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Chapter 1

Correlated electrons in a narrow

band and their metal-insulator

transition

1.1 Introduction

‘The description of electronic states in solids involves two different calculation schemes,
which concern two physically distinct models, namely the Bloch-Wilson band theory
and the localized-particle model or Heitler-London approach. The band picture rep-
resents the electrons as almost free, described by the Bloch wave-function and moving
in an effective periodic potential . The interaction between electrons are expressed
through a self-consistent potential. Such scheme is successful in describing the elec-
tronic states of normal metals and semiconductors. On the other hand, the localized

D



approach provides a purely atomic description of solids. Contrary to the band picture,
the intra-atomic interaction plays then the crucial role. It is assumed that these in-
teractions are strong enough so that the electrons remain almost localized on atoms.
This model] successfully describes the properties of magnetic insulators, for which
the Heisenberg picture of localized magnetic moments is appropriate. One needs to
realize that the both above mentioned theories were based on the construction the
appropriate wave functions. So, it might seem ahnost impossible to construct such
a general theoretical description that would combine in one the nature of localized
and delocalized states. The more so, as it was originally presumed that the Heitler-
London and Bloch-Wilson schemes were just representing different approximations to
the same exact wave function. Mott [1] was first to suggested that the source of such a
description dichotomy may come not from mathematical difficulties, but rather from
deeper physical reasons. The essential points of Mott’s arguments were illustrated
on the example with periodic lattice of hydrogen atoms, each with one electron per
atom [2]. According to the Bloch-Wilson theory the systems with a partially filled
band lead to metals. As the lattice constant is steadily increased, the band theory
would still predict a metallic behavior while, in fact, it is intuitively expected that
for large values of the lattice constant one is left with an insulating system of almost
independent hydrogen atoms or molecules. In this manner, one encounters the break-
down of a conventional, one-electron band theory. In other words, within the band
theory a paramagnetic system with an odd number of electrons per atom should be
always metallic. Tﬁe other fundamental achievement of Mott analysis is the analy-

sis based on Thomas-Fermi approach to the screening of electron-electron interaction.



Namely, one can infer from it that electron correlation effects may lead to a first-order
transition between conducting and insulating states. Since the correlation effects de-
pend on the electron density, Mott determined the critical value of the density, above
which the metallic state is stable, and below which the proper ground state is that
of a magnetic insulator. Indeed, in practice the metai—insulétor transition may be
induced by change of pressure, temperature or a material composition. It occurs in a
wide variety of materials such as transition metal and rare-earth compounds, organic
salts, heavily doped semiconductors, amorphus solids and metal-ammonia solutions -
to name a few [1,2,3,4].

As an example of a compound whose properties cannot be explained by conven-
tional Bloch-Wilson band theory is MnQO. It contains five 3d electrons formula unit.
The band theory predicts then that MnO should be metallic. However, the room
temperature conductivity of pure MnO is 107%° (Q % ¢m) !, placing it among the
best insulators occurring in nature. MnO is thus an example of a Mott insulator. It
orders antiferromagnetically without any change in the nature of electronic states at
the magnetic transition. A large class of transition metal oxides such as V0z, V3Os,
V407, V504, Ti1203, Ti4Or, undergo metal-insulator transitions as a function of tem-
perature pressure or doping. In general, the mechanisms that govern those individual
metal-insulator transitions may be quite different. An alternative to the correlation
effects as a driving force of the transition may be lattice distortion, order-disorder
transformation, excitonic insulator formation [3] , etc. The theoretical interpretation
of these driving mechanisms behind some of these transitions still remains a chal-

lenging problem. This thesis is mainly concerned with the theoretical approach to



transitions driven by electron correlation effects in narrow band systems. The start-

ing point for this analysis is the Hubbard model formulated first in 1963 [5] , which

will be described briefly next.

1.2 The Hubbard model

The behavior of a system of IV interacting particles is determined by N-particle wave

function obeying the Schridinger equation

iﬁ.gg\l’(ﬂil,...,ﬂc}v) :H\D(iEl,...,.’EN). (11)

The Hamiltonian H is given by
N 1
H=) T(z)+s > Vi), (1.2)
k=

1 =1

where T'(z;) is a kinetic energy operator for a single particle, V' is the two-body
interaction potential, here taken as the Coulomb repulsive force. Of course, the
solution of the equation (1.1) is in general impossible to find. The reformulation
of the whole problem within the second-quantization formalism make it possible to
tackle. There are at least two main reasons for implementation of this method. The
first is that the statistical aspect of a problem is included authomaticaly through the
anticommutation relations for anihilation and creation operators. Thus one avoids a
procedure of antisymetrization of the wave function. Of course, in order to extract the
one-particle properties of a system one has to determine the proper Green function.
The second reason of expressing Hamiltonian (1.2) in the second quantization is that,

one can separate it into terms whose physical meaning is clear. Therefore, for a given



physical situation one can simplify the original problem (1.1) by retaining only the
terms that are of main importance and neglect all others. This is just what Hubbard
did when trying to investigate the effects of electron correlations in a narrow enérgy
band in the simplest situation. The terms that are retained express two dominant
processes, that is those responsible for delocalized nature éf the states and those

containing the short-range Coulomb repulsion between the particles. Usually the

model is written in the following form:

H = Z ccie +U Z Pty — Vs (1.3)

<ij>o i

where ¢;, and cfa are respectively annihilation and creation operators of an electron
on site ¢ with spin o - £1., and. ng, = c:fgqg is the particle number operator. The
summation over the < 45 > in formula (1.3) indicates that the hopping is considered
only between the nearest neighboring atoms. The last term in is the product of
chemical potential ;2 and total number of electrons N, and serves as a reference
energy for the system.

The first term in (1.3) is the so-called hopping term, since it describes the electron
transport through a crystal by hops of an electron from given atom to the neighboring
one. This one-particle interaction favors itinerant state of electrons as ¢ < 0. This
term describes also the chemical bonding in small systems. The second term describes
Coulomb repulsion between two electrons when both are on the same atom. In the
situation with the doubly occupied configuration this term yields an additional energy
U. There is a third factor, namely, the Pauli exclusion principle. The competition

between those three factors determines the overall system behavior and, in particular,
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the stability of various magnetic phases. .
There are two fundamental parameters in the model: the dimensionless ratio, ¢/U

(or equivalently, the ratio W/U, where W is the width of the bare band), and the

average electron density per site

= le Z< g = %; Z-( T By (1.4)

The total electron number, N, =5 (:Iacio, commutes with the Hamiltonian, the elec-

tron density is then a good quantum number and hence, the calculations at different

densities are independent. Another quantity that is conserved is the total spin of the

particles in the system

5 =38 = é S oo, (1.5)

igg’

where o = (0,,0,,0,) denotes the Pauli matrices. Thus the consideration of the
states with different total magnetic moments decouple. In the case when the sys-
tem is placed in the external magnetic field H,, the Hubbard Hamiltonian contains
the Zeeman term and then the ratio pgH,/t becomes another relevant parameter
(obviously in such treatment we neglect the Landau structure).

Depending on the value U/W the two characteristic limits are reached. In the case
of U.— 0 (the so-called metallic limit), one obtains a pure band behavior just due
to the overlap of the atomic wave functions. The Hubbard Hamiltonian reduces then
to a tight-binding Hamiltonian with the hopping integral ¢;;. The complementary
limit U — oo represents the so-called limit of strong correlations. There are no
double occupied sifes for n = 1 and each atom contains electron localized on it.

The system is called the Mott-Hubbard insulator. The intermediate range of U is



1t
of particular interest, since then U ~ W, ie. the competition between the band
effects and localization due to correlations is most acute. Moreover, the theoretical
description in this is not trivial, since the both terms in the Hamiltonian (1.3) are of
comparable magnitude. In the next paragraph we provide a brief summary of some

basic results obtained in earlier papers concerning the approximate solution of the

Hubbard model in the paramagnetic phase.

1.3 Hubbard III solution

The first quantitative treatment of the problem developed by Hubbard [5] was based
on one-particle Green function treated within the equation of motion method followed
by a decoupling scheme. Three fundamental features of the model were obtained that
way. First, the theory yields the exact solutions in the two opposite limiting cases:
U =0 and U — oo. Second, and most spectacular feature, is the appearance of the
metal-insulator transition. Namely, Hubbard in his third paper in 1964, [5] showed
that with increasing U/W ratio one encounters a critical value (UJ/W), above which a
single-band splits into two subbands separated by an energy gap, called later the Mott-
Hubbard or the correlation gap. Thus in a case of a half filled band (i.e. for n = 1)
and in a region of U/W > (U/W). ~ 1, the lower band is completely filled while the
upper is empty. The system is in the insulating state. Since the gap decreases slowly
to zero with decreasing U/W ratio, the insulator-metal transition expressed in the
Hubbard’s scheme (contrary to the Mott prediction [6] ) is continuous. This gradual

character of the transition at temperature T' = ( could be due to the complete neglect
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of interatomic Coulomb terms, i.e. disregard of the screening effects invoked by Mott
that made the sharp transition possible.

