site has assigned

a weight of g. For 9 = 1, according to (1.9), I r!6) reduces to the ground state of

uncorrelated system I 
qro). In the opposite limit 9 : 0, grornd state is the state where

no doubly occupied sites are included. The rariationai parameter g, furnishes as a
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measure of correlation effects aJ]d my be determiled by minimization of the grould

state ener$,. Using the fact that fr; = ną.,ni, has eigenralues one and zero only,

relation (1.9) may be written as

I vc) : eo I vo), (1.10)

n'here D :D 6n, is the total number of doubly occupied sites' To find the glound
t

state enei-ry one needs to evaluate the foliorving expression

Ec: (vc I H I {Jc) (1.11)
(v. I vc)

ź 
' 

(vc lctci" lvc)
<ź,j>o

I/ I (vc In;,n;., I 
tłg)

(v. I v") + (v.lv.)

Due to the fact that I V6) is an eigenstate of the number operator, the interaction

term in (1.11) simply gives the value of UD, (D : (Vc I 0 I Vc)) The whole problem

reduces to the evaluation of the matrix eiements of the kinetic energy and the norm

of the wave function. Finally, one finds that both searched quantities namely, the

matrk elements of the kinetic energy and the norm of the wave function aJe written

in terms of determinants. After some assrrmption concerning the n-th order densiĘ

fulctions and phase relations between different spin configurations the problem were

reduced to pure combinatorics. The strength of this method, however, relies on.an

extremelv simple expression for the grou:rd state energy (per site) that comes out,

namely

* :>- q,(ą) .e + Uą' (1.12)
'/Y '7

lvele ł = $ is tne fraction of doubly occupied sites and appea.rs as a;n anotber
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rariational para"rneter. Also, the average eners/ per spin in the uncorrelated state

(v6lcf"c1"lvo): I e(k) <0, (1.13)

lkl<LF,d

1.
N'r t

where ńo is a Fermi momentum in that state. The quantities q" in (1.12) are the dis-

conti:ruities in the momentum distributions function at the Fermi surface of correlated

system and are given by

(ła;-w-"ą ri I vr16;-;i)'Ż
(1.14)a": n"(1 - n")

So, the expression (1.12) still needs to be minimized with respect to 4 . Note, that

since 0 ś q ś n,,nł, foro: +1, q" ś 1(s":1onlyif u:0). Thus, a1ong

rvith decrease of doubly occupied sites the kinetic term is reduced through the factor

q", which means that the effective electron hopping turns out to be energetically

unfavorabie. One of the most spectacuJar feature of the Gutzwiller solution was

discussed by Brinkman and Rice [12]. They note that for a half-filled band (n - 1),

flr : frL and q, : O, : q, (i.e. in the paramagnetic state) we have that

q-8a(1-2a). (1.15)

Next, minimizing the ground state enerry (1.12) with respect to 4 they obtained the

set of predictions:

(1.16)

(1.17)

(1.18)

q

Łc
N

t / a/\
a ('- al'
'' (t)' ,

,(-t)",
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whele ą : 8 | €- l. Tbńs clearly mea'rrs that at criticaI lalue U: Ę, the probability

4 of double occupancy r,'anishes. At that point there is no contribution to the energy

comirg from the kinetic enerry as well as fuom the interaction term. This indicates

that the localization of the pańicles and consequently the metal-insu]ator transition

takes place. The above authors also showed that both the effective mass ratio rn*/rn,

and spin susceptibility x", are enhanced as U _-' Ę, nameiy

m,

* L - \ u")-
(1.1e)

and

:1:
q

^. -^t. .. 1 (tt+)z
^ś-P\uFl l _(#;)' (1-Up(€F))(l +&) (1.20)

Here p(eo) is the band structure density of states at the Fermi energy 1evel. Thus as

U approacbes Ę both, the susceptibility and effective mass have a divergent factor

1lę - (&)'). The divergence of 1" as U "+ U" indicates that we approach a true

phase trarsition.

Much efforŁ has been undeńaken to generalize a.rrd simpIify the Gutzwiller scheme.

Ogarva et. al. [13] showed that the approximation made by Gutzwiller concerns the

dependence of the energy expectation va.lues on spins configuration of the rvave func-

tion. In other words, it was shown that Gutzwiller results for the kinetic energy may

be reprocluced if the nearest neighbor configuration are specified but all other spatial

correlations are neglected. Razafimandimby [14] showecl that a simple factorization

procedure equivalent to one-site cluster expansion reproduce the Gutzwiller's result

for the grould state energy i,n the case of paramagnetic, balf-filled case. It was also

sbown [14] that in the ca-se of twosite cluster expansion Gutzwiller's results becomes
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exact in the asymptotic limit of infnite lattice dimensionality, rvhile in three dimen-

sions gives only very small corrections. In one-dimension case I(aplan, Horsh and

Fulde [15] showed that the ground state energy when calculated exactly due to the

Gutzwiller ansatz, Ę.(1.9), in the limit U >> ź yields E: at2 f U, which is coher-

ent with the result obtained by Lieb an Wu [9]. Horvever, due to the earlier paper of

Bomer and Fisher [16] the value of the coefficient a js too small compared with the

exact result. Thus, Kaplan et al. [15] removed this discrepancy by introducing sec-

ond m.riationa] paJameter. Vulovió and Abrahams [17] introduced a very transparent

combinatorical technique that allow to obtain easily rvell known results for the Hub-

bard model, as n-ell as it can be extended to approach the ground state energy for the

Anderson iattice model. Finally, Vollhardt [18] has provided a very lucid discussion

devoted to the Gutzwiller approach and redefined it in the Fermi-Iiquid context.

The most elementary way of recovering the Gutzwiller's results fol tbe case of

ha,lf-fi.lled band is shown by Spalek et al. [19]. They assumed that the expectation

value of the groued state enerry per lattice site in the pa,r.amagnetic case is

ff : aęr1. *ur, (1.21)

where 4 _1 nl|I1ą L > is a findamental para.meter that must be determined rariation-

ally by calcu1ating the balance between the khetic and potential energy term. Ó(4) is

a fimction that describes a motion of electrons exposed to 'on-site' Coulomb repulsion

force. In order to determine Ó(4) it was assumed that it may be approximated by

the Taylor expansion termilated at the second order term, namely

o(ł): 
"fo ł fi'n]_ fzn. (1.22)
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The coefficients fo, fr, fz can be determined due to the boundary conditions for the

limit cases U :0 a.nd 4 :0. Then, by minimizing the energy (1.21) rvith respect to 4

one obtains already weli known results (1.16),(1.17)'(1.18). Although the assumption

(1.22), concerning very simplified structure of the O(a) function in general may lead

to quantitatively incorrect results, at teast in the region of very small ? one may

expect the ralidity of a-ssumption made, as one may really observe so- On the other

hand, such a simple scheme demonstrating the metal-imulator transition realizes that

4 pla5 s r-be role of reler"anL order parameter.

Apart &'om the discussion of Brhkman and Rice, one carl make a:n additionai

observz.tiorrs based on the Gutzwiller's solution. Namely, Spałek et al. [20] assumed

that one can introduce individual quasiparticle states, which have energy

Eł : r(ł)e ł. (1.23)

So fai Ó(4) played tb.e role of so called 'band narrowing factor'. This terminology

is quite c1ear due to formulas (1'21) and (1.1B). In the limit Ó _-- 0 an effective con-

tribution foom the hopping (kineiic) term vanishes, so the metallic phase disappears

also. Obviously, the band enerry (1.18) can be obtained by usirg the relation (1.23)

as a defi-nition of renormalized band spectrum. However, one needs to realize that

no\\: one carr reinterpret the overall system behavior starting from the concept of qua-

siparticles as particles with renormalized energy. Such a rehterpretation determines

automatically the ,,'alue of band energy for non-zero temperature (7 > 0) regime,

namely

Ę:y ał*.,rv i;
(1.24)
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where

ę(Er u)/kr a11
(1.25)

as these quasipańicles aJe assumed to obey the Fermi-Dirar statistics with the dis-

tribution function -fu". F\rthermore, such a description of the interaction shows the

principal difference with respect to the l-^andau Fermi-liquid theory. Here Lhe effec-

tive mass is determined by self-consistent, rariational ca.lculations. For paramagnetic

half-filled case @ coincides with q", trq. (1.14). ln general, the discontinuities ir the

single-pańicle occupation number at the Fermi surface can be easily re]atecl to the

quasiparticle, spin - dependenź, effective mass m}, oamely through the relation

Tn6

m
1

q"' (1.26)

The idea of the renormalized quasiparŁic]e mass due to the e]ectron correlations

appea,rs in a natural manner in the more recent, fulctional integral approach, pro_

posed by Kotliar and Ruckenstein 121]. This theoretical formulation will be discussed

in details il the next chapter and is one of the main features of tbńs thesis.

1.5 The airn and the scope of the thesis

The Hubbard model describes electronic states of a simple narrorv band system of

interacting fermions. As outlined above, the model provides the two opposite limit

cases: firsb, the so-called meta"llic limit and second, the [mit of strong correlations,

whic}r in the case the ha}f fllled band, as rł-ell as lor U ż Ę teads to the Mott

iocalization tramition. The metallic state is the termed the almost localized Fermi
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liquid, by we understand the fermion system which is in the metallic phase but close

to the border of the loca[zation. In the case close but away from the half filling,

i.e. for n I 1, the localization does not occur, and we say tbat we dea.l then with

the a]nost localized fermions. The ca]l 'a.lmost localized' cł'n be better ulderstood

in the light of the quasipańicle interpretation of the Hubbard model. Ęs.(1.19) or

(1.26) shows that the effective mass of the quasipańicles provides a natural measule

of the effective fermion interartion. The more healy are the quasiparticle's masses

the lower is the free energy contribution coming from the kinetic part and the system

gets closer 1o 1hę ]6galization threshold' At the loca]ization boundary the effective

mass is divergent.

The thesis concerns mably the mean fie1d solution of the Hubbard model in the

paramagnetic and antiferromagnetic pbases, as of magnitude of interaction and for

al arbitra.ry band ńlling. Additionaily, rve describe metamagnetism for an a.rbitrary

band fliling and a transition to a non-Fermi liquid in an applied magnetic field. We

start from the brief theoretical introduction (Chapter 2) in which we summarize the

saddle point approximation as rł'ell as the representation of the fermionic degrees of

freedom by the Grassmann variables.

The mean field solutions discussed in the thesis is formulated stańfug fr'om the

auxiliary-field method, the so called sLave-boson method, rvhich applied to the Hub-

bard model allows to ebminate exactly the fermionic degtees of freedom via functional

htegration over the Grassmam łaniables with the relatiors between the Fo&-space

representation for fermions and bosons.

In Chapter 4, we show horv the mathematical tools described ił Chapters 2 and
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3 a1low to derive the system of the self-consistent mean,field equations in an applied

magnetic field Ę describing the average number of doubly occupied sites in the form

of the algebraic equation with the palametels u : U l2W, n, and ń : pBH"lW.

This in turn allon's to ilh:strate easily the dependence of rzrious physical quantities

on the mentioned parameters. Na.:crely, in Chapter 5, we discuss the concept of

the spin-dependent effective mass ard related to it de Haas-van Aiphen oscillations

rvith quantum beats, as vell to determine the nonlinear molecular field induced by

electronic correlations.

The metal-insulator transition (discussed ea.rlier) may occur, of course, only for

the half-filled band case n : 1. Ho$'ever, in the applied fleld and, for n f l,one

may encounter another type of the fermionic quantum liquid, which appears at the

metamagnetic point, n'hen the Femni liquid of almost localized fermions becomes

unstable. This Fermi liquid instability against, the socalled statistical spin liquid is

discussed in Chapter 6.

Finally, in the Chapter 7, we discuss in detail the mean field solution of the Hub

bard model in the antiferromagnetic phase. In pańiculal, we determine a crossover

from the Slater to lr{ott Hubbard picture of an anti,ferromagnetic insulator. We also

discuss the prhcipal cha-racteristics ofthat phase such as the Slater gap, the magnetic

moment and the grou-nd state energy.

As said above, the present ttresis is based on the mean-fie1d slav+boson picture

of corre]ated narrow-bald electron_s. The main emphasis is put on the quasipańicle

picture of tbe resuitant Fermi liquid and its instabilities agaimt the Mott localized

state (for n - 1) or against the correlated spin 1iquid (for n l1). \ĄIe offer a cohelent
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pictue of almost localized fermions not elaborated in detail in the literature. The

results of the thesis have been published or submitted for publication as a series of

papers [22-27].
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Chapter 2

trath integration method in

quanturn statistical rnechanics

One of the most seriorx problem in the theoretical physics is the description of the

interactilg quantum many-body systems and their phase transitions. In order to

describe many_body problems one needs to solve N-pańicle Schrodinger equation

(1.1). As it was already mentioned in Chapter 1, the problem is usually impossible

to tackle this n-ay. A new formulation of that problem is provided by tb,e second

qualtlzation method combined with the fulctional integration. This methods will

be used tbrough this thesis a:rd follows the book by J.W. Negele and H. Orland [1].

Below we sumnarize briefly the necessary tools and afterwa.rds.

27
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2.4 Coherent state representation for bosons

The main purpose of introducilg the coherent states is to obtain the analy'tical ex-

pressions for the transition a.rnplitudes of many-pańic1e system in the situation x'hen

operators are written in the second quantized form. The coherent siate ll > is defiled

as a vector in the Fock space, which is an eigenvector ofthe a.nnihilation operator. It

is defined by rhe following expalsion

lo >: Q, r r''.n oo...|nĄ..'nkp... (2.1)

lł' >,

The

Here |n1....n1o... > denotes a norma]ized state with n;,, pańicles in the state

n6" pańicles in state |A2 >, etc.; {lłn >} is on+particle ońhonorma] basis.

summation in (Z.l) nms overall possible values of 11k,,...flk,,...

Since the state In1....n6o... > erpressed in the second quantized form is

>]

the coefEcients ó- - in

nition, the factorization of

trq.(2.1)

dr,*,...,..-...

r-1 " r;- ,

t! l Lkr: y ,ukp'
(2.3)

where /1

limit for

is the eigemeJue belonging

particle occupation mrmber

...l0 >: "ł"'i1o ', (2.4)

to aE. In the case of bosons, when there is no

ił a given state, i.e. 0 ( np'...n1o'.. ( co, the

are related

yields

iał')

so the state (2.1) may be rewritten in the form

lo >:

to the single particle basis. By

(to")"."