The original Hubbard solutions was analyzed (and criticized) by other authors.
It was pointed out by Edwards and Hewson [7], that even in the metallic phase (i.e.
for U << W) the Fermi surface is not properly defined. Next, since the Hubbard
restricted his discussion to spatially uniform solutions, the magnetic effects were not
taken into account. The simple decoupling scheme also fails to reduce to the Hartree-
Fock approximation in the limit of week interaction [8]. This is because, strictly
speaking the Hubbard solution is exact only in the limits: U = 0 or ¢;; = 0. Also, the
Hubbard results are in contradiction with the exact results of Lieb and Wu in one
dimensional case [9]. In genefaL one needs to use a self-consistent method that allows
for a determination of the system ground-state energy in the mean-field approximation
and then calculate the fluctuation corrections around that state. The next section
1s devoted to discussion of the Gutzwiller solution, i.e. to the variational method
proposed first by Gutzwiller [10]. This allows to determine the ground state properties
of correlated electrons and define the order parameter characterizing the metallic
phase. Also, it will be shown later that this approximate solution corresponds to the

mean-field approximation within the slave-boson approach in the paramagnetic case.

1.4  Gutzwiller solution and the quasiparticles

The simplest non-perturbative, mean-field solution is provided by the Hartree-Fock

approximation. This approach is based on the assumption that for a, given operators
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a, and @, we neglect their correlation fluctuations, i.e. put
[’c'EI— < 31 >] [ﬁz— < ag >] o 0,. (16)

where < @; >,< @ > are the mean field value of the relevant operator in the non-

interacting ground state. So, the two-particle interaction is replaced by effective

single-particle term, namely
U Ty ™< T >+ <TG >a— <ap ><ay >. (17)

It is well known that with the increasing Hubbard U, the Hartree-Fock solution
favors a magnetic state [11]. To understand the reason for this, it is convenient to
express the repulsive Hubbard term in terms of the particle number operator n:, and
the magnetization m; = 257, where S} is the z-component of the spin operator and

expressed in the second quantization representation takes the form S7 = (ni, —n)).

Thus ni; = n; — 0S7, where n; = > _ni,. We choose the energy scale in such a way

that p = 0. The Hubbard Hamiltonian (1.3) takes the form

H=t Y dyto+ % > (n?-md). (1.8)

<ij>o i
The form (1.8) shows that fluctuations in the local density number n;, causes an
increase in repulsive energy, whereas the onset of magnetic moment leads to the
lowering in potential energy and hence might be stabilized. In the Hartree-Fock
approximation the term in the electron density is in fact irrelevant, since it leads only
to a constant shift of the total energy. The important contribution, however, is the
magnetization, which provides a proper order parameter for the problem. Indeed,

the appearance of a molecular field, H,, ~ U{m;), favors moments orientation in
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a spontaneously chosen direction. The system is ferromagnetic if such a magnetic
moment is spatially homogenous. For band filling n, the Hartree-Fock approximation
gives the probability of finding two electrons on the same lattice site, (A;,7;) =
in®. In the limit U >> t, this causes the strong enhancement in total energy of
the system through the contribution of ;Un*. Thus the system is forced to order
magnetically, since the magnetic moment formation ({m;) s 0) correlations reduces
the Hubbard repulsion. Gutzwiller showed [10] that there are already correlations in
the paramagnetic phase, which reduce energetically expensive Hubbard repulsion. To
realize that he considered a trial wave function for the ground state by starting with

the Bloch function ¥y, for non-interacting electrons and then reduced the number of

doubly occupied sites by means of a projection operator. The wave function for the

correlated state, W, is assumed as

| e) =[] (1= (1= g)nemy | Wo), (1.9)
where g, (0 < g < 1), is the parameter that needs to be determined variationally.
State | Wo), is the uncorrelated state that corresponds to wave function Ug, namely,
the Slater determinant of Bloch wave functions (transformed to the Wannier repre-
sentation). The operator n; n; , has a value of unity when site ¢ is occupied by the
electrons with spin up and down, or has a value of zero otherwise. Thus, in the sense
of the system average configuration, the state with double occupied site has assigned
a welght of g. For g = 1, according to (1.9), | ¥¢) reduces to the ground state of

uncorrelated system | o). In the opposite limit g = 0, ground state is the state where

no doubly occupied sites are included. The variational parameter g, furnishes as a
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measure of correlation effects and my be determined by minimization of the ground

state energy. Using the fact that ik = n;,m;, has eigenvalues one and zero only,

relation (1.9) may be written as

| We) = P | o), (1.10)

where D =5 f)i, is the total number of doubly occupied sites. To find the ground

state energy one needs to evaluate the following expression

(Ve | H | Y6)
By (?IIG o) (1.11)
) (Vg | cocia | ¥6) U S (To | nims, | Ve
(T | Ta) " (Te | Te)

Due to the fact that | ¥¢) is an eigenstate of the number operator, the interaction
term in (1.11) simply gives the value of UD, (D = (¥¢ | D | ¥¢)). The whole problem
reduces to the evaluation of the matrix elements of the kinetic energy and the norm
of the wave function. Finally, one finds that both searched quantities namely, the
matrix elements of the kinetic energy and the norm of the wave function are written
in terms of determinants. After some assumption concerning the n-th order density
functions and phase relations between different spin configurations the problem were
reduced to pure combinatorics. The strength of this method, holwever, relies on an

extremely simple expression for the ground state energy (per site) that comes out,

namely
A :Z Qo-('f}) £+ Un. (1'12)

were 11 = % is the fraction of doubly occupied sites and appears as an another
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variational parameter. Also, the average energy per spin in the uncorrelated state
_ 1
E =t Z (Tolel,cio|To) = > (k) <0, (1.13)
<1, >0 [k|<kp,o
where k,, is a Fermi momentum in that state. The quantities ¢, in (1.12) are the dis-
continuities in the momentum distributions function at the Fermi surface of correlated

system and are given by

(Voo —mA =t m + /ol —m).

ne(1 — ng)

g, = (119)

So, the expression (1.12) still needs to be minimized with respect to n . Note, that
since 0 < n € ng,nz, for o = +£1, ¢, < 1 (g, = 1 only if U = 0). Thus, along
with decrease of doubly occupied sites the kinetic term is reduced through the factor
Js, which means that the effective electron hopping turns out to be energetically
unfavorable. One of the most spectacular feature of the Gutzwiller solution was
discussed by Brinkman and Rice [12]. They note that for a half-filled band (n = 1),

n, =n, and g, = q, = g, (i.e. in the paramagnetic state) we have that
qg=38n(1—2n). (1.15)

Next, minimizing the ground state energy (1.12) with respect to 7 they obtained the

set of predictions:

) = i(l _g) (1.16)
g = 1_(%)2, (117}

B U\?
T?' = 5(1—?) , (1.18)



ik
where U, = 8 | € |. This clearly means that at critical value U = U,, the probability
n of double occupancy vanishes. At that point there is no contribution to the energy
coming from the kinetic energy as well as from the interaction term. This indicates
that the localization of the particles and consequently the metal-insulator transition
takes place. The above authors also showed that both the effective mass ratio m” Jmm,

and spin susceptibility x., are enhanced as U — U,, namely

SF. SR T (1.19)

and

L 1 (Le-gm)?
% =) TR T Uen) 0 ) (120

Here p(e,) is the band structure density of states at the Fermi energy level. Thus as

U approaches U, both, the susceptibility and effective mass have a divergent factor
1/(1— (U%)Q) The divergence of x, as U — U, indicates that we approach a true
phase transition.

Much effort has been undertaken to generalize and simplify the Gutzwiller scheme.
Ogawa et. al. [13] showed that the approximation made by Gutzwiller concerns the
dependence of the energy expectation values on spins configuration of the wave func-
tion. In other words, it was shown that Gutzwiller results for the kinetic energy may
be reproduced if the nearest neighbor configuration are specified but all other spatial
correlations are neglected. Razafimandimby [14] showed that a simple factorization
procedure equivalent to one-site cluster expansion reproduce the Gutzwiller’s result
for the ground state energy in the case of paramagnetic, half-filled case. It was also

shown [14] that in the case of two-site cluster expansion Gutzwiller’s results becomes
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exact in the asymptotic limit of infinite lattice dimensionality, while in three dimen-
sions gives only very small corrections. In one-dimension case Kaplan, Horsh and
Fulde [15] showed that the ground state energy when calculated exactly due to the
Gutzwiller ansatz, Eq.(1.9), in the limit U >> ¢ yields F = —at?/U, which is coher-
ent with the result obtained by Lieb an Wu [9]. However, due to thé earlier paper of
Bonner and Fisher [16] the value of the coefficient a is too small compared with the
exact result. Thus, Kaplan et al. [15] removed this discrepancy by introducing sec-
ond variational parameter. Vulovié¢ and Abrahamé [17] introduced a very transparent
combinatorical technique that allow to obtain easily well known results for the Hub-
bard model, as well as it can be extended to approach the ground state energy for the
Anderson lattice model. Finally, Vollhardt [18] has provided a very lucid discussion
devoted to the Gutzwiller approach and redefined it in the Fermi-liquid context.