(Ż.2)

defi-
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relation

a6|Q ;: dłlÓ >, (2.5)

is authomatica]ły obeyed. The coefficient Ón*,...,.oo... are complex number, or equiva-

lently, each of the d.* cornmute rvith one another, i.e.

w",,1",) _: o. (2.6)

In the case rvhen expansion (2.1) ;s to represent a fermion state the situation is more

complicated. Namely, let us assume that rve have succeeded in constructing such a

state |Ó >, rvhich fulfills the condition (2.5). Since the operator a1 is now the fermion

annihilation operator < Ó |o7"a1|r >: 0 : Ó?. Thus if @u is different from zero, it

camot be any longer an ordilary number. The coefficients d,,o become now so-ca}led,

Grassmann variables, i.e. they obey the anticommutation rule

W,,,Ó-,1*: o'

Their proper-ties are going to be discussed next.

2.2 Grassrnann wariables

The anticommuting variables, called the Grassmann variables, are defi:red by a set of

generators {ło}' k : 1',2,...,n, which anticorrrmute with each other, i.e.

Trrlt ł TLT* :0.

For the particuJsr case I : ,t we have that

(2.7)

n7:0, (2.8)
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which asseńs that there is no two particles carryilg the same quantum number .b in

the coherent state |Ó >'

The important thing is that in order to use the Grassmann algebra there is no

need to know the concrete ana\.'tic representation for generators {łn}. It is su_fficient

to know general algebraic ru1es, by which these anticommuting entities are governed.

The differentiation and integration nith these numbers are pure mathematical con-

structions and along with above mentioned ruJes may be vierved as a set of definitions.

The most important results concerning the Grassmann numbers a.re listed below.

A generator the ?i is ca.lled to be conjugated with a given generator 46 , if for any

complex mrmber c occurs

\cl]x ) : c 1]ł, (2 s)

and for any product of generators

\Ę*,Tr,.. -7] l,- ) : Ęł-...\ *,T *,. (2.10)

The last rule means that the Grassmann conjugation is analogous to Hermitian con-

jugation.

Due to the Eq. (2.8) any fulction defined on this algebra must be a liner function,

i.e.

F(ł) :ą+c'ł- (2.1r)

Similarly, an operator erlrressed in the fermion coherent state representation will be

a fu.:rction of 4* and 4 which must have the form

A(n-,rt) : cl l ĄT ł czT* ł ctzn*T. (2.IŻ)
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A derivative from a Grassmann variable function is identical with derivative of

complex r"ariable function. The exception is the derilative operator $ must act on

lariable 4 directly, otherwise ł has to be alticommuted tłuough ulltil it is adjacent

to $. For instance:

(2.13)

In the case of integration there is no analog with the Riemann integral for ordi-

na.rx variables. However there is a correspondence to the integration over an exact

differential form of the function that vanishes at in6nity. Such an integral is simple

equal to zero. Thus one define the definite Grassmann htegral

(2.14)

since 1 is derivative of 4, and

fto'rt: ftr-nnrt: -n.

I 0,, :,,

I a,,:,,

(2.15)

since 4 is not a derir.ative of any Grassmann furction. trqs. (2.1a) and (2.1b) holds

the same for conjugated variables and like in Eq.(2.13), in order to apply (2.15), one

has to articonrmute the variable 4 as required to bring it next to d4.

The i:rtegration rules performed above leads to the useful formula for the Gaussian

integral. Name1y, if młi is a positive Hermitian matrix, then

lnor;,r,"

This property is crucial for fuńher analysis performed in Chapter 3.

(2.16)



2.3 Ferrnion coherent states

Due to trq.(2.1), any fermion state llp > is a vector of a generalized Fock space since

the expansion coefficients are now Grassmann numbers. ft is defined

lÓr.>: " 
Ęn-"*lo 

':LI ('- Ęrol)l0 > . (2.17)
ł

In orcler to operate on expressions containing combinations of Grassmann łariables

and creation and anihilation operators, as well as to obtail the results analogous to

those obtahed for bosons one needs additionally to assume that the following relations

are fulfilled

W,Ąu:0, (2.18)

and

6ó)t -4n",

n'here Ę is any Grassmam variable out of {1,4-} and 6 is

The propeńies of Grassmann algebra outlined above

the fermion coherent state provides

(2.1e)

any operator out of {o, ot}.

along 'ivith the definition of

o1|lp 1: łłlÓp >,

and simila.rly for tbe adjoint of the coherent state is

(2.20)

< a.loi :< Ór'lłi. (2.21)

The scalar product of two coherent states, lilie in the boson case, tras the form

< or l r'" ,: uĘ'L'L (2.22)
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Relations (2.20)- (2.22) shows that a matrix element of a.o normal-ordered operator

A(at , a) between coherent state is

< op | .4(o|, o6) l oi >: .Ę'i'L 'ą(n-,ą).

It can be shown that the uńĘ operator in the physical Fermion Fock space,

written in the form of coherent states is

(2.23)

(2.24)

which shows the overcompletness of coherent states in the Fock space, since due to

the choice of the state | Óp > is not ulique. Thus Eq.(2.24) a,llows to expless any

Fock space vector l{rp > in the form

,: I rydą1dr7r"-F'i'L 
l lr >< Ó" l,

lv. >- ! norior*"-P"",!,@)lrrr, (2.25)

where

,!@-):< Ó"l!!r, >, (2.26)

is the coherent state representation of the state I Vp > .

Finally, if {ln >} is a complete set of states in the Fock space, then the trace of

an operator ,4 takes the form

TrA : l<nlAln>

(2.27)

The sign (-) that appears in the matrix element in the }nd equation comes from the

fact that the states lQp > contains Grassmann numbers, so replacing by positions

: 
I ;tdąidąoe-F'i'o 

I.'lo. >< @p|l'|n >

! Iorł-orr"-Daił* . -oFl.A|oF >.
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those two matrix elements leads to the change il sign of the whole expression.. Con-

sequently, this will lead to antiperiodic bouldary conditions, which fermion states

have to obey when a partition function is calculated in the form of Feynman path

integral.

The fermion coherent states are not contained in the fermion Fock space and, since

they a"re not physically observed, there is no correspondence between them and any

classical fieid. For instance, the expectation lalue for the number operator expressed

in terms of Grassmann mrmbers is

(2.28)

so, the concept of the average number of particles in a fermion coherent state is

meaningless. However, fermion coherent states are very useful in formaliy unifying

many-fermion and many-boson problerrs. Moreover, the path integral method dis-

cussed nexb, allorvs to get rid of the fermion degrees of freedom in cases rvhen a

Hamiltonian is a bilinea.r form in Grassmann variables. Thus, one is left onlv rvith

the boson fields, rvhich supply the final, physicd resu-Its for condensed quantum states

arrd their dynamic propeńies.

2.4 F\rnctional integral representation of the par-

tition function

Relation (2.27) altovs to write the many-particle partition function in the form

< ÓrlNl@r ) s-r *_<E;T6F > : Ż'-Ton*'

Z :Tre p(fr*pŃ) : I ryÓ;Ó,e-ĘÓ;r'< 
4o|e_P(E-la)16 ', (2.2s)



where ( : 1(,1) for bosons (fermions). of coruse, in the latter case the integration

r,'ariables ałe the Grassmann numbers. The matrix element in trq. (2.29) may be

viewd as the imaginary-time transition amplitude, however, between the states with

imposed periodic bourdary conditions for bosons

lr,u -- Ór,o,

or antiperiodic boundary conditions in the case for fermions

(2.30)

Óq,u _ -Óq,o',

where {o,o (do,1a) denotes the appropriate field variable taken at the initial (final),

imagina,ry-time moment r :0 (r : M)

Expressing this transition amplitude as the Feynman path integral, one firds that

the resulling parlition function is

Z :,bŁ l y+f;aę;,oa6,,o"_",*'r,, (2.31)

(2.32)

włrere

s@'r) . (ł a;,,(Ó'L-::!''!! - u<o,,) v a(Ol,r, sd,,r))

*' ś (r ^' 
( Óq'* - Ó'ł-t - "^ 

\ \
-- \; o;.- (=T - uÓł'tł ) r }1(dił' l,,o_') 

) 
'

Thus jl the functionai-intergral notation the pańition frrnction ta]<es the form

_ f . .., ;'ia,[r o; il) (h & _p)dq (l) +H(d; (f )óe (f ))]
Z - .l olÓ;t )ł,u))'

Óq(B):ślq(0)

(2.33)

The correct eraluation of expressions (2.31) or (2.33) is done by performbg the

path integral over the action '9 discretesised with respect to M imaginary-time steps
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and then taking the limit M -+ co. However, the Hubbard model discussed in the

thesis is a purely fermionic model. The partition function (2.33) performed in this

case wil] contain only the Grassmann rłariabIes, which due to the Hubbard interaction

term can not be integrated out. Thus, the next chapter is devoted to another Fock-

space representation, called the slave-bosons representation, in which by introducing

new Bose and Fermi auxiliary fields, the Hubbard model becomes exactly integrable

over the fermion degrees of fieedom. The resultant expression in Bose fields is still

to be evaluated by one of the many-body technique. In the simplest case of the

saddle-point approximation the physical fuee energy is evaluated by minimization of

the corresponding Bose functional with respect to the ampl.itudes of the condensed

fielrls.
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Chapter 3

Slave-boson representation of the

Hubbard rnodel

3.1 Representation of Kotliar and Ruckenstein

The Hubbard Hamiltonian (t.3), ls

a :! ti1c|,c5o + U' 
"|r"',,.!,łr,ijo ź

lQ)on=lo),

39

where the Hilbert space 71, is a tensor product of Hilbert spaces Tli, namely, tl :

11t $Hz 8..., where 14 can describe up to four electron; the corresponding Fock-

states js assigned to every lattice site i contains the configuration: unoccupied, singly

occupied with spin up or down, and doubly occupied. This can be written briefly as

Ę : {l0')oł' l T')o,ł.' l J')o,r, l tJ')on}, *h"."

(3.1)

(3.2)
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is the state with no electrons (empty site), and

l l')oł

I l,)on

l1l')on

"j,l 
0) ,

"1,10),

"j,"1,10;.

\Ó.J/

(3.4)

(3.5)

The four-fermion term appearing in (3.1) causes that the integration over Grassmann

r''ariab1es, when determining pańition fulction, cannot be easily evduated. Thus, the

method of the furctional integration can not be applied directly in this case. one

needs to find another Fock-space representation, in rvhich a.11 the fermion degrees of

freedom can be exactly integrated out .

In order to construct such a representation, }et rrs assume tłrat the physical

plocesses due to the electron_electron interaction can be described irr the Hi]beń

space rather then tl. Name1y, the new Hilbeń space71', with the vacuum state |tloc),

w.ill contain fermionic as well bosonic degrees of fteedom. Let us denote any state

of the original Fock representation (3.2)-(3.5) as lph(n);)' where n - 0, lt' lt,2, cor-

responds to the state with a di-fferent fermion occupation number . similarly, let us

denote by lsb(n);) an n-fermion state in the new representation. since our main aim

is to ela]uate the parŁition fulclion Z, it is sdficient to demand the equivalence of

both representation in the sense of equality of corresponding matrix elements of the

Hubbard Ha,rriiltonian, evaluated between tbe corresponding states of both represen-

tations, namely

(ph(n);|H|ph(m);) : (sb(n)1|Ę6|sb(rn)i), (3'6)

where 11 is simplv the Hubbard Harniltonian in the form (3.1)' and Ąa denotes the
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Hubbard Hamiltonian written il the new representation that belongs to tl'.

In the spirit of representations equivalence condition (3.6), Kotliar and Ruck-

enstei.n proposed the representation in wbjch, to each of the four different fermion

physical states we ascribe a different Bose field' In other words, we make the following

mapping:

lou)on

I to)on

I Jo)on

Itlu;on

If one neglect Bose fie1ds operators: 
"I 

,płr,pI oI di, the resulting fermion representa-

tion is identical with the initial one (3.3)-(3.5). Howevet, since the physical state is

represented by a combination of fermions and boson operatorą the quantities f;., /",

are pseudofermion fields and the fields e,po, ar'd d a.r'e auxiliary Bose fieLds. This is the

Kotiiar arrd Ruckenstein [1] representat|on. Lr orde-.- to expless the lłubbard Hamil-

tonian in the new representation, one derives the following correspondence between

the operators

^+ ^, -+ - ^z).zpJ;i"Jp ldr

fł"f," fo,
wżth źi, : etipł, + pIiud'i, (s.11)

and

I or)"0 : e! | aac) ,

l ln)"o : fł,n!, | ,o"1 ,

l Ju)"o: fł,nl,l r"r1 ,

l tln)"o : fł,f}'a! 1""ą .

(3.7)

(3.8)

(3.e)

(3.10)

i.+ i,

The above relations

siates (3.7)- (3.10).

n;rni, --+ d'!fl'r'

are easy to proof assuming

The Hubbard Hamiltonian

(3.12)

that we consider only the physical

written in the l(otlia.r-Ruckenstein
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representation takes then the form

H",:I t,lĄ,Żi"fł,fi" +ti 

' 
d!d,* t,\) ił,l*, (3.13)

where o : il' t}. So, the new Hami]tonian Ę6 does not contain four_fermion oper_

ator term any longer. Instead, it contains fermion-boson interaction il the hopping

parf . What is more important, (3.13) represents a properly defiled field theoretical

model of interacting fields for an arbitrary value of U.

By replacing the Hilbeń space }/ of fermions, b3. the Hilbert space fu7of pseudo

fermions and auxiliary bosons, we have introduced additionai states, rvhich are not

physica.l. In order to guaxal1tee the physical 6ę2Lning oi'}1' one neecis to impose

constraints. To determi:re thcse constraints one needs to spcci{y the cha.r.acteristic

features of the representation (3.7)-(3.10). First, each state on site i is occupied by

one boson only, rvhich may be expressed as a completeness condition

eł.eo + piurpą + pl,pn, + d'Ido 1 : 0. (3.14)

Next, with each single fermion fie1d /" we associate one boson field p". On the

other hand, when site ż is doub1y occupied by spin up and dowrr fermiorrs' .we associate

with them one spinless d boson. These conditions are insured by the two more

constraints, na"anely for o : {1, t} we have

fłof* _ płup,,' d!d, : o. (3.1s)

The number of htroduced additional bosonic fields is four. On the other hand

there a.re only three conśraints, so one has an additiona.l degree of foeedom left. Thus,
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the form of the Hamiltonian (3.13) ls not udque. Any transformation defined as

ż;o ' + z;o : Utź;'"V", (3.16)

łvhich does not change the eigen'alues and eigenvectors of the Z" ieads to the equila-

lent Ha.niltonian and the same enerry spectrum as long as the constraints are treated

exacily. Effectively, one is lefb with one boson field which has to be determined vari-

ationally. \\'e chose the fleld d for that prupose.