The most elementary way of recovering the Gutzwiller’s results for the case of
half-filled band is shown by Spalek et al. [19]. They assumed that the expectation
value of the ground state energy per lattice site in the paramagnetic case is

E
T? = ®(n)E + U, (1.21)

where 17 =< 7.7, > is a fundamental parameter that must be determined variation-
ally by calculating the balance between the kinetic and potential energy term. ®(7) is
a function that describes a motion of electrons exposed to ’on-site’ Coulomb repulsion
force. In order to determine ®(n) it was assumed that it may be approximated by

the Taylor expansion terminated at the second order term, namely

®(n) = fo+ fin+ fan. (1.22)
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The coefficients fg, f1, f2 can be determined due to the boundary conditions for the
limit cases [/ = 0 and 7 = 0. Then, by minimizing the energy (1.21) with respect to 7
one obtains already well known results (1.16),(1.17),(1.18). Although the assumption
(1.22), concerning very simplified structure of the ®(n) function in general may lead
to quantitatively incorrect results, at least in the region of -Very small 17 one may
expect the validity of assumption made, as one may really observe so. On the other
hand, such a simple scheme demonstrating the metal-insulator transition realizes that
n plays the role of relevant order parameter.
Apart from the discussion of Brinkman and Rice, one can make an additional
observations based on the Gutzwiller’s solution. Namely, Spalek et al. [20] assumed

that one can introduce individual quasiparticle states, which have energy

Ey = ®(n)es. (1.23)

So far ®(n) played the role of so called 'band narrowing factor’. This terminology
is quite clear due to formulas (1.21) and (1.18). In the limit ® — 0 an effective con-
tribution from the hopping (kinetic) term vanishes, so the metallic phase disappears
also. Obviously, the band energy (1.18) can be obtained by using the relation (1.23)
as a definition of renormalized band spectrum. However, one needs to realize that
now one can reinterpret the overall system behavior starting from the concept of qua-
siparticles as particles with renormalized energy. Such a reinterpretation determines

automatically the value of band energy for non-zero temperature (7' > 0) regime,

namely

E
WB =Y B (1.24)
ko
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where

1
fuo = SEmpT (1.25)

as these quasiparticles are assumed to obey the Fermi-Dirac statistics with the dis-
tribution function fy,. Furthermore, such a description of the interaction shows the
principal difference with respect to the Landau Fermi-liquid théory{ Here the effec-
tive mass is determined by self-consistent, variational calculations. For paramagnetic
half-filled case @ coincides with q,, Eq. (1.14). In general, the discontinuities in the
single-particle occupation number at the Fermi surface can be easily related to the

quasiparticle, spin — dependent, effective mass m?, namely through the relation

=—. (1.26)

The idea of the renormalized quasiparticle mass due to the electron correlations
appears in a natural manner in the more recent, functional integral approach, pro-
posed by Kotliar and Ruckenstein [21]. This theoretical formulation will be discussed

in details in the next chapter and is one of the main features of this thesis.

1.5 The aim and the scope of the thesis

The Hubbard model describes electronic states of a simple narrow band system of
interacting fermions. As outlined above, the model provides the two opposite limit
cases: first, the so-called metallic limit and second, the limit of strong correlations,
which in the case the half filled band, as well as for U > U, leads to the Mott

localization transition. The metallic state is the termed the almost localized Fermi
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liquid, by we understand the fermion system which is in the metallic phase but close
to the border of the localization. In the case close but away from the half filling,
i.e. for n # 1, the localization does not occur, and we say that we deal then with
the almost localized fermions. The call ’almost localized’ can be better understood
in the light of the quasiparticle interpretation of the Hubbard model. Eqs.(1.19) or
(1.26) shows that the effective mass of the quasiparticles provides a natural measure
of the effective fermion interaction. The more heavy are the quasiparticle’s masses
the lower is the free energy contribution coming from the kinetic part and the system
gets closer to the localization threshold. At the localization boundary the effective
mass is divergent.

The thesis concerns mainly the mean field solution of the Hubbard model in the
paramagnetic and antiferromagnetic phases, as of magnitude of interaction and for
an arbitrary band filling. Additionally, we describe metamagnetism for an arbitrary
band filling and a transition to a non-Fermi liquid in an applied magnetic field. We
start from the brief theoretical introduction (Chapter 2) in which we summarize the
saddle point approximation as well as the representation of the fermionic degrees of
freedom by the Grassmann variables.

The mean field solutions discussed in the thesis is formulated starting from the
auxiliary-field method, the so called slave-boson method, which applied to the Hub-
bard model allows to eliminate exactly the fermionic degrees of freedom via functional
integration over the Grassmann variables with the relations between the Fock-space
representation for fermions and bosons.

In Chapter 4, we show how the mathematical tools described in Chapters 2 and
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3 allow to derive the system of the self-consistent mean-field equations in an applied
magﬂetic field H, describing the average number of doubly occupied sites in the form
of the algebraic equation with the parameters u = U/?VV, n, and h = pgH,/W.
This in turn allows to illustrate easily the dependence of various physicai quantities
on the mentioned parameters. Namely, in Chapter 5, we discuss the concept of
the spin-dependent effective mass and related to it de Haas-van Alphen oscillations
with quantum beats, as well to determine the nonlinear molecular field induced by
electronic correlations.

The metal-insulator transition (discussed earlier) may occur, of course, only for
the half-filled band case n = 1. However, in the applied field and, for n # 1,0ne
may encounter another type of the fermionic quantum liquid, which appears at the
metamagnetic point, when the Fermi liquid of almost localized fermions becomes
unstable. This Fermi liquid instability against, the so-called statistical spin liquid is
discussed in Chapter 6.

Finally, in the Chapter 7, we discuss in detail the mean field solution of the Hub-
bard model in the antiferromagnetic phase. In particular, we determine a crossover
from the Slater to Mott-Hubbard picture of an antiferromagnetic insulator. We also
discuss the principal characteristics of that phase such as the Slater gap, the magnetic
moment and the ground state energy.

As said above, the present thesis is based on the mean-field slave-boson picture
of correlated narrow-band electrons. The main emphasis is put on the quasiparticle
picture of the resul%:ant Fermi liquid and its instabilities against the Mott localized

state (for n = 1) or against the correlated spin liquid (for n # 1). We offer a coherent
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picture of almost localized fermions not elaborated in detail in the literature. The
results of the thesis have been published or submitted for publication as a series of

papers [22-27].
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Chapter 2

Path integration method in

quantum statistical mechanics

One of the most serious problem in the theoretical physics is the description of the
interacting quantum many-body systems and their phase transitions. In order to
describe many-body problems one needs to solve N-particle Schrodinger equation
(1.1). As it was already mentioned in Chapter 1, the problem is usually impossible
to tackle this way. A new formulation of that problem is provided by the second
quantization method combined with the functional integration. This methods will
be used through this thesis and follows the book by J.W. Negele and H. Orland [1].

Below we summmarize briefly the necessary tools and afterwards.

27
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2.1 Coherent state representation for bosons

The main purpose of introducing the coherent states is to obtain the analytical ex-
pressions for the transition amplitudes of many-particle system in the situation when
operators are written in the second quantized form. The coherent state |® > is defined
as a vector in the Fock space, which is an eigenvector of the annihilation operator. It
is defined by the following expansion

1P >= Z Oray, oy | T+ Mene > (2.1)

Tiky - Pkn o
Here |ng,...ng,... > denotes a normalized state with ny, particles in the state [k >,
nk, particles in state |k2 >, etc; {|k >} is one-particle orthonormal basis. The

summation in (2.1) runs overall possible values of ny, ...nk,,...

Since the state |ng,...nx ... > expressed in the second quantized form is

Jr nhl 1_ lep
(akl> (akp) 10 (2 2)
k1"'nkp"' s en o >, g
1Iﬁ.kli «,"'nkp!

1 ,__nkp___in Eq.(2.1) are related to the single particle basis. By defi-

in

the coefficients ¢,,,
nition, the factorization of qz.’nnkl___nk"_” yields
@) (#)
gsﬂkl...ﬂkp. — \/' \/— (2.3)

so the state (2.1) may be rewritten in the form

’ 1_ I'l.],;1 1‘ lep
(@k @kl) (@kpakp)
| = E :

nkli nkpl

g0
o B }‘io s (2.4)

ﬂkl...ﬂkp...
where ¢, is the eigenvalue belonging to az. In the case of bosons, when there is no

limit for particle occupation number in a given state, i.e. 0 < ng,...n,... < oo, the
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relation

is authomatically obeyed. The coefficient ¢,,,

... are complex number, or equiva-
G

lently, each of the ¢, commute with one another, i.e.

(6,1 $ny] = 0. (2.6)

In the case when expansion (2.1) is to represent a fermion state the situation is more
complicated. Namely, let us assume that we have succeeded in constructing such a
state |® >, which fulfills the condition (2.5). Since the operator a;, is now the fermion
annihilation operator < ® |agar| ® >= 0 = ¢;. Thus if ¢, is different from zero, it
cannot be any longer an ordinary number. The coefficients ¢, become now so-called,

Grassmann variables, i.e. they obey the anticommutation rule

[(‘bnk’gbﬂz] + =Bk

Their properties are going to be discussed next.

2.2 Grassmann variables

The anticommuting variables, called the Grassmann variables, are defined by a set of

generators {1}, k = 1,2, ...,n, which anticommute with each other, i.e.

M+ M = 0. (2°7)

For the particular case [ = k we have that
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which asserts that there is no two particles carrying the same quantum number k in
the coherent state |@ >.

The important thing is that in order to use the Grassmann algebra there is no
need to know the concrete analytic representation for generators {7, }. It is suflicient
to know general algebraic rules, by which these anticommuting entities are governed.
The differentiation and integration with these numbers are pure mathematical con-
structions and along with above mentioned rules may be viewed as a set of definitions.
The most important results concerning the Grassmann numbers are listed below.

A generator the nj is called to be conjugated with a given generator 7, , if for any

complex number ¢ occurs
{em)™ = ", (2.9)

and for any product of generators

(Mea T )™ = Mo MMy (2.10)
The last rule means that the Grassmann conjugation is analogous to Hermitian con-
jugation.

Due to the Eq. (2.8) any function defined on this algebra must be a liner function,

Le.
F(n) = ¢y + am- (211
Similarly, an operator expressed in the fermion coherent state representation will be

a function of 7* and 7 which must have the form

Aln*,m) =co +am+can” + cian™n. (2.12)



31
A derivative from a Grassmann variable function is identical with derivative of
complex variable function. The exception is the derivative operator 8—‘9;) must act on

variable n directly, otherwise 7 has to be anticommuted through until it is adjacent

a : .
to & For instance:

a * _ﬁ‘ _ * — g *
377(77 n) = 6‘77( m') = 1" (2.13)

In the case of integration there is no analog with the Riemann integral for ordi-
nary variables. However there is a correspondence to the integration over an exact
differential form of the function that vanishes at infinity. Such an integral is simple

equal to zero. Thus one define the definite Grassmann integral

/dnl = (2.14)
since 1 is derivative of 1, and

fdm; =1 (2.15)

since 7 is not a derivative of any Grassmann function. Egs. (2.14) and (2.15) holds
the same for conjugated variables and like in Eq.(2.13), in order to apply (2.15), one

has to anticommute the variable 7 as required to bring it next to dn.

The integration rules performed above leads to the useful formula for the Gaussian

integral. Namely, if my,; is a positive Hermitian matrix, then

/ H andnke_gnkam = det(m). (2.16)
K

This property is crucial for further analysis performed in Chapter 3.
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2.3 Fermion coherent states

Due to Eq.(2.1), any fermion state |{®r > is a vector of a generalized Fock space since

the expansion coefficients are now Grassmann numbers. It is defined
~¥nxal t
|0r >=e % J0>=]] (1 —mal)l0>. (2.17)
k

In order to operate on expressions containing combinations of Grassmann variables
and creation and anihilation operators, as well as to obtain the results analogous to

those obtained for bosons one needs additionally to assume that the following relations

are fulfilled
7,4, =0, (2.18)
and
(7a)t =@, (2.19)

where 7 is any Grassmann variable out of {n, 7"} and @ is any operator out of {a,a'}.
The properties of Grassmann algebra outlined above along with the definition of

the fermion coherent state provides

0@ >=1,|0p >, (2.20)

and similarly for the adjoint of the coherent state is

< ®plal =< ®p|n}. (2.21)

The scalar product of two coherent states, like in the boson case, has the form

ZT “ fh
< Op | O >=eF " " (2.22)
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Relations (2.20)- (2.22) shows that a matrix element of an normal-ordered operator
A(al, a) between coherent state is
t ’ E"TL’TL %
< Pp | Ala},a) | D >=¢€e* = "A(n*,n). (2.23)

It can be shown that the unity operator in the physical Fermion Fock space,

written in the form of coherent states is

1= f 1 diftdne £ | i bk B |, (2.24)
k

which shows the overcompletness of coherent states in the Fock space, since due to

the choice of the state | & > is not unique. Thus Eq.(2.24) allows to express any

Fock space vector |Ur > in the form

e >= [ T] dnidme & p(6) ) @ >, (2.25)
k
where
Y(¢*) =< @p|Vp >, (2.26)
is the coherent state representation of the state | ¥p > .

Finally, if {|n >} is a complete set of states in the Fock space, then the trace of

an operator A takes the form

Trd = Z< n|Aln >

_E »
== /H dnrdn.e * e Z< n|®p >< dp|A|n >
% k3
i — 23k
- /Hd-qkdnke T B A[Dr > . (2.27)
k

The sign (-) that appears in the matrix element in the 2-nd equation comes from the

fact that the states |®p > contains Grassmann numbers, so replacing by positions
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those two matrix elements leads to the change in sign of the whole expression.. Con-
sequently, this will lead to antiperiodic boundary conditions, which fermion states
have to obey when a partition function is calculated in the form of Feynman path
integral.

The fermion coherent states are not contained in the fermion Fock space and, since
they are not physically observed, there is no correspondence between them and any

classical field. For instance, the expectation value for the number operator expressed

in terms of Grassmann numbers is

<(I)p|ﬁ‘®p - Z 4
= ET ks

2.28
= (I’qu)p > ( )

k

so, the concept of the average number of particles in a fermion coherent state is
meaningless. However, fermion coherent states are very useful in formally unifying
many-fermion and many-boson problems. Moreover, the path integral method dis-
cussed next, allows to get rid of the fermion degrees of freedom in cases when a

Hamiltonian is a bilinear form in Grassmann variables. Thus, one is left only with

the boson fields, which supply the final, physical results for condensed quantum states

and their dynamic properties.
2.4 Functional integral representation of the par-

tition function

Relation (2.27) allows to write the many-particle partition function in the form

e T _—
7 = Tre—AB-n8) _ / [T o6, " < ¢olerBrD)p 5, (2.29)
q
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where ¢ = 1(—1) for bosons (fermions). Of course, in the latter case the integration
variables are the Grassmann numbers. The matrix element in Eq. (2.29) may be

viewd as the imaginary-time transition amplitude, however, between the states with

imposed periodic boundary conditions for bosons

Gomt = P05 (2.30)

or antiperiodic boundary conditions in the case for fermions

qu,M - “%,0:

where ¢, (¢, ) denotes the appropriate fleld variable taken at the initial (final),
imaginary-time moment T =0 (v = M).

Expressing this transition amplitude as the Feynman path integral, one finds that
the resulting partition function is

Z = lim_ [ HH dgbqkdgb e 5@ (2.31)

k=1 gq

where

S(#*¢) = (Z & ( Q%M ﬁucqsq,M) +H(¢q1,<¢q,M>) (2:32)

+& Z (Z Pk (;M #Q')q,k—l) + H(¢;,ka¢q,k—1)) :

Thus in the functional-intergral notation the partition function takes the form

Bk
R G PLACIC S RERORCHOLAO)

2 e f DS (D)2, e (2.33)

$4(8)=c8,(0)

The correct evaluation of expressions (2.31) or (2.33) is done by performing the

path integral over the action S discretesised with respect to M imaginary-time steps
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and then taking the limit M — co. However, the Hubbard model discussed in the
thesis is a purely fermionic model. The partition function (2.33) performed in this
case will contain only the Grassmann variables, which due to the Hubbard interaction
term can not be integrated out. Thus, the next chapter is devoted to another Fock-
space representation, called the slave-bosons representation, in which by introducing
new Bose and Fermi auxiliary fields, the Hubbard model becomes exactly integrable
over the fermion degrees of freedom. The resultant expression in Bose fields is still
to be evaluated by one of the many-body technique. In the simplest case of the
saddle-point approximation the physical free energy is evaluated by minimization of

the corresponding Bose functional with respect to the amplitudes of the condensed

fields.
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Chapter 3

Slave-boson representation of the

Hubbard model

3.1 Representation of Kotliar and Ruckenstein

The Hubbard Hamiltonian (1.3), is
H :Z tijCzTJCjU = U Z CITQ;CLC’EU (31)
ijo %
where the Hilbert space H, is a tensor product of Hilbert spaces H;, namely, H =
‘H; ® Ho @ ..., where H; can describe up to four electron; the corresponding Fock-
states is assigned to every lattice site ¢ contains the configuration: unoccupied, singly

occupied with spin up or down, and doubly occupied. This can be written briefly as

Hi = {101')}7)1) ‘ 'T-i}pha ] li}ph) | Tii>Ph}> where

|0} =1 0), (3.2)



40

is the state with no electrons (empty site), and

[T = ¢ 10), (3.3)
| Lo)pn cl 10y, (3.4)
| Tlf>ph = CLCLI 0). (3.5)

The four-fermion term appearing in (3.1) causes that the integration over Grassmann
variables, when determining partition function, cannot be easily evaluated. Thus, the
method of the functional integration can not bé applied directly in this case. One
needs to find another Fock-space representation, in which all the fermion degrees of
freedom can be exactly integrated out .