The mean-field approximation rxed in the following satisfies the constraints only

on average and leads to different lesults, depending on the specia] choice of ąo.Irt

other words, the transformation (3.16), which may be called the gauge transformation

for- the Hubbard model in the slav+boson representation, makes possible choosing the

$ound state plopeńies and neń to calculate quantum fluctuations around that state.

The special choice of z;o made by Kotliar and Ruckerstein [1] will be discussed in the

next section. In fact, if one evaluate all quantum corrections it is assumed that the

final result is independent on the choice of z;o.

In contrast to the originat Fock representation, Eqs. (3.2)-(3.5), the slave-boson

r-epresentation (3.7)-(3.10), does not express the spin-rotation invaliance of the Hub-

bard Hamiltonian explicitly. In order to include this syrnrnetry Li et al [2] introduced

the generalized, spin-rotation inva.riant representation. In this representation the

single e1ectron state ]oź > transforrrrs as SU(2) spinor and is defiled as

l"t':I p!,,,fi.,1,"">,

tubere p!",, is tsvo-component Bose fields matrix deflned as a linear combination of

urity matrix (16) multiplied by a scala.r boson fie1d po;, and the Pauli matrixes r :

(3.17)
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(ły,r2,t3) mu1tiplied respectively by three coordinates of the vector boson p; :

(prl, ?łl, pst), namely

piodl: poż (.o)"", +p''(r)"",. (3.18)

Spalek et a-l [3] showed that the fuldamental commutation relations for the Bose fie1ds

(3.18) lead authomaticaly to the properly defined constraints. However, we choose

the l{otliar-Ruckenstein representation as simpler. Both representations lead to the

same results at the mean Held level [4].

3.2 FYee-energr functional in the saddle-point ap-

proximation

In order to calculate the partition fulction Z for Łhe Hubbard Hamiltonian (3.13)

one needs to express z as a functional integral over coherent states of Fermi and

Bose fie1ds. The constraints (3.14)-(3.1b) commute with the Ha"rniltonian (3.r3) so,

the physical Hilbert space is preserved under time evolution. The constraints are

thus enforced at each lattice site by time-independent Lagrange mr:ltipliers denoted

* tr(t), 1Q), ard AP) . The partition function can be thus {.r.il;fen as

r ,^. -10,,.,,,, - J ,V:r.SDkIelDLpt,p.)Dldidlil 1ar{r)11ar{,r1.-J""'""' (3 le)

where the Lagrangian is

/^
L(r) :' l,";r'l j-e,(.)+ Y' (o!,r,lŁr,"(.1) r altl ( !-+u) a,ra)?\...dr " ?\.-',dr,'.',)',',\t,,' )-,,',)

ł \- /i.. rll7i.f:"\+ I (rŁt"l (: _ r- "1J") /,"(')) +' 1- \''JJż"'i" ./ 
- 

\ \ UT t 1ij,r / /
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The chemical potential p is adjusted to fix the average occupation mrmber n. (the

t6d fflling) at earh site. Additionally, the electron enerry in tbe external magnetic

field H" was included tbrough the Zeeman term: -p3SiH" : -oH, (o : t1),

where ps is Bobr magneton. This is because we can express the z-component of

the spin operator as s; : ł (lłi', -lł.ń,) - } (ll,a, -rl,ł,), as can be seen

explicitly fro the constraint (3.15).

By using the standard rules for integration over the Grassmann variabies /i,7

(cf. Eq. (2.16)), one reexpresses Z ir terrns of the efiective Lagrangian includhg

exclusively Bose fields, namely

B

z : I ny"t 
"1n ln!r,] Dffi,p,lo1atal fI 1a.rl')l t as!!1"- 

I"d"'' ?), 
(B-2i)

J 
J sf 

id

where

* ł ^l" ("it 
r)eĄr)*D (rl"(')ł,"t"l) + alt"la,1") - r)

* ł ^l:, 
(tŁ.")l,"@ - pl(,)pn,(,) - aj1r;a,1r;) .

L.rr?) : r 
["lt"l 

(*q * {',) ",(")* ł (oi"ł'l ($ * {',

l )- lalr'l ( Ł * r+ l!')- )- .l!3l) a,1,,; _ .lj')l'7 1 \o' '; / )

*r,r^|Q,,4.r,.) + a,, (* _, - o H^ ł^g')]

(3.20)

(3'Ż2)

- ^f')*"r.r)]

In the saddle point approximation all Bose fi.elds and the Lagrange multipliers

are talen to be independent of spare and time. The special choice of Z" (3.16) in

this approximation unfońuaately leads to the incorrect result il the metallic limit

(U -+ 0). Narnely, in this limit and for the half-filled case (n : 1), the average value of
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Bose fields are respectively e2 : p?: p1 : d2 : | . Thus .,4.2," >: I rather then

uniĘ as shou]d fol]ow from the expression (3.1)' Therefore, in the spirit of Gutzwiller

solution, I{otliar and Ruckenstein [1] proposed the other choice of 7;", namely

1

(3.23)
I-pLpo--ałao

which akeady leads to the comect results in the case of metallic (U : 0) as well

atomic (W :0) Iimits.

Finally, the saddle-point foee energy functional F : NkBTttZ * 7_r1y' takes the

form

)(1)(1_,, -p? ń-o,)_ Drf)b3 +'d2)+1'tn., (3.24)

where qo : kl."i.), and p(e) is the density of states for ba.re electrons.

The importance ofthe factor q" derives from the fact that at the mean field level it

describes the quasiparticle properties due to the electron correlations.. lbrthermore,

g" strictly corresponds to the band narrowi.g factor a(r7) (1.23), discussed by spalek

[5], now placed il tbe foamework of quantum field theory. In the neń chapter we

show that the saddle-poht approximation is equivalent to the Gutzwiller solutio.

in the paramagnetic phase. Horł'ever' this new so1ution contains aiso features going

beyond the original Gutzwiller results.

1

F 
-/_ : -ksT ) I dep(e)h(t+c'ptqoE-tJ oht^;')\ +ud2lf 
-./ 

\ /

t-p!"p1,-d!d;
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Chapter 4

Mean-field solution for the

Hubbard model within the

slave-boson approach

The stańing poht is tbe functional (3.24). In the saddle.point 'approximation the

quasiparticle-energy renormalization factor q" ir the uniformly polarized state takes

the form

e2p2, + &fl+zedp-p"
(L-dr-f")o-er-*)' (4.1)
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where e,po and d are now the rea] variables still to be detergńned' It is convenient

to introduce new iłariables which we denote as pŻ'm'\o and p^'defined as

zp'Ż:P?,+fr ,

2)o: .\|'?) + )l'z),

which gives

pz,:f +f,om,

Af):)o-o8.,.

The firnctional (3.24) wriiten again in the new vałiables takes the form

F : Ud, + ur_ Ę | ro(r a ę-9(eotu_ł1\o-d(H"_p-\))
N - "g lćl9 

N ę

_I(1) (1 _ 
", 

_,"p^- _ dr)

_{^o - 9^)@' +i + Ą- ()o + 0*)@' -T * ol'

(4.2)

(4.3)

(4.4)

(4.6)

vitb q" defippd n-ow as

(4.5)

So, the free energy functional depends on eight parameters: {)(i)' '\6'p' rn 
' 
0*'e'd'11}

: {c;},which are determined from the saddle point equations: 0Fl0rą: Q' i _

1, "-r 8-

The minimization of the free-enerry functional with respect to tr(1) and )o yields

L !!-:e2 +2p2 +d2 - L -0,N a.\(1)

and

i#: ,.1+nr-z(pz+a\:0, (4.7)



where

is the average number of particles with spin o per lattice site, and the quasipańicle

energy is

Euo : Qo€u+ )'o - o(H" - B). (4.e)

Note that the quantity H" - B^ is the effective magnetic field acting on the spin

degrees of freedom. It is a molecular field. Similarly, the conditions for p and the

field B- yields

TAF
(4.10)Nop

' -nł n' ł n:0',

"":*'rrĘ*] _ = '}' 
l(Ek"),

k tr \ '-.r'r k
(4.8)

'In -- nt - n!.

The functiona.l (4.4) takes then simplified form

L : -Ł:'\- r" (l I e' 
p(b*" u)) l ua'+ (p ),g)nłrnp^,N N l'-\' - )''" '\t"

kd

and

So, rn is the magnetic moment per site.

Ęs. (a.6)-(a.11) can be written agaia in the simplified form using the obtained

relations

(4.11)

(4.r2)

(4.13)

(4.14)

(4.15)

(4.16)
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where q, factor included in the quasiparticle energy (4.9) is now written as

4(t-Ą(1_n l'2ł) lBł@,0 _n)+da)(tł-a,)' T)
a": (4.1i)

In the lov-temperature regime the functional (4.16) can be expressed in terms of

effective band energr and entropy contributions. Explicitly

F Ep rrl e
N- N -'"'

where the band energy per lattice site is

E" I 
- 

- / t \

ł:łLE*( |+Ud2r(p-)q)n'lmB^, (4.19)
kd 'el\Lt"-P)+ L/

and the entropy
-w

' 
:/* 

' 
[t (ą")r''r (Ę") 

" (l f (Ą"))r" (r - r (E-"))] . (4 20)

The expression (4.16) can be simplified fuńher' By introducing the spin-dependent

chemical potentiaJ

|r"= IrG) łopQ) (p-)s) +o(H,- B), o:ŁI, (4.21)

the band energy (4.19) can be n-ritten as

Es 1,.-- / I \
ł - ł )_ (c".u _l") (7o;;;;ra1)+ua'-LLL(1\n_(H _ p'"))^

ko

: o r Ex,f"Ex,) _ Hm ł(Jdz 1rrt)r l pQl- - F,r, _ 1l,n,. (Ą.22)
ko

Here,E1o = qdrk, is now an effective quasipa.riicle energy ald due to the dependence

of the spin of p., the Fermi-Dirac distribution function /" is norv a)so spin-dependent,

namely

1+ t.\Jo\.J - epc_p") +l

(4.18)

("(z n) - mz) + o (2rn(7 - n))

(4.23)



One can easily check that due to the Eqs. (4.21) and (a.1a) bst four terrns n (4.22)

carlcels out so the foee enerry fimctional fually takes the transparent form

tr_
; -) Eu"l,@u")+Ud2 - H.łn TS.
lv

(4.24)

Note that f (Eó = f,(Eo"),so the entropy term is authomaticaly expressed through

the spin-dependent Fermi-Dirac furction (4. 23) -

Expression (4.24) essentially represents the ftee energy for noniateracting fermi-

ons, witłr quasipańicle energies .EL" subjected to sclf-consistently adjusted fields (i'e.,

they are obtained via the minimization with respect to d and nt). Indeed, the pma-

meters pl - ): /'(1) arrd Ę * B.,: p(2), appeering in t'he chemiea} potential p; ean

be expressed as a fulctions of the magnetiration rn and the average pariicle number

n, by solving the system of equations (4,14) and (4,15), which can be written again

in explicit form

(4.25)

(4.26)* : +Ir'(p*,)-* xń(Eu,).
kk

The Eqs. (4.24), (4.25),(4.26) along ńth the conditions

lAF
I\ OA

(4.27)

anrl

7aF
(4.28)

N )rn
:0,

create a closed system of aigebraic equati'ons. The solution of that system allows to

express the magnetization rn, the probability of double occupaDcy d, the molecula.r



field p-, as vrell as q", as the functions of tbree para.rreters U., Ho arrd n. However,

there a^re still two parameters left, na.rrely f and e, for which the fre+energy minimum

conditions were not used so fa,r. These two additional ąuations, a}ong with the

previously obtained results, allow to determine tbe proper chemical potential p of the

system.

By minimizing the free energ' functionat (4.4) w-ith respect to p2 and e fields, one

obtaias respectively

.L

rt# :; ,ur"(s,,o)#- 2xi) - 2.\o :6,

and

IAF( A^

N a. 
:t 

'*l'k'uu)# - 21G)s: o'
ko

By eraluating of .\(1) from the Eq. (a.29) and substituting it to Eq.

the expression for )0, namely

(4.2e)

(4.30)

(4.30) one obtains

(4,31)

Since pr(t) defiaed in Eq. (a.21) is assrimed to be alrea.dy a function of known para=

meters, the final formula for the chemical potential is

). :' ęu l.(s,,u)ź (# _ Ł*)

t!: p(l)+T.*r(n".*)ł lr* Ż*) .=rr_r*, 
",=r_*] 

. (4.32)

In the next section we show that the above system of equations may be solved

exactly in the oase when T _ 0 and for the constant densiĘ of states.
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4.2 Mean-field solution for the pararnagnetic ground

state

The following deriration is limited to the case when ? : 0 and the bare density of

states takes the feature]ess form:

, slz- wLL,

,,.,:{# to' -#"'*4 
(4.33)

I o otherwźse.

The center of gravity of the band is thus chosen as zero of energy scale.

Under the assumptions, the average mrmber of particles with spin o, (4.8) is

,Ę, 1

"": -i J a,h1q,uu!- ź* #r,. (4.34)

-t
Eq. (a.3a) combined with Eqs. (a.25) and (4.26) atlorvs to ełaluate the quantities

p(1) and /'(') defined in (4.21), nameĘ

p(L\ = p- 
^":T[(ł'+ł,)(n-1)+ 

(q,_s,)-], (4.35)

and

!"(2) = H"- B^:Tft ,-q,)(",- 1)+ (sr +q,)m], (4.36)

which in turn a]low to eĄ)ress po as a fulction of &,m arrd n. Thus, performing the

srrmmation in Ę. (a'2a) one obtains the free energy functional in the form

a : ;- Lui arto-r:+[Jd2 - H^mN L-W J

: Lł'Ł,,' -Lł om)2- r)) + t]d2 - H.rn. (4.37)
8
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Next, htroducing dimensionless variables u - UlzW, h = 1trH,lW, and the free

energy per iattice site in units of the bandrvidthW, f : FINW, one can rerwite the

Ę. (a.37) as

f : 2ud2 - hrn - f; {, * 
" +zd2) - @. rn.tsl

Mirrimizeńion of f with respect to magnetization, Eq. (4.27), yields

(4.3e)

SubstituŁing this expression ilrto Ę. (4.3B) one obtains the free-energy functional

dependent orJy on one unłnown para.rreter & = ą. Finally' the condition (4.28)

leMs to the third order algebraic equation on q variable, namely

0 : rf1-ału1 +n2(_!6u2-80u*96un)

+ n ę6h2 ł 8n - 4n2 - 16u - 64h2 u ł 48nu - 32n2 u - I6u2 + I6nu2 - 4)

+ 76h4 - 4h2 + Bh2 n + n2 - Bh2 n2 zn3 + n4 - L6h2u

ł 32h2nu - 16h2u2 . (4.40)

Since Eq. (a.a0) bas analy'tic solutions, all the quantities determhed above can be

also expressed as fulctions of parameters z, h and n. In general, the solutions are
i

too comp}icated to be shown here. So, apart ftom the case rl : 1 and ń' : 0, all other

h(" 2d')
h2+d4+d2(L-n)

soiutions flor n I I and h l0 will by displayed graphica.1ly.
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Properties of almost localized Fermi liquid and

the Mott-Hubbard localization

In the simplest case of n : I,h,:0 Eq. (a.a0) leads to

a' : jtt -") . (4.41)

Since u : Ul2W'Łłrc ralue of U : U" : 2W ś the critica] va]ue of the repuJsion

poleutial U, i.e. iL corresponds f,6 i[s vi]ni5hing ol the number of doubly occupied sites.