In order to comstruct such a representation, let us assume that the physical
processes due to the electron-electron interaction can be described in the Hilbert
space rather then H. Namely, the new Hilbert space H', with the vacuum state |vac),
will contain fermionic as well bosonic degrees of freedom. Let us denote any state
of the original Fock representation (3.2)-(3.5) as |ph(n):), where n =0, 14,1}, 2, cor-
responds to the state with a different fermion occupation number . Similarly, let us
denote by |sb(n);) an n—fermion state in the new representation. Since our main aim
is to evaluate the partition function Z, it is sufficient to demand the equivalence of
both representation in the sense of equality of corresponding matrix elements of the
Hubbard Hamiltonian, evaluated between the corresponding states of both represen-
tations, namely

(ph(n):| H|ph(m);) = (sb(n):| Ha|sb(m);) , (3.6)

where H is simply the Hubbard Hamiltonian in the form (3.1), and Hy, denotes the
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Hubbard Hamiltonian written in the new representation that belongs to H'.
In the spirit of representations equivalence condition (3.6), Kotliar and Ruck-
enstein proposed the representation in which, to each of the four different fermion

physical states we ascribe a different Bose field. In other words, we make the following

mapping:
|0« | 0y = el | vac), (3.7)
| Tdpn < | T = flol, | vac), (3:8)
| L <= | L = Fipl, | vac), (3.9)
[Tl | Tlag = flfldl | vac). (3.10)

If one neglect Bose fields .operators: el pJTf, pl or d, the resulting fermion representa-
tion is identical with the initial one (3.3)-(3.5). However, since the physical state is
represented by a combination of fermions and boson operators, the quantities f;,, fi,
are pseudofermion fields and the fields e, p,, and d are auxiliary Bose fields. This is the
Kotliar and Ruckenstein [1] representation. In order. to express the Hubbard Hamil-

tonian in the new representation, one derives the following correspondence between

the operators

t wzjcrf fJO' for 1% 7, ) " t t
il — with  Zje = ;P50 + Pizdy, (3.11)
fzj;;-fio fOT i= ja

and
Ty, — dld;. (3.12)

The above relations are easy to proof assuming that we consider only the physical

states (3.7)-(3.10). The Hubbard Hamiltonian written in the Kotliar-Ruckenstein
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representation takes then the form
Ho=) tZ,Zefhfic+U Y didi—p Y fl fo, (3.13)
ijo i io
where o = {T,]}. So, the new Hamiltonian He does not contain four-fermion oper-
ator term any longer. Instead, it contains fermion-boson interaction in the hopping
part. What is more important, (3.13) represents a properly defined field-theoretical
model of interacting fields for an arbitrary value of U.

By replacing the Hilbert space H of fermions, by the Hilbert space H'of pseudo
fermions and auxiliary bosons, we have introduced additional states, which are not
physical. In order to guarantee the physical meaning of H' one needs to impose
constraints. To determine these constraints one needs to specify the characteristic
features of the representation (3.7)-(3.10). First, each state on site 7 is occupied by

one boson only, which may be expressed as a completeness condition
ele; + pl pi, + ol pi, +dld; —1=0. (3.14)

Next, with each single fermion field f, we associate one boson field p,. On the
other hand, when site i is doubly occupied by spin up and down fermions, we associate
with them one spinless d boson. These conditions are insured by the two more

constraints, namely for ¢ = {1, |} we have

i Fio — Plepic — did: = 0. (3.15)

The number of introduced additional bosonic fields is four. On the other hand,

there are only three constraints, so one has an additional degree of freedom left. Thus,
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the form of the Hamiltonian (3.13) is not unique. Any transformation defined as
Eia — Zig = UiaEiJMUy (316)

which does not change the eigenvalues and eigenvectors of the z;, leads to the equiva-
lent Hamiltonian and the same energy spectrum as long as the constraints are treated
exactly. Effectively, one is left with one boson field which has to be determined vari-
ationally. We chose the field d for that purpose.

The mean-field approximation used in the following satisfies the constraints only
on average and leads to different results, depending on the special choice of z;,. In
other words, the transformation (3.16), which may be called the gauge transformation
for the Hubbard model in the slave-boson representation, makes possible choosing the
ground state properties and next to calculate quantum fluctuations around that state.
The special choice of z;, made by Kotliar and Ruckenstein 1] will be discussed in the
next section. In fact, if one evaluate all quantum corrections it is assumed that the
final result is independent on the choice of z;,.

In contrast to the original Fock representation, Eqs. (3.2)-(3.5), the slave-boson
representation (3.7)-(3.10), does not express the spin-rotation invariance of the Hub-
bard Hamiltonian explicitly. In order to include this symmetry Li et al [2] introduced
the generalized, spin-rotation invariant representation. In this representation the

single electron state |07 > transforms as SU(2) spinor and is defined as

|oi >= _ pl,o fLi|vac >, (3.17)

where p:.(w, is two-component Bose-fields matrix defined as a linear combination of

unity matrix (7o) multiplied by a scalar boson field py;, and the Pauli matrixes © =
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(71, 72,73) multiplied respectively by three coordinates of the vector boson p; =
(16, P2i, P3:), namely

Pice' = D0i (T0)gor + Pi* (7)) - (3.18)

Spalek et al [3] showed that the fundamental commutation relations for the Bose fields
(3.18) lead authomaticaly to the properly defined constraints. However, we choose
the Kotliar-Ruckenstein representation as simpler. Both representations lead to the

same results at the mean field level [4].

3.2 Free-energy functional in the saddle-point ap-
proximation

In order to calculate the partition function Z for the Hubbard Hamiltonian (3.13)
one needs to express Z as a functional integral over coherent states of Fermi and
Bose fields. The constraints (3.14)-(3.15) commute with the Hamiltonian (3.13) so,
the physical Hilbert space is preserved under time evoluﬁon. The constraints are
thus enforced at each lattice site by time-independent Lagrange multipliers denoted

as )\(1), )\52), and /\52) . The partition function can be thus written as

B
— [ Dt DDl Dl T xaA2e 3 (319)

i

where the Lagrangian is

i) = Y ( )+ 2 (e (zepetn) ) +dltr) (2 +0) dim)

1

x Z (U zgzauf:o) Z (f (r )(ﬁj — = GHD> fig(f)) +

ijo
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+ Z AW, ( (P)es(T)+ Z ( Y (7)o T)) +dl(r)di(r) — 1)
Z/\m( (7)fio (7) = Pl (T)pi0 (7) —d:{(T)di(T)). (3.20)

The chemical potential p is adjusted to fix the average occupation number n (the
band filling) at each site. Additionally, the electron energy in f:he external magnetic
field H, was included through the Zeeman term: —pgSfH, = —oH,, (o = %1),
where pp is Bohr magneton. This is because we can express the z-component of
the spin operator as S} = 1 (f,_-"rﬁ-T - fiflfil) = % (plffp,-T —p:flp,-l), as can be seen
explicitly fro the constraint (3.15).

By using the standard rules for integration over the Grassmann variables f, f

(cf. Eq. (2.16)), one reexpresses Z in terms of the effective Lagrangian including

exclusively Bose fields, namely

A
oy, —[d7Lers(7)
= [ DDl )PP Dl [T XA+,

io

where

L.si(7) = Z {e}(r) (% +}\£1)) (7)+ Z (pw ( i g8 /‘\E?) Pw(ﬂ)}

i

+>° {dﬁ () ( +U+ M- Z ,\(2)) () = ,\51)}
—l—TT In [(tij%ja,%’jg) -+ 553' (a—aq_- = L= O‘Ha + /\S?)j] F (322)

In the saddle point approximation all Bose fields and the Lagrange multipliers
are taken to be independent of space and time. The special choice of Z;_ (3.16) in
this approximation unfortunately leads to the incorrect result in the metallic limit

(U — 0). Namely, in this limit and for the half-filled case (n = 1), the average value of
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Bose fields are respectively e® = p? = p? = d* = { . Thus < z] Z;, >= ! rather then

unity, as should follow from the expression (3.1). Therefore, in the spirit of Gutzwiller

solution, Kotliar and Ruckenstein [1] proposed the other choice of Z;_, namely

Z, — 2z = : Z; - ‘ (3.23)

i Zig )
\/1 -l pi, — did; \/1 - pLpiy — dld,

which already leads to the correct results in the case of metallic (U = 0) as well

atomic (W = 0) limits.

Finally, the saddle-point free energy functional F' = NkzTInZ + pN takes the

form

I an i g —ﬁ(qas~#—0h+)\§2))) 2
5 = —kgTZo:/dup(e)ln(InLe +Ud

M (1-€ = gt =) = S ADGE ) +ym,  (320)

where ¢, = (zggzja), and p(e) is the density of states for bare electrons.