Thus, it indicates that the system is undergoing a metal-insulator transition. The

result was obtained by Brinkman and fuce [1] by using the r."a.riational rvave function

ald the approximation scheme proposed by Gutzwiller [2], discussed in Chapter 1.

Indeed, substituting the solution (a.al) (cf. Eq. (1.16)) into the free energy (4.38)

and q" (4.17), Eqs. (1.17) and (1.18) a.re authomaticaly reproduced. Note that in the

paramagnetic case) qo does not depends on spin: et : eL = q. In the case of n f 1,

the electron localization does not appear and the average number of doubly occupied

sites goes to zero only in the limit u') dr. This effect is displayed in Fig. 4.1. The

situation d --t 0 for 7z : 1 corresponds to the effective mass divergence, with U t U".

In all other cases i.e. fot n f 1, effective mass enhancemett m* f rnB approaches to

the fiaite reJue (2 - n) I QQ n)) as U - + co. The efiective mass enhancement with

respect to the band mass mB is displayed ilr Fig. 4.2. Similarly, the linear specific

heat coefficient is divergent at U : U. only il the case n : 1. The singularity of

the spin susceptibility (1.16) displayed in Fig. 4.3 shows that the metal-insulator

transition is a continuous quaintum phase transition.
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0.2 s

0.15

0.5 1 1.5 L

INTERACTION, U/UC

Figure 4.1: The double occupancy probability for the diflerent band fillings as a function

of the relative interaction strenght U/U".

Introducing the band narrorving factor q", defined as in Eq. (3.24), Kotlia.r and

Ruckenstein recovered the Brinkman-Rice transition but now at the level of the saddle

point approximation. Such a theoretica.l description a.llorvs to investigate the dynam-

ical aspect of the problem, rvhich of course goes beyond the Gutzwiller variationa.l

scheme [3] . However, as it was mentioned by Lavagna , even at the mean fie1d level

the new i.njormation are contained within the saddl*point equations as compared

with the Gutzwiller approximation. The ma.nifestation of that fact is the presence of

the N{ott-Hubbard gap. To see how this gap can arise one may choose the density of

0l

o.l€

(J
z.
o-
=(J
Oo
LIJ
J
cn

=()o

2.5

T =0
g=1/W
(MFA )

n =0,80

n =0.65
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lJ.t
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Figure 4.2: Tłre interaction dependence of the effective mass. The m* diverges at n-1 and

U/U":1. This is the Mott-Hubbard localizaiion.

states fulction in the form of (a.33) and calculate the chemical potential p. In this

case /' is determined by the Eq.(4.35), wbere due to Ą.(4.31) )6 is given by

+Ęą"

.\o : r =.1, " 
(a^q*- l-'j:) [ dee;,iq"t)" ? 2wq: \0P e 0e ) ,r," - -'" ""-'

_ s- I /aq" t as"\ ( , w' .,\- łzwł"\ap "u)1u:_ 4s:)' (Ą'42)

D =1

n=0.99 *50

n =0.985 *33.3

n =0.98 *25

n = 0.95 *'10.5

n =0.90 * 5.5

n = 0.80 *30

01231
INTERACTION , U/UC
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n =1
T=0
3 =1/w
(MFA )

0.1 0.6 0.8 1

INTERACTION . U/ UC

Figure 4.3: The spin susceptibiliry enchancenent in the function of the interaction U/U".

Its di'ergence at u-U. illustrates the fact that the Mott=Hubbard localization is a quantum

płrase transition.

Thus, the chemical potential in udts of bandtvidth takes the form

(4.43)

where

50

40

ox9S
x

20

10

p !.r(') \=- /'1 ,? 
^\ 

o,,W-w_ł\s_zę"w-1

# :ź[(ł, + q,; (n - 1) + (ł, - o,)-] , (4.44)

and

( 0s' 1 Óq"\*: (* ' 
" 6i )._r'^.*-' P-\ dŻ' (4'45)

The apperance of Nlott-Hubbard gap may be visualized as the splitthg of the

chemica.l potential when approaching the n : l limit either n1 : 1.1- e or n_ :
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1 - e sides (. - 0). This splitting appears only when IJ > [J",as displayed in Fig.

4.4, where the chemicai potential (4.43) was calculated for the cases n:0.gg9 and

n : 1.001. Lavagna [4] showed that the width of the gap is A : U vĘ - U:F . ,yy;s

n = 1.001

!l

_l

05 1 15 2 25 3

Moti- Hubbord

90p

n=0.999

0.5 25

Figure 4.4: Opening of the Moti-Hubbard gap for U>U". The inset shows the U depen-

dence of the gap.

result reproduces the split band picture obtained in Hubbard III solution discussed

in Chapter 1. However, the slave boson approach provides one feature more: the

irńlite-mass enhancement i.l the 1ower band when IJ -- U" (from metallic side). In

f_
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o
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SummaĘ/' we have combined here the old results of Brinkman and Rice [1] with those

of Lavagna [4] concerning the metal-insulator transition in the paramagnetic case.
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Chapter 5

Alrnost localized ferrnions in an

applied rnagnetic field

In systenrs close to the lt{ott-Hubbard }ocalization the band energy of quasiparticles

is small (the effectir-e mass rn* -- oo) and almost compensated by the sbort-range

repu1sive interałtion among the carriers [1]. In effect, the system js very susceptib1e to

much rveaker peńrubations such as temperature or the app}ied magnetic field. In this

chaptel the novel features of almost localized fermions in the presence of an applied

mag:retic field are discussed, namely: (i) the spin dependence of the qlaslparticle

effective mass, which leads to quantum beats in the de Haas-van Alpiren effect, and

(ii) the appea-rance of a nonlinea,r moleculal field and related metamagnetic behavior

of the system.
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5.1_ Nonlinear molecular field and rnetarnagnetisrn

The mean field solution of the Hubba.rd model for the case T : 0 and constant bare

density of states is given by the Eq. (a.40). Al1 the other quantities appearing in the

problem can be expressed as the functions of q : &, and thus regarded as functions

of pxameters u' n and Ą (cf. section 4.3). Physica'l1y, this approach depends on the

mrmber of doubly occupied sites d2l{, *.hich plays the role of the order parameter

distinguishing the Fcrni )iquid (metallic) state (rvhen d2 I 0) from the local-moment

state (when d : 0 and m : n). For n : 1 the latter state describes the lvlott

irrsulator in the mean-field approśmation and without the exchange interactions.

We start our analvsis of the behavior of the numbel of doubly occupied sites and

strictly related with it magnetization through. ln Fig. 5.1 we have display ed r12 arid m,

both as a function of Ł, foru:0'95. In Fig. 5.1(bottonr) rve see that for n : 0.9 and

0.95 the applied magnetic fie1d reduces to zero the number of doubly occupied sites

in a continuous way. For the cer^se n : 0.99 the value of d2 discontinuously drops to

zcro rvhen the critical value of magnctic field, h", is reached. This corresponds to the

metamagnetic transition displayed in Fig. 5.1 (top). The magnetization curve (rv}ńch

in contrary to tbe case of localized moments turns uprvarcl) reaches the magnetic

saturation by the discontimrous rva1i. For the cases n : 0 95 and n : 0.9 the magnetic

fieid saturates the system continuously. In this case rve say that system exhibits the

metamagnetic behavior. Tbe metamagnetic behavior is also displayed in trig' 5.2'

Only the inset displays the true metamagnetism for n : 1 (discussed in detail by

Voilhardt [2]).
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Figure 5.1: Field dependent magnetization (top) and double-occupancy (bottom), for

U/U.: 0.95 and three band fillings n: 0.90, 0.95, and 0.99.

The fust-order metamagnetic transition disappea.rs very rapidly when n deviates

from ulity. Nonetheless, the metamagnetic behavior persists over a substantial range

of the fllling. The metamagnetism is caused by a change in the nature of the grou-nrl

state from the Fermi liquid state of heavy quasipańicle to a state of itinerant (for

n < 1) or localized (for n : 1) spins. The discontinuity in X = drn/dh for rn ---+ 1 is

smea.red out for T > 0, and the susceptibility then bas a maximum when the system

approaches magnetic saturation. The ctitical field for saturation is strongly reducerl

as n ---+ 1, making this phenomenon observable for the e;rŁremely narrow band systems
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0.01



68

-o

1

0.8

0.6

o.Ą

0.2

0.015

0.01

0.005

0.01 0.02 0.03 0.04 0.0s

MAGNETIC FIELD , h

Figure 5-2: Field dependent magnetization (top) and double-occupancy (botiom),

UlU.:0.99 and three band fillings n : 0.90, 0.95, and 0.99. The inset displays

metamag:retism for the half-filled (n - 1) case.

such as beały fermions or Lquid 3He. In 3He a smal] nunrber ó - 0'01 of Zelo-point

vaĆancies is sufficient to render the magnetization curve continuous.

In Fig. 5.3 we have summarized the type of mag:netic behavior ir the applied

field assrrming that the pararnagnetic state js stable for Ą:0 |3]. The upper panel

charactaizes the magnetic satxration field h" if the magnetization process is continu-

ous. Thir profi1e does not refieirt the actua"I sitriation when a meta.magnetic transition

takes p1ace, as specfied by the dark area in the lorver pane1. TYue metamagnetism

for

the

0 03 0.05

$=oss

0.90



69

h"
0.4

o.2

0 0.6

.4ę

b)

1

0.8

0.6

0.40 o.? 0.Ą 0.6 0'B

INTERACTt0N, U/Uc

Figure 5.3: Critical field for magnetic saturation via a continuous magnetization (top),

and the regirue of nretanragnetism (dark area in the botton part). Ali points are furłwn for

7: 0.

..1 .,
M ETAM AGN E T I C ._--.,__-_-

FERM I

LIOUIDS

śNoRM^u 

ź



70

occurs only for n ) 0.8 and for u > 0.28. At 1ow fillirgs and for smal1 values of u one

Iecovels the normal trermi liquid behavior, since tbe interaction pań waries roughly

as Un2 f 4.

The metamagnetic behavior is strictly related vłith the plesence of nonlinea.r mole

cular fieid B* : ł()r - )r), Eq. (a.2). For the considered density of states (4.33)

for bare electrons, Eqs. (a.25) and (4.26) allows to e-rpress p- by the equation

(5 1)

To determine the character of the spin-splitting we have plotted in Fig.5.4 the

magnetization (a) and fleld (b) dependences of ttre spin splittiłg. Thls provides us

(ol /ł (b)

Ę= 
n = 0'95

/.ż

6

4.2

0.15

OJ

0.05

0.2 0.1 0.6 0.8
MAGNETIZATION, M

0.005 031 0.015 0.02

APPLIED FIELD, h

Figure 5.4: The effective field ó as a function of magnetization (a), and of applied field

h= pLrH.lW (b).

with il-formation about the non1i_neariĘ of the effective field. Clearly, the molecular
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field B- is a nonlinear function of rn and grows rapidly with growing rn. Such a

behavior of molecular field, in combination with a similar nonlinear behavior of the

effective mass, leads to either metamagnetism or to meta.magnetic behavior. The

effect of B* on metamagnetic behavior is just a positive feedback effect; the mass

increase leads to the band narrorving, rvhich in turn makes easier the magnetization

process, particuJarly very close to the Mott loca.lization (r - 1). Indeed, the quantity

-B"," is positive thus the effective f,eld H"- 0," acting on the quasiparticle, Eq. (4.9),

is stronger t}ran the pure applied magnetic field Ę. The nonlinearity bears its origin

in the field dependence of the effective mass. This dependence rvi1l be discussed next.

5.2 The spin-dependent effective rnass and de l{aas-

van Alphen effect

I\uning to tłre description of the quasiparŁicle cłra.r'acteristics we disclrss now tlre

colcept of spin-dependent effective mass'es. !Ęe e4e1gy of the quasiparticle is given

by Eq. (a.9). The factor q" leads in a natural manner to the spin-dependent mass via

the relation m,f ms : llq", cf. Eq.(1,26), The importance of this quantity derives

fronr the fact that the spin-dependent effective mą.s9es rno are responsible for the

quasiparŁicle propeńies' rvhich in turn decide about the behavior of tlre system on

ihe rnacroscopic ler,-el.

The field dependencc ofthc ferv mass-enhancement factors 1/q" is displayed in Fig.

5.5. \ł'e display the spin-split masses as a function of h, for di_fferent band filings and
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ttxed U lU.: 0.95, and at ? : 0. One observes essentially three regimes: a) for z very

20
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pBHo / W

Ęigurę !.!: Applied field dependences qf lhe ęffęqllvę 1nass ę4haqcęmę4! !a9to!S !lq ą"ó

I f q1, for different band fillings.

close unity both masses grorv with the field (cf. n - 0.99), and at the metamagnetic

transition point spin_minoriĘ carriers disappear, whereas the mass of spin_majority

quasipa,r'ticles dives to the band-theory value m6; b) for the 'intermediate' range of

n (cf. n:0.986) the situation is very sirrrilar to those in the case (a), hotever with

the difference that close to the point of the metamagletic transition the smaller mass

turns continuously dowlward first, and then dives to the zn6 ralue. Finally, in the case

c) for n still smaller (cf. n: 0.977,0.95) ihe mass rnl of ca.rriers in the spin-minority

o
E
xb
E

U/Uc=0.95
n= 0.99

n = 0.986

n = 0.977

*---1lĄł nry
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band increases, whereas rn1 decreases continuously. In fact, these cases correspond

to the metamagnetic behavior of the system. Of course, if n ; 1, the masses are not

spin dependent silce g. does not depend on o in tbat case, i.ę. a" 
= 

q = mgf m,.