The importance of the factor g, derives from the fact that at the mean field level it
describes the quasiparticle properties due to the electron correlations.. Furthermore,
g, strictly corresponds to the band narrowing factor ®(n) (1.23), discussed by Spalek
5], now placed in the framework of quantum field theory. In the next chapter we
show that the saddle-point approximation is equivalent to the Gutzwiller solution
in the paramagnetic phase. However, this new solution contains also features going

beyond the original Gutzwiller results.
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Chapter 4

Mean-field solution for the

Hubbard model within the

slave-boson approach

4.1 System of mean-field equations

The starting point is the functional (3.24). 'In the saddle-point approximation the
quasiparticle-energy renormalization factor ¢, in the uniformly polarized state takes

the form

e?p? + d*p2 + 2edp, s
= Pt AT , 41
= A E-R) - -1 1)

49
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where e, p, and d are now the real variables still to be determined. It is convenient

to introduce new variables which we denote as p?,m, N and S, defined as

5 __ 2 2 w2 md
2p° =p;+P, m=p; —Pp (49)
2o = AP + 27, 28,, = X = 232,

which gives
2 2, 1
Py =P + 50M,
’ (4.3)
)\(52) = >\U - U,Bm.

The functional (3.24) written again in the new variables takes the form

2|

B kBT —B(goex—p+A —o(Ha—Brm)
= Ud2+,un—-7v—§hl(1+e e ))
—AW (1 —e* —2p? —d?)

o= B)E+ R ) = Go+ B0 — G ) (4

with g, defined now as

_EP+oF)+ P (p* — o) + 2ed/p* —m®

=@+ o) (- — (7~ 0%)) 43

So, the free energy functional depends on eight parameters: (XM, X, p,m, Byns e, 4, i}

= {=z;},which are determined from the saddle point equations: 9F/dz; = 0, 1 =

1,...,8.
The minimization of the free-energy functional with respect to A and \g yields
I dF
Emi€2+2p2+d2‘120, (4:6)
and
1 OoF
—— =7 —2(p* +d) = :
N n, +n, —2(p" +d°) =0, (4.7)
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where

¥ ST = e (45)

k

is the average number of particles with spin ¢ per lattice site, and the quasiparticle
energy is

Ei = goexc+ 20— 0(Ha — B,). (4.9)
Note that the quantity H, — [3,, is the effective magnetic field acting on the spin

degrees of freedom. It is a molecular field. Similarly, the conditions for i and the

field 3., yields

1 OF
Nog = T rR=D, (4.10)
and
1 gF
g e e 4.11
Nag, M m=0 —

So, m is the magnetic moment per site.

Eqgs. (4.6)-(4.11) can be written again in the simplified form using the obtained

relations
P o= 2o (4.12)
2
¢* = l—n+d? (4.13)
n = n +n, (4.14)
and
m=n_—n,. (4.15)

The functional (4.4) takes then simplified form

= %T§:b@+e‘%“U+Uf+m—%m+mmu (4.16)
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where g, factor included in the quasiparticle energy (4.9) is now written as

403 =) (L= 28) 48, (@00 ) b ) (3 - )" - )

2 = (n(2—n)—m?) + o 2m(1 — n))

(4.17)

In the low-temperature regime the functional (4.16) can be expressed in terms of

effective band energy and entropy contributions. Explicitly

F  Ep
—=—=-T5 4,18
N N ’ 18]
where the band energy per lattice site is
@ziZE’ e S +Ud* + (pp— Ao)n +mf (4.19)
NN g B Gl ) U e,

and the entropy

B (s (5) s (sl ().

ko

The expression (4.16) can be simplified further. By introducing the spin-dependent

chemical potential

po = p fop® = (u—N) +o(Hy — B,,), o= l, (4.21)

the band energy (4.19) can be written as

Egp _ 1 B 1 2, () @)
N sz(gdckﬁ#?) (5,8(qa€k—uo)+1)+Ud + 4 — (H—p )m

1
= 5 Z Bxo fo (Bre) — Hm+ Ud® + pWn + u®m — por —pn, . (4.22)
ko

Here By, = g€k, is now an effective quasiparticle energy and due to the dependence
of the spin of y,, the Fermi-Dirac distribution function f, is now also spin-dependent,

namely

(4.23)



One can easily check that due to the Egs. (4.21) and (4.14) last four terms in (4.22)

cancels out so the free energy functional finally takes the transparent form
r 2
" => " FuofolBuo) + Ud® — Hym — T'S. (4.24)
ko

Note that f (Ekg) = fo(Exs), so the entropy term is authon1aticél3r expressed through
the spin-dependent Fermi-Dirac function {4.23).

Expression (4.24) essentially represents the free energy for noninteracting fermi-
ons, with quasiparticle energies Ey,, subjected to self-consistently adjusted fields (i.e.,
they are obtained via the minimization with respect to d and m). Indeed, the para-
meters £ — A = g and H, — §,, = u®, appearing in the chemieal potential L, €an
be expressed as a functions of the magnetization mn and the average particle number
n, by solving the system of equations (4.14) and (4.15), which can be written again

in explicit form

n = %Z Fo(B,) + 1,% Zk: £ (B, (4.25)
m = ;g (Bx,) — Iir 2}; £, (By,)- (4.26)

The Eqgs. (4.24), (4.25),(4.26) along with the conditions

1 8F

T 0, 4.27)
and

1 F

———— T -2

N dm 0, {(4.28)

create a closed system of algebraic equations. The solution of that system allows to

express the magnetization m, the probability of double occupancy d?, the molecular
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field 3,,, as well as g,, as the functions of three parameters U, H, and n. However,
there are still two parameters left, namely p® and e, for which the free-energy minimum
conditions were not used so far. These two additional equations, along with the

previously obtained results, allow to determine the proper chemical potential x of the

system.

By minimizing the free energy functional (4.4) with respect to p? and e fields, one

obtains respectively

1
)
1 OF 0y
_—— = —, . E) (1) . —
N apg ; Ekfo'(qffek) apg 2 20 0, (429)
and
1 OF dq,
Vs =2 afoltoe) 57 — 22We = 0. (4.30)

ko

By evaluating of A®!) from the Eq. (4.29) and substituting it to Eq. (4.30) one obtains

the expression for A, namely

dq, 10q,
Ao :Z Ekfa(QUEk)% (5%2 - Ea—'i> : (4.31)

Since p(") defined in Eq. (4.21) is assumed to be already a function of known para-

meters, the final formula for the chemical potential is

‘ 1 Jq, 1 0q, 1

— (1) — 5 3
TR -+ £ fo‘ (¢33 ( ) . 432)
g " ( k)2 { 0 € 0€ / e=/icntd " P2=ﬂ_‘i2_| (

2

In the next section we show that the above system of equations may be solved

exactly in the case when 7" = 0 and for the constant density of states.



4.2 Mean-field solution for the paramagnetic ground
state

The following derivation is limited to the case when 7" = 0 and the bare density of

Wfe wh

&  for —{%gsg%
0

otherwsise.

states takes the featureless form:

pe) = (4.33)

The center of gravity of the band is thus chosen as zero of energy scale.

Under the assumptions, the average number of particles with spin o, (4.8) is

w

L
= — d oEk) = = + . .
Ny W/ € fo(go€xk) 2—|—an (4.34)
l%:

Eq. (4.34) combined with Egs. (4.25) and (4.26) allows to evaluate the quantities

1 and 4® defined in (4.21), namely

#(1) =p—Ao= E}g {(qT + q;) (n’ - 1) ® (qT - ql) m] ) (435)

B = oy, = % g —a) (n=1)+ (g +q,)m], (4.36)

which in turn allow to express p, as a function of d°, m and n. Thus, performing the

summation in Eq. (4.24) one obtains the free energy functional in the form
- i Ho
= = = (o d* — H,
i Z o f de(gee) + U m
o W
=g

= W 3 (@ (=1 omf = 1) + U~ Han (431)
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Next, introducing dimensionless variables v = U/2W, h = ppH,/W, and the free
energy per lattice site in units of the bandwidth W, f = F/NW, one can rewrite the

Eq. (4.37) as

f:QWF—mn~%U—n+gfy—Jm%1—m+dﬂun—wﬂiwﬁy (4.38)

Minimization of f with respect to magnetization, Eq. (4.27), yields

h (n — 2d?)
m = .
VR +dt+d2 (1 —n)

(4.39)

Substituting this expression into Eq. (4.38) one obtains the free-energy functional
dependent only on one unknown parameter d* = 7. Finally, the condition (4.28)

leads to the third order algebraic equation on 7 variable, namely

0

n*(—64u) 4+ n?(—16u? — 80u + 96un)
+ 7 (16h° 4 8n — 4n® — 16u — 64h%u + 48nu — 32nu — 16u® + 16nu” — 4)
+ 16h* — 4h? + 8h%n + n? — 8h%n? — 2n® + n* — 16R%

+ 32h°nu — 16h%u?, (4.40)