One shoulci note that intuitively one can expect that the mass rizl should gtow with

A, as the minority caniers encounter a la,rger and larger numfsl of scatterers with

increasing rn, while for the majority-spin carriers the opposite is true.

one can expose the difference rn1 żż m1 as fol]ows. For noninteracting electrons

the plobability of electron hopping is given by n,(I-n,),whereas inthe limit (J - o

it is n"(1 '- n). Therefore, rł'riting the band energy in the [/ --+ co Iimit as

EBlN : zt|n"(L _ n): zt|ł"n,(t - n,), (5.2)

weobtainthatq": (I*n)lQ-n,). Noting that we had before that mllrns: lf q,,

we immediately arrive at the conclusions that: (i) the mass enhancement is spin

dependent, and that mif mo -'+ 1as magnetic moment rn approaches saturation

(n1 -', n)., while (ii) the minority mass increases with the magnetic moment reached

the upper \rlrit m. f ms: (f - ";-t when the magnetic saturation is achieved. A-lso

the renormalization is particularly strong when n -.+ 1 and becomes infinite at the

Mott-Hubbard bounda.ry (n:1). Obviously, this argulngnl assumes that I :0

so it cannot reproduce the detailed behavior provided in Fig. 5.5, particularly .when

metamagnetic transition htervenes before the limit d =.r 0 is reached.

As mentioned before, close to the Mott localization both factors 1,1q1 arLd llql

grorv with hcreasing h. In effect, the quantity (11q1 + llq) also increase sharply

with ircreasing magnetic fie1d until the saturation point is reached. At that point the
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minority spin subband becomes empty and all the particles have the same spin; they

acquire the baxe band mass, since the Hubbard interaction .: Unqnil is then totally

suppressed. This type of behavior manifests itself i-n the fie1d dependence of the linear

specific heat coefficient "y, which is propońional to the tota1 density of states at the

Fermi energy, i.e., 1 : Ql3)n2 p(e p)(7lsr + 1l s), where p(ep) is the density of bare

states.

The effective masses are probably most directl5ł measured wiih the help of de Haas

- van Alphen effect. To calculate the spin resolved signal for the almost localized

charged fermiors with spin dependent masses one can adopt the tifshitz-Kosevich

approach [a]. The osciilating part ofthe magnetization can be expressed as follows

- v /oh\3/2 1;'tląi eit)"1o" 
"iu(,-"sr 

, -" *\M,-_Ą"^h'\;) 
' 7,^,= K"l- (ł"nł" *okr-'n) ,

(5.3)

rvhere the area of the rn'th extrema] orbit is ,Sfi : *? ("*" ł 1) : ,(2m,r" 'pi),

with eo = p * oh, tt: Q) : z f stnin z, \, : (2n2 k BT cm" f et't H 
"), 

and

r ehHl 0m" . H"05"^
Ao : I -' 

^iŚ"., 
aH" + 

s"- a H"
(5.4)

Other symbols are standard . For each mo we have periodicity determined by the

difference L(11 H") iri the inverse applied field, A(1/1J) : Ztret,lcSi-. Thus, the spin-

split masses will lead to two difierent cyclotron frequencies a" : eH"l (2m.c), for

majority and minoriĘ spi:r subbands, respective1y. In that situation the spin resolved

components of the oscillating magnetDation components iI,""," i.,t..f"." with each

other and produce the quantum beats. In Fig. 5.6 we display the inverse fie1d (1/h,

rvhere h = prH"lW) dependence of the de Haas-łan Alphen osci1lations, as we1l as
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show for comparison the observed oscillations by Takashita et al. [5] fot CeRuzSźz.

These spectacular quantum beats are caused by slightly different effective masses for

majoriĘ (spin f ) and minority heavy electrons. In fact, spil-sp1it masses bave not

been detected directly as yet. Some indications are from the experiments on heały-

fermion system Ce-rĘu2,9ri2 [6]' rvhere the bands are extremely nallow) and tŁrerefore'

the applied fie1d effects axe strong. For example, the metamagnetism is observed in

that system in the field H. - 7.87 [7], as v'ell as 1(h) exhibits [B] the sarne type of

the behavior as that provided by the uppermost curve in Fig. 6.5 (see Chapter 6).

Horvever, a direct comparison of the present type of theory with the experimental

results for CeRuzSźz mentioned above wou]d require generalization of the approach

to the Anderson-lattice case (i.e. inclusion of tłre hybridization between / electrons

and conduction electrons).

The spin-split masses wi1l influence a}so other properŁies suclr as the electrical

conductiviĘ or the Ha]1 efiect. Let us take as an examp1e an elementary view of the

longitudinal resistivity (jllĘ) i" a magnetic field. (cf. Spalek et al', [9]) The Drude

[ormu]a rvill now Lake Lhe form

_ 1-_
P1 Py

rvbere ł and ł represenL ihe contribution of tlre Ls'o physiullly dist inqu khab| e FermiPł PL

liquids (since their masses mT and rrr are difierent). Therefore

mo1

1:
p

P"=

In the case d ---+ 0 one can take nz]

n,.re2 r o

- -u(l - "") I G - n), where as before, m6
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represents the bare band mass. The relaxation time in low fieids can be assumed in

the usual form [f0], here generalized to the spin-split situation

r .m" -,
- 

: con'Śt- l '.
To mo

99 ihąt ą! }1" : Q p _ AT2 , with '4 - 12- In effect

mo / m"\2 ^,p" - 
"*ł \^/ '"

rvith n-, : n, N lV , where l{ is the numbór of lattice sites and V is the system

."-ohrme.

This prediction could be tested by plotting p as a firnction of rn and compa.re it

with the formula provided here. Obviously, this point requires a careful study and is

planned for the near future.

Summa.rizing this section, we rvould like to stress that the occurrerlce of spin-

dependent effective masses, the metamagnetic behavior, and the presence of a nonlin-

ear molecular field a,re the basic characteristics by which the a.lmost localized Fermi

liquid difiers from the normal Landau Fermi liquid. In general, the Fermi liquid char-

acter of a metal close to the metal-insulator (Mott) boundary should not be taken for

granted, since in tłrose systems the Cou]omb interaction energy is comparab1e to the

band (and Fermi) energy of the relevant electrons [1]. In the nex-t chapter we study

explicitly the transition of the Fermi liquid to the non-Fermi liquid state induced by

the applied magnetic field.
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Chapter 6

Fermi liquid instability and

transition to statistical spin liquid

6.1 Introduction

The metallic sta.te close to Mott-Hubbard locŃzation is con-monly legarded as a

Fermi'liquid state of corre}ated fermions. As it was discussed, the quasipańicles

in this liquid have spin-dependent effective masses (if the ba:rd filling n I 1), and

experience a norlinear molecular field in the spin polarized state [1]. The principal

question is: what happens for n f 1 if we apply magnetic field and the number of

double occupa,ncy c12 -t 0, i.e. magnetization m = nI - nL -+ n? Does it transform

gradually into a gas of fermions with one spin direction or a non-Fermi liquid state

comes into play before the system saturates magnetically? In this section we describe

phlsical consequences coming from the presence of spin-dependent effective masses of

carriers aloog with the magnetic-field hduced transformation of the almost localized

79
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Fermi liquid (ALFL) into a correlated fermionic liquid, hereafier referred to as the

statistical spin liquid, SSL [2]. In other *ords, we predict the existence of anomalous

1ow-temperature magnetic-field dependeot phenomena for electrons close to the Mott-

Hubba.rd localization, rvhich should be observed experimentally if the mean-field slave

boson approach is a correct stańing point for those systems. The importance of our

predictions is augmented by the assumed presence of a strong applied magnetic field'

rvhich suppresses c1uantum-spin_fluctuation contlibution to the dpramic propeńies of

almcxst lor:alized fermions.

By statistical spin liquid rł_e understand the state, for which the sirrgle-particle

states are sti1l characterized by the quasimomentum ńk, but in which the doubly oc_

cupie<l quasipańicle configurations |k fJ> with opposite spins are tota}ly suppressed

by the combined action of shoń-range Cou-1omb repulsive force (as characterized by

the intraatomic repution U) and of the magnetic fieid. This lestrictions leads to the

corrections of system statistica] propeńies [2]'[8].

In the ha]f-ńlled band case ihe (ALFL _-* SSL) transformation corresponds to

the tr{ott-Hubbard (metal-imulator) transition. Hers rl'e concentrate on the pariial}y

fllled band case (with fi11ing n < 1), ź'e., rve dea} with quantum liquids on both

sides of the transition and stucly the transformation (or crossover behavior) as a

lunction of an applied magnetic field. In this mannel, the present section extends

the previous treatments LS]- [6] of almost localized fermions. We also indicate that

our resu]ts reproduce qualitatively the propeńies of the heaw-fermion compound

Ce-RzzSiz;these properties are summarized ił Fig. 6.1 [9],[10]'[11]. The principal

claim of this section is that the fleld l{- in Fig. 6.1 specifies a novel (ALFL -+ SSL)



81

o)

Qe Ru2Si2

l" Hor c
42K 

[. xo rr.
T=,l.3SK 

^ 
Ho c

Hm

offi'.--1!= E
Ho(Tl

7 6.5 ę 9.5 T

c)

70 ńK

900 mK

Ho/lQQ1l

0i-' ol5- -0.16 oJ7 oJB
1/ Hd ( T-1)

0 0F.-+-i--*--10*- 1s 20

05

os
.<-V o.r
L
E 0-3

!- 0.2
<F
t 0.1

I o.7s

ź

Holr)

0.25

10

d)

xq,6
\o\Ą

ó

=#łs*ob'--tsF

Hm, B'

o-t0 15

E

oź
'Ż

Ho(Tl

Figure 6.1: The magnetization curve (a)' the linearc specific heat coefficient 1 (b)' the

d.e Haas-ran Alphen oscilations (c) the effective masses (d) atl as a functions of applied

magnetic fie1d for OQRu2Siz' Note the matamagnetic point at H^ - 7 '87 -

b)

T.1.5 K

HM



8Ż

change of state.

6.2 Ferrni liquid to non-Ferrni liquid transition and

compa-rison with experiment for CeRu2Sź2.

The quasipańicle picture involving the concepts of band narrowing factor q" and of

the non-linear molecular field B*, introduced in. Chapters 4 and 5 is used here to

calculate the physical properties of ALFL. In effect, present approach reduces to the

classic Gutzwiller-Brinkman-Rice analysis [6] in the simplest case with n : 1, 11" : 0,

and for temperature T: 0, as n'ell as to analysis of Spalek et al. [7] for n : 1 and

T > 0. In the case of non-zero temperatures the low-temperature expansion for the

Fermi liquid free enerry, Eq.(4.24) yields

+ : -rG-d')(1 . n+2d2) swrfta'o n)+da) (;-rfĄ
v

-tąd;2 - ttBH"m -12 
(kBT)2 

f ! * l\ .-3 W (ą*ąl' (6'1)

rvere in deriving (6.1) the density of state function (4.33) was rised.

The principal feature of this approach is the optimization of the balance betrveen

the renormalized band enerry (Du, Eu"f (Eu"), the entropy contribution (-?S, last

term in (6.1)), and the Cou.lomb repulsive energy (Ud2) by minimizing thc total free

energy with respect to the site doub}e occupancy d2 : (nąn;1) and magnetization rn '

In an applied magnetic fie1d the probability I vanishes at a critical fie1d value ff. =

Ę' at rr'hich the system undergoes either a first-order metamagnetic transition or the

magnetization curwe changes its character from the *"to*ugr"ii" to the localized-



momPnt type (cf Fig. 6.1a).

It is impońalt to note at the outset that the ALFL is unstable for H" ż- H",

even !n the regime U lU" < 1, where U. is the critical value of interaction for the

Mott-Hubbard localization for n = i [6],f1. This can be seen easily by computing

d2 for n ( 1 and noting that &(H" > ą) < 0 Therefore, to describe consistently

the metallic phase beyond the poht d = 0 we invoke additionally the concept of

statistical-spin-liquid [Zl,[8], for which doubie occupancies are excluded in reciprocal

space. In other words, we assume that the double occupancy probability (ntrnxr)

va;nishes identically in the new phase. Physically, the SSL is the simplest tJpe of

state, which is represented by the itinerant spins rather tha.n by Landau quasipańicles

and encompasses the localized moment limit as a n "+ 1. Therefore, it represents a

natural choice for describing the doped Mott insulator, rvhen the holes are itinerant

and the exchange interactions are not crucia] (ź.e., for U < U.). The proper'ties of

this liquid have been studied before [2],[B]; rve sunnarize next the features needed to

analyze il detail the ALFL -+ SSL transformation.

First, this exclusion leads to a modified statistica.l distribution function:

I ł ae?kv-p)'
(6.2)

P : @ur)-l.

fieid according

with a: |2cosh(B1ąH")]-L, where p is the chemical potential, and

Second, the magnetic moment per atom rn = (nr: n;r) changes with

to 
Ą/

m --ftar,h(Bpt pH"1, (6.3)

ź.e., it has the saine shape as in tłre localized-moment case. Additiona.lly, in the }ow-
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temperature limit and for a constant density of states in the band with energies in

the interval L WlŻ,W/21, the chemical potential is given by

As 7 -* 0, we fincl that p(7 : 0) : It(n - 1l2) - puĘ", ż.e., a1l moments are

aiigned and tire band is filled for n : 1; the latter situation corresponds exactiy to

the iocaiized- momenI srate. Finally, the Helmhoir,z free "nergy per site is derermined

from the expression

W
tI: i - k3Tll|exp(BW (l - ")) - 1] - łB7łn[2 cosh(B1lrH")]

de rn[1 + j "*(-B(. - t))] + pn ,

(6 4)

(6.5)
rw/2

Fsst : -knT I
J _w/z

whichforn<lreducesto

f ,," = T : -ź"r, - rl -*r, - ntln|2cosh(hlt)] , (6.6)

where Ą = pBH"/W and ź: U(B|\,): kBT/Iv. For n: 1and Ę :0 this

expression should be repiaceci by tire erpression (-tin2) for free spins. Nbte that at

T : 0, and fot h: h", f pt : fsst': _ź"(t - n} - r,n.

In Fig. 6.2, we display the free energies of the ALFL (as represented by fpt :
Fpt/W) and SSL states for n: UIU":0.95 and ź : 5.10_3. The trvo energies

coincide exactly at the poiń Ę, at rr-hich d2 :0. This means that the tv"'o states

coexist at H": H., and that SSL is the stable phase for Ę > Ę. In other words' at

Ę the Fermi liquid transforrrrs into a gas of hopping spins with rmrenormalized maso-

but with changed statistics. This statiśics takes ilrto account the total suppression

of arrŁiferromagnetic correIations Ę a sufficierrtly strong applied field. For the sake
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Figure 6.2: Field dependence of the free energies for an almost localized Fermi liquid fpl

and for the correlated liquid (fssl). The ALFL is unstable for h > h".

of completeness rve have plotted in Fig. 6.3 the fleld dependence of d2 in the ALFL

state.

The resultant magnetization curve in the regime of the ALFL SSL coexistence is

shown !n Fig. 6.4 for the parameters (n : U lU.: 0,95), for which the metamagnet'ism

occurs ir ALFL state (the inset provides the temperature I'a"riation of the critical

field). l-or n ż n," - 0,973 the magnetization rvi11 exhibit on]y an upwąrd turn

without a subsequent jump which indicates the metamagnetic behavior (discussed in

Cha ptcr 4).

To model the field dependence of the linear coefficient 1 of the specific heat C

we have calculated numerically 1 : C lT as a function of h; it is shown in Fig. 6.5.

The upper mośt curve for UlU": 0.95 and n : 0'977 has the same shape as the

c'l
c)
Cc
q,
c,
t-



86

!

x
Óco
o.
f
Lroo
o
-o
=o
E

0.017s

0.015

0.0125

0.01

0.075

0.00s

0.0025

UlUc=n =0.95:

i = 0.005

0.02

0.0235

I

oo' 0.005 0.01 0.01s

m09 ńet iÓ tićld, h
a.0Ż

Figure 6.3: The variation of the double occupancy probability rvithin magnetic field, for

different temperatures.

data in Fig. 6.1b. Since 1 - in* t the 7(A) curve models the field dependence of the

total mass cnhancement, which in the present situation contains trvo (spin-dependent)

patŁs: rn'f mg - 7lsł + 1/q1' Note, that .łiih comparison to the case 7 : 0' (cf. Fig'

5,5 ) the temperature infiuence rises up the effective masses enhancenent (for the

same Ę), or in other words, lowers the critical fie1d Ą. as shown in inset Fig. 6'4.

Thus, the relation m* f ms : 112(11(h i l/qr) explains the character of the rn-(h)

data shown in Fig. 6.1d. Numerical resuJts shows tha{ the total effective mass m.

and tlrus 7 can bave a cusplike behavior as a function of applied fieid Ę. Note, that

the left parts in Figs. 6.4 and 6.5 describe the properties of ALFL.

In Fig. 6.6 we exhibit the shape of the T : 0 de Haas-l'ar AlpŁen oscillatiols for

ALFL, near the ALFL ---+ SSL transition. By cont ast with the results displayed in



87

C
I

{ou
c
.9
O ^,N U.ł
ź
q,
c
or
o
E

0.0 t 0.0'ls 0.02 0.025 0.03

mog nelic lietd , h

Figue 6.4: The theoretical magnetization curve; the inset shows the temperature depen-

dence of the metamagnetic fleld ń"' Note a transition (or a crossover) from t}re metamagnetic

Fig. 5.6, close to the metarnagnetic poht, the spin resolved signals differ significantly

and, hence, do not produce beats. Eventually, for h > lr. ("t'., the upper hset in Fig.

6.6b) only the majority spin component is present (with the bare band ma'ssl); the

oscillations become very smal1 and decrease with 1/Ą il the standard man_ner. Ho'w-

ever, the temperature dependence of the oscillations (with a corresponding crossover

U/Uc = n = 0.95 :

t = 0.00s

r=0.02 I

oo23>//,/

\,Y t̂ = 0.035

0.005

from a FL to a non-Fermi liquid) requires a separate analysis. Let us only mention
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Ę=o.ss, t=5'10_3

Figure 6.5: Field dependence of the linear specific heat coefficient for the specifiecl para-

n€tels; note the crrsp at h: h". The imet illrrstrates a rapid change of the 1(lz) curve

riith band fllling n in the nearly half,filled situation.

thal the transition is reached for 7 > 0 for a lorver field than that required for T : 0.

TTris feature is in agreemenl with the trend observed for the l{ott localizalion [fl and

is associated with the faster temperature cha.nge of the entropy for the localized and

SSL states than that for ALFL.

The observed [11J magnetization oscillations (c/. Fig. 6.1c) represent the tota]

signal Ę"". To describe ac individua.l oscillation mode by a singie mass m*, the ef-

fective ryclotron frequelry muś be introduced as a: - eH"lQm-c\, where rn* is the

sum of rn, and m.,. The field dependence o{ this frequency is shown in Fig. 6.2, where

the lower inseb provides the overall field dependence of c..rj in the range of the AI,FL
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Figure 6.6: The shape of the oscillatory component of magnetization vs. 1/h in the Fermi-

liquid regime (a), and near the ALFL ---+ SSL transition (b). The upper inset illustrates

the evo]ution of the de Haas_łan A1phen oscillations acloss the metamag-netic tIansitiot}

whereas the lower specifies the shape of tbe magnetization curve in this case.
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Figure 6.7: The cyclotron frequency as a function of applied field near the metamagnetic

transition-

stabi,lity. The upper inset represents the experimental data for one of the ceRu2si2

orbits [11]. The shallow dip in ruj is intimately connected with the p:ecr:rsory metam-

agnetic behavior. Note that the steep pań o{ t}.re rhs of the theoretical curve levels off

as the band masses (and the magnetic saturation) is reached. Therefore, the efiective

masses calculated from the band theory (in the versior which does not include the

preserrt correlation effects) can be identified with rł- otńained experimental1y onJy

#"=o.ss

n = 0.983

ceRu2sł
Hrlcolt 

B'*bff
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for H" > H".

In view of the above quantitative analysis we conclude that a crossover foom the

Fermi-liquid (albeit almost localized) to the non-Fermi liqrrid is signalled by a cusplike

behavior of 1 and by a qualitative charrge of the de Haas-łan Alphen oscillation with

groiving applied field. Both efiects accompany the metamagnetic behavior of m(h).

obńousiy, a direct con$lmation of these predictions would involve the determination

of the spi:r-split effective masses. Concerning this point, note that when d2 -- 0 the

effective masses in the ALFL phase are given by m,f m6 : (t - n/Z)/6 - omlQ6),

rr'here ó : I - n' Therefore' the mass dżfference grous linearlg uitll' rnagneti,zati'on,

2.e., ntl - m1 ''. mf 6-

Finally, we interpret the present approach from a physical vie*point. First, the

a^1most localized nature of the Fermi liquid is essential, since only in that case is

the band energy of quasiparticles su-fiEciently small to be almost compensated by the

repuJsive interaction a:rrong the carriers. In efiect,the system is very susceptible to

much rveaker peńul'bations such as the temperature or the applied magnetic field.

The hearry fermion materials are ideally suited for that purpose, silce their kinetic

energy is characterized in the FL regime by an energy ofthe older 
"11 

- 10 --I02K.

Obviously, such a simplified single band approach is applicabie for those systems

only if p"Ę and Iu..'] axe substantia]ly smal1er than the effective Kondo temperature

kpT6, or equivalently, the hybridized quasiparticle band splitting.

Second, the physical reason behind the ALFL ---+ SSL transformation js quite sim-

ple: the ALFL enerry is always lorver if oriy I > 0, since the allowed double occupan- -

cies decrease it. At iow temperatwe the zero-field entropy of the SSL state (ks ln2



92

Per carrier) is much }ńgher than the entropy of the ALFL staie ((h2 ll)k?Br M|I _

(U /Ur)21-t). Thus, the entropy contribution (-?.9) to the free eners/ favors the SSL

state. Likewise, since the magnetization curve for the SSL is that for localized carriers

the SSL magnetizes much faster with increasing field than does the ALFL. In effect,

tłre SSL becomes stable at lLigher fields and tenperatures. Ftom the coexistence

condition Fr.r - Fssl one cart calculate 1!g hansili6n temperature.
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Chapter 7

Antiferromagnetic phase and

transition to the Mott-Hubbard

insulator

7.I Introduction

Antiferromagnetism (AF) appears in the Hubbard model for an arbitrary interartion

strengtłr U provided we are c1ose to the ha,1f-fllled-band situation (n - 1) [r].This

is easy to ulderstand qualitatively, since the intraatomic interaction t/ Iu (ą1n;1) is

diminished by keeping apart the electrons with the opposite spins [2]. At the same

time, the band energy is not increased because the concomita;nt nesthg condition

€t+Q : -et (a-lbeit ach,ielable for bipańite 1aitices only) does not increase energy

of tlre occupied States, even when going beyond the Hartree-Fock picŁure. In effect,

the regime of ttre band filling rr,, for which the AF state is stable at given U has been
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determined for variety of theoretical approaches [1,3]. The reliability of the results for

the half-filled case is not in question, as they reduce to those in the HartreeFock and

to the mean-field (Heisenberg) approximations ir the weak- and strong-correlation

limits, respectively. The theoretical results are in accord with the fact that orJ known

Ir,Iott insulators rvith the half filled configurations of the relevant group of atomic

orbitals ere also antiferromagnetic insulators. The basic question remaining is to

rvhat extent the existing [t] picture can be regarded as a proper mean-field theory of

correlated fórmions.

In this Chapter we concentrate our attcntion to trvo specific features of quasipar=

ticle states not elaborated so far, namely, (i) to an evolution of the magnetic gap

(renormalized by the electronic correlations) into the Mott-Hubbard gap, and (ii) to

a ratherrveak renormalization of the effective mass for the haif-filled-band case, rvhich

is in contrast with that calcu-lated ir the paramagnetic (PARA) case [3]. As in the

preceding chapters these results a.re also obtained within the slave-boson approach in

the mean-field apprc';<imation. We compare it brie{ly rvith the corresponding analy-

sis in the i:rfinite-dimension limit fll. In particular, rve introduce again the concept

of a nonlinear staggered molecular fie1d, rvhich shorvs up as the effective (nonlinear-

in-magnetization) magnetic gap, wolrilg at temperature 7 : 0 continuously rvith

increashg U into the lvlott Hubbard gap. ln connection with this evolution łve si-ngle

out the magnetic and Coulomb parts of the localization energy. This pańicular fea-

ture resolves explicitly the old question about the difference between the Siater and

lr,lott-Hubbard insulators in the sense that onJy the lr'Iott-Hubbard gap survives when

altifer-romagnetism disappears in the [/ '-+ co limit. In the limit U ---+ 0 the magnetic



97

gap leduces to the origilal Slater (Hańre+F'ock) gap.

In the followilg section we derive the free energy in the antiferromagnetic case, as

well as calcu-late the principal physical quantities. In the last section we discuss the

obtained analy'tic results.

7.2 Ground state energ-y

7.2.1 The Hanniltonian in the slave-boson representation

We start fuom the extenrled Hubbard mode1, which contains intersite exchange in-

teractions. The model Hamiltonian decomposed into tlł'o sublattices ,4 and B, each

containing N/2 atomic sites, takes the form

Ę _ D tuol"(ęło"siu,+
1ź ej B)o

-D-,^H"-\)-,'H,+ąJ
in i6 1źł sż

The fu-st telm Tepresents single_pańicle hopping of eiectrons between the sublattices

(nearest neighbors), the second and the third express the intraatomic interaction of

the sane magnitude on all sites, the fouńh includes the Heisenberg exchange between

the sublattices and (-pN") is the reference energy with p being the chemical potential,

and Ą(< N) the total number of fermions. In the mean-field approximation {or the

slave bosons, the rotationally invariant approach of Li et al [4] ancl the Kotliar-

Ruckenstein [1] formulations carr be brought to an equilzJent form [5]. The effectił-e

AF-Hamiltonian written in the slave-boson representation takes the form

-1 -t + t/' T,źoIT'źoL+ u' fr.źulz'iu!
ża żB

! So^ 'Si, - t"N.. (7.1)

no,:{tt}+ut}-pw., (7 2)
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rvhere the dynamic part is

wirere

nf;}- 1rn =' troi'(r!^,"1,"fł^"ll,"ł r!'"r1^,fł""fio,) +
1źe,jB},

+\ lł^,f i^"(-lL - oH. - oJzmg)ę|ua!^ao^

+ D i ". f ,,"(_ 1l - o Ho ł o J zrna) r I u at, 

"łt,iso iB

NJzł_;m1mB,

and the pań contaińng constraints is

(7.3)

fr12) \- r(ltl ' ' \ń e'r : ) . 
^'żA' \e:AeiA 

* P)o,Pin ł P)oq;'l + d;AdiA -1)
źn

r D ll"' (tL",' 
' 

Ptiu,P;u, ) PI",Piu, + al"a,, - t)
źB

+ L lli'" (ln'^,1,"o - Pt,n.P,oo - a!^d,^)
i 'ątl

+')l:i (lł,.l,,,-Pt,,oPiuo- a!'d,,). (74)
isd

Here in order to decouple the intersite pań the Hartre+Fock approximation rvas used

SloS;n ł si^Łfu,") +f,@,^) Sj, j@o^11- 
"1 
, (7.5)

rvhere m; : nit-nit and thus, for a hvo sublatt,ices ant iferromagnetic state: (^,o) =

ma and (miu) = -rns.

In order to perform the integration over the fermion degrees of foeedom one needs

to express Ifup ir the bilinear form for fermions. Then (7.2) reduces to

Lr u(1) , rr(2).LAF - ttAF-T ttAFl (7.6)

Ht} :' tuo1,(r!o,ri',fło,fiu,*"!",zi^,fł,,fi*)
śż 'ą,j 

p}o
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-L \- rt ,. (reĄT / , JżąoJjla \^;"o - 1,- o(J:lna ł- H"))..-'.\..

' \- rt ł ( lGB) '\
-r / ' JiRdJjBa \^iąo 'y1o(JlmA _Ho))

iea
NJz+Ęmlms, g.7)

and

Ht! - )- (uaJ,a'^ +)ll'("l.ą. lp)olP,o, łPI,o,P,o,+al^a,^ _ l))
7A

' \- \(2) /_l .łt 'ł \| /a' ^i Ao \P;a"Pi a" ui'ąo 
)źAo

+| (ua[,a,'+ )j| (ej"e," łplu,pn,., łplu,P,u,+ai"a," - r))
iB

+ )- .r!i)- lpl n, . - al a \ (7 B)' 1- ''żBo \yiBoyżBo -ie-is ) '

786

In the saddle point approximation afl bosonic fie1ds are assumed again constant

in space and time, e.Ę. ";o 
+ < e'A ,:a 

"!o 
>= ea. Additional1y, the fields that

does not depends on spin must have the same values on both sublattices, namely,

eA: eB = e and d.ą _ ds: d. The Hami]tonian (7'6) ta]<es the form

Hsp : Hr ł Hs, (7.e)

where

He : t s"t,^:,(f!^"Iiu"rI!,"ft*)
1i'ą,i p)o

+D l!^"1j^" (^i'o' - 1t - o (.lzma + H)).-..\
zAo

+D f!,,fj," (^':'' - 1t+ o(Jzma- 
"")) '^'-

7 Bt'

(7.10)

nu = f;l"*lmB ł N{Jd'z ł

and

(7.11)
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+{ (rt,, (", + ł+r p,." - ,) r \
2\" \ ; / ,'^t)@'^"ta'))

, * (^t', ( 
", ; a,+)-=p,^" - ,) - 5- s?) b,."* a,))2\'\ ?"' ) 

12 Bo\t,'',-')

in (7.10) q.:< z!o,żiu, > i.e. due fu Eq. (4'1), her'e it takes the foim

ePAo + dpAo epro - l- -n-=4 
-__====:!E_ /- 1o\

lf 0 a' Ą") (1 ,' - ńr) lf ( a, A) G -,, _ p,or)

Tlansformation to the momentum space is carried out by the subiattices, i.e.

r] _ l \-p;łR. t ' tJ1Ao 
łMż ?- ^ol^k , and Ii,. 