Since Eq. (4.40) has analytic solutions, all the quantities determined above can be
also expressed as functions of parameters u, h and n. In general, the solutions are
too complicated to be shown here. So, apart from the case n =1 and h = 0, all other

solutions for n # 1and A # 0 will by displayed graphically.
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4.3 Properties of almost localized Fermi liquid and
the Mott-Hubbard localization
In the simplest case of n =1,h = 0 Eq. (4.40) leads to

d* == (1—u). (4.41)

e

Since u = U/2W, the value of U = U, = 2W is the critical value of the repulsion
potential U, i.e. it corresponds to the vanishing Aof the number of doubly occupied sites.
Thus, it indicates that the system is undergoing a metal-insulator transition. The
result was obtained by Brinkman and Rice [1] by using the variational wave function
and the approximation scheme proposed by Gutzwiller [2], discussed in Chapter 1.
Indeed, substituting the solution (4.41) (c¢f. Eq. (1.16)) into the free energy (4.38)
and g, (4.17), Egs. (1.17) and (1.18) are authomaticaly reproduced. Note that in the
paramagnetic case, g, does not depends on spin: ¢. = g, = ¢. In the case of n # 1,
the electron localization does not appear and the average number of doubly occupied
sites goes to zero only in the limit © — co. This effect is displayed in Fig. 4.1. The
situation d?> — 0 for n = 1 corresponds to the effective mass divergence, with U — U..
In all other cases i.e. for n # 1, effective mass enhancement m*/mp approaches to
the finite value (2 —n)/(2(1 —n)) as U — oo. The effective mass enhancement with
respect to the band mass mp is displayed in Fig. 4.2.  Similarly, the linear specific
heat Coefﬁcientris divergent at U = U, only in the case n = 1. The singularity of
the spin susceptibility (1.16) displayed in Fig. 4.3 shows that the metal-insulator

transition is a continuous quantum phase transition.
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Figure 4.1: The double occupancy probability for the different band fillings as a function

of the relative interaction strenght U/U..

Introducing the band narrowing factor ¢, defined as in Eq. (3.24), Kotliar and
Ruckenstein recovered the Brinkman-Rice transition but now at the level of the saddle
point approximation. Such a theoretical description allows to investigate the dynam-
ical aspect of the problem, which of course goes beyond the Gutzwiller variational
scheme [3] . However, as it was mentioned by Lavagna , even at the mean field level
the new information are contained within the saddle-point equations as compared
with the Gutzwiller approximation. The manifestation of that fact is the presence of

the Mott-Hubbard gap. To see how this gap can arise one may choose the density of
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Figure 4.2: The interaction dependence of the effective mass. The m* diverges at n=1 and

U/Us=1.This is the Mott-Hubbard localization.

states function in the form of (4.33) and calculate the chemical potential p. In this

case [+ is determined by the Eq.(4.35), where due to Eq.(4.31) Ay is given by

1 0 10¢s . R
2Wq? <5P e (’:?e) _/ de £ fo(4-2)

1 (8¢ 18g,\ [ , W2,
— — — — y 4.42
2W g2 (8}’ e ﬁe) (,ug g b )

2
%
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Figure 4.3: The spin susceptibility enchancement in the function of the interaction U/U..

Its divergence at U=U, illustrates the fact that the Mott-Hubbard localization is a quantum

phase transition.

Thus, the chemical potential in units of bandwidth takes the form

1 / 5
% - IL;;’} h Zg: (%?, B qu;gvz) Ao, (4.43)
where
%:i[(gr“ﬂ (n =1+ (q —q,)m], (4.44)
and
dg. 13dq,
= (aiv - e%qe ) s, pam (4.45)

The apperance of Mott-Hubbard gap may be visualized as the splitting of the

chemical potential when approaching the n = 1limit either n. = 1+ ecor n_ =
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1 — e sides (¢ — 0). This splitting appears only when U > U,,as displayed in Fig.
4.4, where the chemical potential (4.43) was calculated for the cases n = 0.999 and

n=1.001. Lavagna [4] showed that the width of the gap is A = U+/1— U./U. This

n=1001

w
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Mott-Hubbard
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=
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{
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Chemical potential, p
o
[

05 1 15 2 25 3
Ul Ug

Figure 4.4: Opening of the Mott-Hubbard gap for U>U,. The inset shows the U depen-

dence of the gap.

result reproduces the split band picture obtained in Hubbard 111 solution discussed
in Chapter 1. However, the slave boson approach provides one feature more: the

infinite-mass enhancement in the lower band when U — U, (from metallic side). In
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summary, we have combined here the old results of Brinkman and Rice [1] with those

of Lavagna [4] concerning the metal-insulator transition in the paramagnetic case.
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Chapter 5

Almost localized fermions in an

applied magnetic field

In systems close to the Mott-Hubbard localization the band energy of quasiparticles
is small (the effective mass m* — oo) and almost compensated by the short-range
repulsive interaction among the carriers [1]. In effect, the system is very susceptible to
much weaker perturbations such as temperature or the applied magnetic field. In this
chapter the novel features of almost localized fermions in the presence of an applied
magnetic field are discussed, namely: (i) the spin dependence of the quasiparticle
effective mass, whjch leads to quantum beats in the de Haas-van Alphen effect, and
(ii) the appearance of a nonlinear molecular field and related metamagnetic behavior

of the system.

65
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5.1 Nonlinear molecular field and metamagnetism

The mean field solution of the Hubbard model for the case T' = 0 and constant bare
density of states is given by the Eq. (4.40). All the other quantities appearing in the
problem can be expressed as the functions of 7 = d*, and thus regarded as functions
of parameters u,n and h (cf. section 4.3). Physically, this approach depends on the
number of doubly occupied sites d*N, which plays the role of the order parameter
distinguishing the Fermi liquid (metallic) state (w‘ﬁen d* # 0) from the local-moment
state (when d> = 0 and m = n). For n = 1 the latter state describes the Mott

insulator in the mean-field approximation and without the exchange interactions.

We start our analysis of the behavior of the number of doubly occupied sites and
strictly related with it magnetization through. In Fig. 5.1 we have displayed d? and m,
both as a function of h, for w = 0.95. In Fig. 5.1(bottom) we see that for n = 0.9and
0.95 the applied magnetic field reduces to zero the number of doubly occupied sites
in a continuous way. For the case n = 0.99 the value of d* discontinuously drops to
zero when the critical value of magnetic field, he, 1s reached. This corresponds to the
metamagnetic transition displayed in Fig. 5.1 (top). The magnetization curve (which
in contrary to the case of localized moments turns upward) reaches the magnetic
saturation by the discontinuous way. For the cases n = 0.95 and n = 0.9 the magnetic
field saturates the system continuously. In this case we say that system exhibits the
metamagnetic behavior. The metamagnetic behavior is also displayed in Fig. 5.2.

Only the inset displays the true metamagnetism for n = 1 (discussed in detail by

Vollhardt [2]).



67

0.8}
n:
0.6}
£ 098 /095 -70.90
04F
0.2F

0.015

T 001 =095

0.005

001 002 003 004 005

Figure 5.1: Field dependent magnetization (top) and double-occupancy (bottom), for

U/U. = 0.95 and three band fillings n = 0.90, 0.95, and 0.99.

The first-order metamagnetic transition disappears very rapidly when n deviates
from unity. Nonetheless, the metamagnetic behavior persists over a substantial range
of the filling. The metamagnetism is caused by a change in the nature of the ground
state from the Fermi liquid state of heavy quasiparticle to a state of itinerant (for
n < 1) or localized (for n = 1) spins. The discontinuity in x = dm/dh for m — 1 is
smeared out for T > 0, and the susceptibility then has a maximum when the system
approaches mdgnetic saturation. The ctitical field for saturation is strongly reduced

asn — 1, making this phenomenon observable for the extremely narrow band systems
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Figure 5.2: Field dependent magnetization (top) and double-occupancy (bottom), for
U/U. = 0.99 and three band fillings n = 0.90, 0.95, and 0.99. The inset displays the

metamagnetism for the half-filled (n = 1) case.

such as heavy fermions or liquid *He. In ®*He a small number § ~ 0.01 of zero-point

vacancies is sufficient to render the magnetization curve continuous.

In Fig. 5.3 we have summarized the type of magnetic behavior in the applied
field assuming that the paramagnetic state is stable for A =0 [3]. The upper panel
characterizes the magnetic saturation field A, if the magnetization process is continu-
ous. This profile does not reflect the actual situation when a metamagnetic transition

takes place, as specified by the dark area in the lower panel. True metamagnetism
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occurs only for n > 0.8 and for u > 0.28. At low fillings and for small values of u one
recovers the normal Fermi liquid behavior, since the interaction part varies roughly
as Un?/4.

The metamagnetic behavior is strictly related with the presence of nonlinear mole-
cular field 8,, = 3 (A — ), Eq. (4.2). For the considered density of states (4.33)

for bare electrons, Eqs. (4.25) and (4.26) allows to express f3,, by the equation

35"“ —%/ﬂl—i[(quq%)(n—l)+(qT’+ql)m]—h. (5.1)

To determine the character of the spin-splitting we have plotted in Fig.5.4 the

magnetization (a) and field (b) dependences of the spin-splitting. This provides us

o)
0.2t + (b} =
U_.._
045F T "V + .
01 + :
005} T 7
E- | | 1 1 1 1 1
0 02 04 06 0.8 0005 001 0.015 0.02
MAGNETIZATION, m APPLIED FIELD, h

Figure 5.4: The effective field § as a function of magnetization (a), and of applied field

h=ugH,/W (b).

with information about the nonlinearity of the effective field. Clearly, the molecular
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field 3., is a nonlinear function of m and grows rapidly with growing m. Such a
behavior of molecular field, in combination with a similar nonlinear behavior of the
effective mass, leads to either metamagnetism or to metamagnetic behavior. The
effect of §,, on metamagnetic behavior is just a positive feedback effect; the mass
increase leads to the band narrowing, which in turn makes easier the magnetization
process, particularly very close to the Mott localization (n — 1). Indeed, the quantity
—B,, 1s positive thus the effective field H, — 8, acting on the quasiparticle, Eq. (4.9),
1s stronger than the pure applied magnetic field H,. The nonlinearity bears its origin

in the fleld dependence of the effective mass. This dependence will be discussed next.