,rtv1zr-- 
u_'*"''o'o.. (7. l3)

Note that the sublattices comprise (]{/2) atoms. ln effect, the reduced Brillouin zone

contairrs ('n{2) staies (is halved ł'iih respect to that for paranragnetic state). This

transformation allows to write the Ha.miltonian (7.10) in ihe form

a" : 

' 

q.rr (oiuo,our. + oiur"o'^o,) ę.14)

+ | oi,*"o,u" (s]o' - F - o (J:m3 t y,,1\-;"\"/

+ )-- o!*"o"*" (^!'"' - yt-r o lJ zml - tt")) ,

with

'n- D Ęni,eżk(&o-R;u). 1z.ts;
(i'ł':a >

The Bose part (7.11) acquires a cla-.sical 
'alue, v'hereas the Fermi part (7.14) is of

single-particle nature and therefore' can fog diaoo12]ized Ę the Bogolyubov tralsfor_

mation we discuss next.



7,2.2 The Bogolyubov transforrnation

i01

The Bogolyrrbov transformation corresponds to the following change of the basis

/"1*\ ("o'oo" ""'* )f:i"), (216)("i-"1 'l I

' I sinelo cosdr. )\lrL"/
where the quasimomentum (ł-vector) runs over the la.lues in the reduced Bril]ouin

"oo". 
Thi. transformation allows to write l1r in the form

Hr: Ę9 + H3*), (7.r7)

where

-H(o) : I oI.ar"|u"exsin20*,+ sirr20ł" (^f"' - 1, - o (Jzms + H"))
ko

* cos2 d*o (^''"' - 1l' ł o (J zma - al)] +

D oŁ"oo,|_ł"eorio20o, + cos2 9oo (^!*' - 1L" - o (Jzmy + H))
kc

+sjn20ł" (^f'' _ pło(Jzma-""))]'

anrl

H@ia) - D(",r"pr"+Bl""u") (7.1e)
kc

* 
[ł"ro"o.:0o, 

-)u"-z,,r"((^''''_ r!'ŻBl) + ,L,^o-r)).

Since the ang1e 61" is not Łred as yet one may choose it such in such way that the

Hamiltonia-n H!"*) :0. This is guaranteed by the condition

2qoex

(7.18)

Łan207,o:6
J z(ma ! ms)+ a (,1!'Ż11 - )f"))

(7.20)
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So, due to Ę. (7.2o) the Ha:rriitonian Ho, : H9) ł }1B. The corresponding free

energy functional is evaluated the same way like in the paramagnetic case. Narnely,

. after performing the integration over the fermionic variables as well as introducing

the new variables (cf. Ęs. (a.a))

zĄ=ń'r+f'r, tr[r=Pż"r_ń',,
(7.21)

2),sr--\(2) l-S(2) , 29*,:X?l -XYl,
which provides the relations

p? ,. : f, , ł f,o i\[i 
" 
', 

(7 .22)
x|!,: \r, - o0,'ł",

for L: {A,B}, one obitains the free energi functional per lattice site is in the form

where

+ : _Tłrn|r+ło("[?-^:-*_'] (7.23)

-.T- łr" |r l'_o('t:P+'r!"J 
_"ł"-l)]

+f;łr^o*, ł(Jd'2 + 1ln

+* t)* (e2 + d'2 + 2fA _ 1) - 2.\ol (pi + az) - B^łMo)

+ ; [l* (e2 + & +utB - r) - z oB (p'" + 8) - F*,MB),

E@ : _ |q,eysinłay, ł o J z(m1cos2 01,o - łnB s\n2 01,,)] , 
ę,zł1

ef) : + |Qre t" sin20 xo ł oJz(rnacos2 0*o _ m1sin2 dłr)] ;
and

ł(o):lr ' -D \-^_2a ' /\r.łd - \/\o4 * oB^n) cos2 dl" ł (}og ł o B,.B) si# 01,o,

(7.25)
łp :- 1,loo 1 o B*o) sił 01," ł (}og * o B,.9) cosz 01,o'

The value of the 0p is given Ę the Eq. (7.20).



7.2.3 Saddle-point conditions

The free energy firnctional (7.23) depends on 12 bosonic fields: e' d., ?G,B), \o(.ą,B),

)[f;'u,, 0-1n'"l, Męe's1 and the chemica] potential p. First, the minimization with

^,, ,r]) .fr\
respect to fields )i11, )1f,, provides

:
0F o'
a)ffi 

: e' +d'" ł2pie'sl 1:0'

which yields

P,ł': PL : itr: e2 - d'2) = f .

The minLrrization with respect to the chernical potential ff : 0 gi"es

ź""z (/ (E[?) + f (EP)) : ", (7.28)
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(7.26)

(7.27)

where / @ is the Fermi=Dirac distribution function with the quasiparticle energy

El!;') = ES'e) + !'flz) - oH"'

and n is an average electron number per lattice site.

The conditions H# = 0 and ffi : 0 r'relds respectively

Ł""z (/ (E|?) cos2 d*o * l (Ei?) sio' ou") : p2 + c12 ', (7'30)

and

ł#z(' (u-) sin2 d1o 1 r (ai?) "o'' 
0*") : p2 + d'2'

,ko

Note that due to the Bogolyubov transformation

n^a, : n|"! cos2 0o, + nf) sin2 9ło -ł ź ("'r,Br" + B'r""*) s.,l201",,

,,r" : nY) sin2 91" ł r,f;")"o.' 0x" _ ! ("lo.Bo, + BL'*)sin2dło,

(7.2s)

(7,31)

(7.32)



with n (A,B)'ś.,- : d'"l,bor,n,"lt r, nfl _ of,,.oou, uod nf;J - 9L9o,. The particle num-

ber conservation requires

D (i^,f,^,+ lj*lł*):f {,,"*" łnst,):E ("'" *"P), (7'33)
źL,jp kq ko

which is authomaticaly obeyed in the sense of average y6trrę5. $imilaxly, due to the

Ęs. (7.32) and (7.30)'(7.31) one obtai''"

I 1 1 ...--
ón,: anrL<ał,> (7.35)

Ihd

= ź],*' (r (:'[?) sinź dło + f WĄ"o.ź ao") = f + d'ż,
rko

where na and n6 simpiy means tbe average nrimber electrons per lattice site in the

subiattices L and B and due to the Eq. (7.33) is reiated with tLe overaii average

particles mrmber n according to

,:'ot', :z(p, +d,r). (7.36)

Eq. (7.36) stricbly corresponds to relation (4.12) derived in the para.rnagnetic case.

Finally, the conditiors ffi: O 
""d #*: 0 provides

l,nt'(l (up)cos201o * l @'ł))'io'9u") 
:ł'o' (7'37)

and

# ; " (ł FrĄsin2 91" a l (al?) "o,'0.") 
:}ru"' (7.38)

(7.34)
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Note that due to the trnnsfornnation Eqs. (7.32) and the definition of the sublattice

magnetization ("f. Eq. (7.5)), ma = Mt and rns : Ma. Thus, the free energr (7.23)

takes the {orm

F.łr - :#t '' lt 
+ e-B('lz' ' ^1"")-"H"-/)lz1\/z- L l

ł#Ęn[l r" a(e''|")ln|") """ ")]

+f,1"*o-, +Ud,z +n(p - )oe - )oa)

1^ 1^
- lFsarnt - 1llssma.

(7.3e)

7.2.4 The free energ'y and magnetization at I{o-Q

At H" -* 0, the sublattices magnetization must be equal,

mA: |TLB = m) (7.40)

as well as the ss.mmetry conditions imply that lf] : lL'?, and )f] : )!'?. Th*, a""

to Eqs. (7.21) one obtains

)oa=)os=), (7.41)

PmA - PnB: Pm' (7.42)

Consequently, the band enerry renormaliztion factor q" Eq.(7.72) does not clepends

on a and takes the form

(ź - ał)' _ (t)' + 2d (t - d,) łT -Ę +E

and

(1-n+2&)

,F:ł-6\trf=d (7.43)
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Note that in the case of vanishing magnetization qo, reduces to one in the paramag-

netic case (cf. trq.(a.i7)). The Eq.(7.20) becomes now

€Lotan2?x,: o A ,

rvith haif of the Slater gap

L: Jzmł F-,

rvhich yields

e*qlL
sit20 * - a6 , cos 20ł" : +

7 + (ekqlL)2 | + (e1"ql L)2

The fonnulas (7 .44)-(7.46) allorv us to rwite Eqs. (7.24),(7.25) in the form

o@,P) t@,F) .. F(.,.0)Lko * r\i.o - I't - Lt. - ll.Jf '

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

rvherc

i(o.6\tti'-+

is the effective quasipańicle energy, and

\
tLel J - LL (7.4s)

is the effective chemicai potential.

Performing calculations arlalogues to those in the paramagnetic case (cf. Chapter

4), one finds that in the 1ox. tem.perature regime the free energy of the antiferromag-

netic phase is

Ftp E
NN

(qe1)2 + A2

(7.50)
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where the ba.nd energy per lattice site is

and the entropy

s
łrN

# - ,hD [al"'r (al"') * al''i (ulo')]

+f,1"^" +(,td2 +mB^, (7.51)

(7.5Ż)

(7.53)

: łnĘŁ,(ai')'r(al')
I 

-B-rDĘD- ('- r (al''))n (r - r (Ei"'))

Here, the Fermi Dirac distribution function /(E), is defined rvith the effective chem-

ical potentiai as follows

f (E) = ł@+;;l
Note, that the quantity B- plays a role ofthe molecular field, since it adds to the effec-

tive Ęeisenberg field Jz7nlf, a4d !n the qase J:0 (takea !n tle nrr41e1ical ąąalysis)

sq_nqt!!u!ęę ihę ęq!!rę g"p (sf. Ęq.(z,4Ó)). oł !bę wbs1ę, !bę fost lwa !ęI!qs !q (7,Ó1)

provide the cont1ibutiol to the thermodynamics co4lng fron the sing1e pą1t!c]e ex

citations in the S]ate1 subbands la.ving ene1gles fĄ, These qqasipąńicJe e-nergies

comprise the effective q}asg re4olq}a]ir,atio\ rnr /mo: 1/q' ątd the molecular field

f"., both to be dete11nined Ę a se]f-consiste4t 14a_nner Qetą!]ed be]orv, T 'he fie]d 0-
arises fron the 1ocal constrailts (3.9) and (3,10), (here additional1y decomposęd due

to the sublattice structures) imposed by the correlatiop5 l4duced by the htraatomic

interactions.

Finally, the sublattice magnetization Eqs.(7.37) or (7.38) takes now the form

(7 54)
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and due to the Ęs' (7.46) trarsfornu into

I 1 | .(d)\ Al
ż- - Nlzł lr (;l"') #ą 

_ r (;t L |-u l 
'- )FĄ]

7.2.ó The special case }Ę-0, f-6

(7.55)

In order to ewaluate the expression for the free energy, one needs fi,rst to express the

chernical potential FeyT as a function of the band fllling n. At zero temperature this

can be done exactiy.

Due to Eq.(7.28) one finds

, * ł,,I ll (;,i"') + / (e[e))]1\lz"l'L \ /

Assuming that the range of enerry for ba.re pańicles includes in the of band of

rvidth Ę i."., -T ś el ś T, Eq.(7.56) transforms into

(7.57)

v

I dtp(e) x
W_2

(7.56)

(7.58)

(7.5e)

yGą\ N)+ o (rłr - V[.r + 
^')]

where density of state frrnction for the bare pańicles

1 .- -.ple): nrm )' ó(t _ eł)'
', / . k

and Lhe steP furction 
[ , if r ) o,

o(r) : (

I o oth"r-i"..
\

Let as assume next that tr"ll ś 0 (for the sy--etric distribution of p(e), with gravity

center at zero this corresponds to the case with n ś 1). Therefore, the second term
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thein (7.57) vanishes authomaticaly. Assuming that p(e) : # ("t Eq. (4.33)),

remaining pań of the integral can be written as

v
ż

-!c2

-Ttt'l
I a, ,Firf + n, +r^t,-' t ud2 + mB^.I Y ''

-2

which shorvs clearly that there are two integration regimes for which O 10, namely

(7.61)

where

Thus, one finds that the relation betrveen the effective chemical potential

band fi1ling is

(7.62)

and the

(7.63)

The consideration of the case 7z > 1 is straightforward because of the electron-hole

symmetry.

It iq useful to transform the obtainęd formulas for the ftee enelgy And thę mag'

netization into the dimension]ess form. Namely, stańhg lrom Eq. (7.50)' at 7 : 0

ą4d 1ep]acing the summation ove1 k by t]re integration ove5 e4e1gies € oĄe obtąins

the formula

w_€o 
= 

'€o
f )- f ,]Ć 1 f-- t "-t t: --L I dt,'" J rr'', J w tMlzL

_v €o -v2

(7.60)

(7.64)
Far, 1N:-w

Similarly, Eq.(7.55) for the sublattice magnetization has the form
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-Yrr-"1ITAm-- I rtrw/? l-' r." '. t - 'tv \l (qe). + L2
=

(7.65)

Ttre above integrals can be evaluated by using standard iotegrds tables. Note that

integral appearirg in (7.6a) can be expressed tbrough the integral (2.65), i.e. through

the magnetization. Thus, finally we obtain the foilowing expression for the ground

state energy per site in the units of W, (f p: FaplNW) is

(7.66)

T\'t?rłil +2ud'Żr1,m (# -,*),
rvhere u = U /2W, and j = J z fW.

The evaluation of the integral (7.65) provides the following magnetization formula

* +(1.-n)2 -1t-n\rn : xln 2Luxth x: 
W.!E'+1-r (7.67)

The nex't step is to minimize the functional (7.66) with respect to the variables d

and zn. However, contrary to the paramagnetic case the free enerry functional cannot

be brought to the form explicit in magnetization zn. This problem can be solved

by mhimizirg fust the grou-nd state energr with respect to r and then, due to the

relation (7'67), expressilg m uźa r. So, the expression for the ground state energy

takes the fi.nal form

rvith the paJa-metels m and q determined respectively by tłre Ęs.(af30) and (7.43)'

The numerical minimization of the expression (7.68) allows rs to calculate d.2 and. m.

-łłGr - (#)'
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7.2.6 Chernical potential

Combining relations (7.a9) and (7.6:) one finds the chemical potential ir the form

(7.6e)

Since the numericai rninimization of (7.68) allows us to determine the quantities d2and

c for settled parameters: u, j and n, the only unłnown łariable in trq.(7.69) remains

). In order to find,\ one needs to make use of the two renaining minimum conditions,

namely ĘF : 0 ald u|+. 
, ' o. First of them yields" qP' oe

p :)+ F.s1 : A- 
V[' {Tr' -"Ł

o : 21(r)+2)+ 
[s 

(W).=rr.r*, 
o"=*-0"] 

*

+,Ę [tr{'r') 
/('r'))

Qenlining these tno above equations, one obtains

and similarly the condition ff : O, leads to

o : 2x1)e -l'(#).=rr-r*, 
*=r-".f*

):QO,

rvhere

€2o l:l

/{łuo)'+ ł'.]

(7.70)

(7.7r)

(7.72)

l/3o\ 1/3o\1a:'l\uf ) '; (a"/]" 'JT_ł|ł, ,z_n 4z'

a.nd

O : #ł [(' 
('y,) - / (uI",))

l

_2

(7.73)
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Next, replacing the surnmation in (7.73) by integration, and assuming that n ( 1,

one findś

-ł]Łv (l'.)) _'? [ a=ś:" '+ /(ł..)'l n'
Note, that in the ca-"e n: 1, chemical potential iz: ), while

differs infinitesimally from unity

(7.74)

for the cases rvhen rz

[^-o, r,, n- t'
'-l 

^.,o, !,łr n _Ii,
(7.75)

i.e. the discontinuity in the Fermi energy appears *-he:n n approaches half fi1ling ftom

be]ow or from above.. The conditions (7.75) al1orłs to disp1ay the effective Slater gap

and compare it with ihe previously obtained lvlott,Hubbard gap.

7.3 Fborn Slater to Mott picture

The discussed results are based on the numerica.l mi-nimization of the free energy (7.6g)

rvith respect to tłie lariab}es d and r. The ł"ariable ł, disp}ayed on Fig. 7.1, has a

physical meaning of the ratio of the slater gap to the renormalizecl band energy. The

grorving ratio a/(l'I/q) drives the system towards localization induced by a formation

of magnetic moments arranged in the sublattices, $-hereas the growilg rutio u f W

drives the system torards localization independent of magnetic orderilg. In result,

the present formulation allows us to single out the contributions coming from the trvo

factors. The magnetic enerry is thus measured with respect to the effective band

energy (- trł'q), renormalized by the Coulomb interaction.
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3
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2

1.5

1

0.5

Figure 7.1: The dependense of the rariable x :2LlWq from the interactiot U f U.

In Fig. 7.2 we have exhibited both the effective Slater gap 2A and the Mott-

Hubbard gap for n : 1. Those cha.racteristics are plotted for the ground state.

The chemical potential is then p(T : 0) : )' The Mott- Hubbard gap is expressed

through the difference in the chemica.l potential in the paramagnetic case (A : 0)

for n: 1.001 (the upper part) and for n : 0.999 (the lower pa,rt), and rvas discussed

also earlier [6]. For n : 1 the antiferromagnetic Slater split-ba'nd pictue appears

for arbitrary smal1 U, and A increases with increasing Ulu". Itt the limit UlU" - I

the gap is composed of the Slater and the Mott-Hubbard parts, and when U --* co

the former merges gradually with the latter. This can be seen explicitly in Fig.7.3'

where we have shown the ground state energy E/ (W'N) versus U lU". In the strong-

correlation limit the energy is determined by the kinetic-exchange contributiort - llU

q
-

N

n = 0.95

n = 0.925

n = 0.875
n = 0.85

U/UC
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0.5

U/Uc

Figure 7.2: 2LfW ań the Hubbard gap as the functions of interaction strength. The

Slater gap merges with the Mott-Hubbard gap as U lU. ---', cn.

[2]. Therefore, the energies of para- and antiferro-magnetic states a.re the same in the

U ---u co limit. The inset illustrates another interesting characteristic of the solution

namely' tłre magnetic gap is noź proporŁional to the magnetization, as one rvou1d

expect fuom the Ha:icree-Fock solution. In other rvords, the molecular field B- is a

nonlinear function of rn, since fuom the condition Al /AL :0 rve obtain the relation

z^lw : mql\Ę:ił. Abo, A-F'solution disappears a1together for n - 0.83. In the

strong correlation Limit the hinetic exchange contribution determines the free enerry

behavior a,1so if n ( 1, as shown on Fig. 7.4. Of course, in that case system is always

in the metallic phase.

Hubbord
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Figure 7.3: Ground state energy for (AF) state at n:1-rs. UfU. The ior-er curve is

the fit to the expression (-0.042 xU.lU).The inset displays the difference in behavior of

magnetic moment rn and half of the Slater gap (LlW), both plotted as a funciion of the

band fil1ing.

To visualize the difference between the magnetic gap and the magnetization we

have plotted i:r Fig. 7.5 both quantities as a function of the interaction strength

UfU" = Ul2trY, for di-fferent band fllling n. While for n : 1 the magnetic moment

Saturates gradua1ly wit}r growing UlU..,iŁ disp1ays a maximum for n < 1.This meals

that the holes in the lower Slater subband have a stronger detrimental influence on

AF phase in strong-correlą1iga ]irnit; their dyna'mics is incorporated coherelt}y in the

1ow-[/ magnetism \r'hen d2 >- (1. - n). The Slater gap for n : 1 obviously grows

- Uand this ildicates again that it merges with the Hubba.rd gap, which can be

ctrt-
(U
C
OJ
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-0.15
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Figure 7'4: Ground state energy for AF state vers.s U/u., for different band filings.

C')
i-
OJc
OJ

estimated analy.tically and is = U -W +4t/Wrle(U, + W2)) r:ry _ry.

The double occupalcy & : (nąni1} is shown in Fig. 7.6 for different barrd fill_

ings. It decreases conti-nuo'sly with grorving Ulu., i.e. the charge fluctuations are

gradually suppressed, while the magnetic moment behaves differently (cf. Fig. 7.b).

The difference in the behavior of d and rnis caused b1- the circ'mstance that the

d is of intraatomic nature, whereas ro is determined from the competition between

the magnetic enerry N p| (also of intraatomic nature) and the renormalized band

energy N wq (t.e. the processes frustrating the spins on sublattices). The inset to

Fig. 7.6 exemplifies the difference between the diminution of d with grosłing U/U.

for n: 1 in trvo situations. For paramag:netic (PARA) case d = 0 for U > Ę;this
feature is concurrent with the effective mass divergence at the Mott-Hubbard local-

n = 0.975

n = 0.925

n = 0.95
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ą:)
n=o'ałs

71.7

0.8

0.6

o.t*

o.2

o.B

0.6

o./,

o.2

u/u.

Figure 7.5: LlW (top panel) and the magnetic moment m: (nł - n;1) (bottom) versus

U f U" and for different ralues of n.

ization boundary [7]. This divergence does not emerge in the antiferromagnetic state,

as d2 approaches zero gradually in the sarne maJurer, as zn approaches saturation

(nz -+ 1). Therefore, we have disprayed in Fig. 7.2 the effective mass renormaliza-

tion rn* f ms : I/S as a function of UlU" for different n ralues. Agai_n, the inset

illustrates the difference with the n : 1 case. one should note that the enhancement

factor in AF state is very sma1l compared to that in pARA state, which is equal to

c
.o
(f
.!
a.,
C('l
tJ
E
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difference in behavior for para and altiferro-magnetic cases for n : 1.

Ils: lI - (U lU.)')-t. The difierence between AF and PARA states diminishes rvith

decreasing n, as in that situation the magnetic moment is rcduced rapidly. So, the

weak mass enhancement in the n : I can be associated rvith the appearance of the

gap. Also, the physical parameters d2,1-m, and 1-n are ail of the same magnitude.

This is easy to envisage when estimating e.g. the band narrorving q, wbich is in the

AF state roughly - 2d'Ż lG - rn2) and is of the order of unity.

In order to visualize the relativę contribution to the grourd state energy coming

from the Coulomb interaction t]ł and the magoetic tetm B*,.m, in Fig' 7.8 we have

plotted the difference of these two tenris. As one would expect, along with decreasing
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Figure 7.7: łn* f rng (ivith respect to the band value m6) vs U f U" and for the n va]ues

ęho*l. Thę !!sę! ęllswq ą 1athe1 węa\ enhą4ce14ent close to the Mott-Hubbard limii.

n tbe magnetic contribution disappears and the system turns to the behavior of the

paramagnetic metal. On the other hand, the closer is the system to the half filling, the

stronger is the magnetic contribution. Note, that in case n : 1 the system approaches

the Mott-Hubbard imulatirg state, as U .==' cx:.

Finally, in Fig. 7.9 we have displayed the stability regime n - U lU. of AF phase.

The inset has been obtained [8] in the ljmit of infinite dimension with the help of

quantum Monte Carlo simulation. One should note the regime of the fillfug n of the

stable AF phase is the broadest for U f U. - 1, i.e. when the molecr ar fie1d is the

strongest (cf. Fig. 7.5).

The Mott-localization is achieved gradually at T: 0 in AF state. In other words,

o
E
x
E

n;0.975

n = 0.95

n:0.925

u/uc
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n = 0.85 U/UC

=

F
d -0.2

I(\ -0.3
T
:)* -0./.
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Figure 7.8: Comparation between the magnetic and the Coulom term contributions to the

free energ'.

the present approach provides a continuous evolution ftom Slater to Mott insulator,

as shown e.g. in the bottom of Fig. 7.3. The same holds true even rvhen rve include

the intersite exchange (J > 0). The continuous evolution svith growing U fW does rrot

preclude the first order transition at nonzero temperature, as has been demonstrated

some time ego l9], and subsequently reconfumed in the limit d -- co [10].

In summary, in this Chapter rve have addressed tbe question of crossover from

Slater to Mott-Hubbard picture in the hal-f-fllted band ca-=e, as well as have discussed

detailed the behavior of quasipańic1e properiies il AF state il the nonhalf-fi1led band

case. Although our analysis is based on the saddl*point solution of the slav+boson

functional-integral approach, the results can serve as a proper mean-fie1d analysis,

n= 0.975



12r

0.95

0.90

0.85

5.0

U/UC

Figure 7.9: The stability regime of AF solution; the inset: results of Monte-Carlo calcula-

tions in the d -+ oo limil. [10].

since they interpolate betrveen those in the Ha.rtree-Fock approximation in the limit

U + 0 and those in rneąn-field approximation for the Heisenberg model (for n : 1) in

the U -+ ęp limit, Thrs they represent the basis for inclusion of Garrssian fluctuations

111] in a mag:netically ordered (AF) state close to the Mott-Hubbard localization.

Also, the full analysis of the N,Iott-Hubbard boundary should include the disordered

local-momcnt phase [12], not analyzed in the present thesis.
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Chapter B

Surnrnary and conclusions

In this thesis rrę b:l.,-. t]iscrissed propeńies of the Fermi liquid c1ose to the Mott -

Hubbard localLi\iion. ru r.el1 as have determined its transition to either correlated

liquid or to the sltift'uo'r,ag-netic phase. These results were derived within the mean

-field picture of d)r.el$teL1 narror.band electrons. Among the new effects determined

and discussed iu tlltr iirtsis are:

(i) The inp,.lrt-r:r(\) of the spil.split masses and the appearance of a nonlinear

molecu]ar field. s_s ri't']L ss their role in the physical propeńies of systems with almost

localized fermiors:

(ii) The instłrbilitr of the Femi liquid of a]most loca]ized quasipa.rticles agairrst

the non-Fermi-Iiquid stttte il al applied magnetic field;

(iii) The detemrinntion of the regime, in which the system exhibits metamagnetism

arrd di_fierentiĄ of tłre łbtm a metamagnetic behavior; and

(iv) A detailer.l discłlssion

fi1ling, and in prrticrrlłr, ol a

of the antiferromagnetic state for an arbitrary band

crossover behavior from the Slater antiferromagnetic

t25
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insulator to the lvlott-Hubba.r'd insulator with the grorving magnitude of Coulomb

interaction.

Apart from that, in the fust three chapters rve have sumuarized the slave bo

son approarh and with this tool rv-e have reproduced the older results of Gutzwiller

I{ubbard and Brinkma.u and Rice. Thus, the slave boson approach represents an

unification of the older concepts already on the mean-field level, as rve1l as allows for

a:r inuerpolation bcLrveen the Hartree-Fock ancl the strong-correlat,ion Limits (sce e.g.

Fig. 7.3).

A number of topics, which rvould make the present thesis more complete, have

nol been included. Among them probably the most important is the effect of quan-

tum Gaussian fluctuations on the antiferromagnetic state. Also, it seems interesting

to compare the corrections to the mean-fieid free energy (coming fuom the Gaussian

fluctuations) in the antiferromagnetic and paramagnetic cases, the nore so, since in

the mean-field approach we observe the separation between spin and charge fluctua-

tions in the paramagnetic phase, rvhereas in the antiferromagnetic case rve do not. ln

general' a closer look into the dynamical propeńies of a]most localized Fermi liquid

has to be carried out to determine the stabilĘ conditions for the saddle-point solu-

tions. The existing analysis of the Gaussian in the para.rnagnctic state [1] confirms the

stability of this state. lVork along this line for the antiferromagnetic phase is planed

foe the near future. Apań from that, the existing comparlson betrręen the mean-field

.slave-boson solution and the Mote-Carlo simulations [Z] spea.ks also in favor of our

picture. However, it mrut be said that even though the preseot approach reduces
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conectly to the Hańree-Fock approximation as far as the equilibrium properties are

concerned, it does not provide correctly the sum rule for the dynamical spectral func-

tion [3] in tbe Hartree-Fock limit. Thus, putting into agreement the static and the

dynamic propeńies in the weak correlation limit poses still a problem.
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