5.2 'The spin-dependent effective mass and de Haas-

van Alphen effect

Turning to the description of the quasiparticle characteristics we discuss now the
concept of spin-dependent effective masses. The energy of the quasiparticle is given
by Eq. (4.9). The factor g, leads in a natural manner to the spin-dependent mass via
the relation m,/mo = 1/¢,, cf. Eq.(1.26). The importance of this quantity derives
from the fact that the spin-dependent effective masses m, are responsible for the
quasiparticle properties, which in turn decide about the behavior of the system on
the macroscopiq level,

The field dependence of the few mass-enhancement factors 1/g, is displayed in Fig.

5.5. We display the spin-split masses as a function of h, for different band filings and
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fixed U/U, = 0.95, and at T' = 0. One observes essentially three regimes: a) for n very
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Figure 5.5: Applied field dependences of the effective mass enhancement factors 1/g; and

1/qy, for different band fillings.

close unity both masses grow with the field (cf. n = 0.99), and at the metamagnetic
transition point spin-minority carriers disappear, whereas the mass of spin-majority
quasiparticles dives to the band-theory value my; b) for the ’intermediate’ range of
n (cf. n = 0.986) the situation is very similar to those in the case (a), however with
the difference that close to the point of the metamagnetic transition the smaller mass
turns continuously déwnward first, and then dives to the mg value. Finally, in the case

¢) for n still smaller (cf. 7 = 0.977, 0.95) the mass m| of carriers in the spin-minority
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band increases, whereas m; decreases continuously. In fact, these cases correspond
to the metamagnetic behavior of the system. Of course, if » = 1, the masses are not
spin dependent since g, does not depend on o in that case, i.e. g, = q = mo/m”*.
One should note that intuitively one can expect that the mass m, should grow with
h, as the minority carriers encounter a larger and larger number of scatterers with
increasing m, while for the majority-spin carriers the opposite is true.

One can expose the difference m; > my as follows. For noninteracting electrons
the probability of electron hopping is given by n, (1—n,), “.fhereas in the limit U — oo

it is n,(1 — n). Therefore, writing the band energy in the U — oo limit as
EB/N:thng(l—n) ':‘thqgna(l—ng), (5.2)

we obtain that ¢, = (1—-n)/(1—n,). Noting that we had before that m* /mg = 1/g,,
we immediately arrive at the conclusions that: (i) the mass enhancement is spin
dependent, and that mj /mg — 1 as magnetic moment m approaches saturation
(ny — n), while (ii) the minority mass increases with the magnetic moment reached
the upper limit m*/mg = (1 — n)~! when the magnetic saturation is achieved. Also,
the renormalization is particularly strong when n — 1 and becomes infinite at the
Mott-Hubbard boundary (n = 1). Obviously, this argument assumes that d? = 0,
s0 1t cannot reproduce the detailed behavior provided in Fig. 5.5, particularly when
metamagnetic transition intervenes before the limit d® — 0 is reached.

As mentioned before, close to the Mott localization both factors 1/g; and 1/q;
grow with increasing h. In effect, the quantity (1/g; + 1/q,) also increase sharply

with increasing magnetic field until the saturation point is reached. At that point the
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minority spin subband becomes empty and all the particles have the same spin; they
acquire the bare band mass, since the Hubbard interaction ~ Un;ny is then totally
suppressed. This type of behavior manifests itself in the field dependence of the linear
specific heat coefficient v, which is proportional to the total density of states at the
Fermi energy, i.e., v = (2/3)7?p(er)(1/q; + 1/q;), where p(ep) is the density of bare
states.

The effective masses are probably most directly measured with the help of de Haas
- van Alphen effect. To calculate the spin resolved signal for the almost localized
charged fermions with spin dependent masses one can adopt the Lifshitz-Kosevich
approach [4]. The oscillating part of the magnetization can be expressed as follows

+ Vv eh o Y(kAT) k)\g oM
My = —am (“C“) Z Z g Ao sin (’LehH& Fobr 4) !

Mo

(5.9

where the area of the m-th extremal orbit is S7, = 2 (n,,, + ) = n(2m, e, — p2),

with €, =+ oh, ¥(2) = z/sinh z, \, = (2m°kgTem, /ehH,), and

w ehH}0m,  H,3S;
mo ¢ Se OH, ' Se OH,

T

A, =1—0c—

(5.4)

Other symbols are standard . For each m, we have periodicity determined by the
difference A(1/H,) in the inverse applied field, A(1/H) = 2mefi/eSZ. Thus, the spin-
split masses will lead to two different cyclotron frequencies w, = eH,/(2m,c), for
majority and minority spin subbands, respectively. In that situation the spin resolved
components of the Qscilla,ting magnetization components msc,a interfere with each
other and produce the quantum beats. In Fig. 5.6 we display the inverse field (1/h,

where h = ppH,/W) dependence of the de Haas-van Alphen oscillations, as well as
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show for comparison the observed oscillations by Takashita et al. [5] for C'e RusSis.
These spectacular quantum beats are caused by slightly different effective masses for
majority (spin T) and minority heavy electrons. In fact, spin-split masses have not
been detected directly as yet. Some indications are from the experiments on heavy-
fermion system Ce RuySis [6], where the bands are extremely narrow, and therefore,
the applied field effects are strong. For example, the metamagnetism is observed in
that system in the field H, ~ 7.8T [7], as well as y(h) exhibits [8] the same type of
the behavior as that provided by the uppenﬁost curve in Fig. 6.5 (see Chapter 6).
However, a direct comparison of the present type of theory with the experimental
results for CeRuyS1; mentioned above would require generalization of the approach
to the Anderson-lattice case (i.e. inclusion of the hybridization between f electrons
and conduction electrons).

The spin-split masses will influence also other properties such as the electrical
conductivity or the Hall effect. Let us take as an example an elementary view of the

longitudinal resistivity (j||H,) in a magnetic field. (cf. Spalek et al., [9]) The Drude

formula will now take the form

where ﬁ and ﬁ represent the contribution of the two physically distinquishable Fermi

liquids (since their masses m; and m, are different). Therefore

Me 1

Po =

New€ Ty

In the case d — 0 one can take m} =~ mg(l — n,)/(1 — n), where as before, my
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predicted quantum beats for the spin-dependent masses (bottom).
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represents the bare band mass. The relaxation time in low fields can be assumed in

the usual form [10], here generalized to the spin-split situation

i
— = const—=T2,
To Mo

so that at H, =0 p= AT? with A ~~?. In effect

2
mo me T2
Neo€2 \ m '
co 0

Pe

with ne, = n,N/V, where N is the number of lattice sites and V is the system
volume.

This prediction could be tested by plotting p as a function of m and compare it
with the formula provided here. Obviously, this point requires a careful study and is
planned for the near future.

Summarizing this section, we would like to stress that the occurrence of spin-
dependent effective masses, the metamagnetic behavior, and the presence of a nonlin-
ear molecular field are the basic characteristics by which the almost localized Fermi
liquid differs from the normal Landau Fermi liquid. In gglleral, the Fermi liquid char-
acter of a metal close to the metal-insulator (Mott) boundary should not be taken for
granted, since in those systems the Coulomb interaction energy is comparable to the
band (and Fermi) energy of the relevant electrons [1]. In the next chapter we study
explicitly the transition of the Fermi liquid to the non-Fermi liquid state induced by

the applied magnetic field.
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Chapter 6

Fermi liquid instability and

transition to statistical spin liquid

6.1 Introduction

The metallic state close to Mott-Hubbard localization is commonly regarded as a
Fermi-liquid state of correlated fermions. As it was discussed, the quasiparticles
in this liquid have spin-dependent effective masses (if the band filling n # 1), and
experience a nonlinear molecular field in the spin polarized state [1]. The principal
questlon 1s: what happens for n # 1 if we apply magnetic field and the number of
double occupancy d> — 0, ie. magnetization m = ny —ny — n? Does it transform
gradually into a gas of fermions with one spin direction or a non-Fermi liquid state
comes into play before the system saturates magnetically? In this section we describe
physical consequences coming from the presence of spin-dependent effective masses of
carriers along with the magnetic-field induced transformation of the almost localized

79
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Fermi liquid (ALFL) into a correlated fermionic liquid, hereafter referred to as the
statistical spin liquid, SSL [2]. In other words, we predict the existence of anomalous
low-temperature magnetic-field dependent phenomena for electrons close to the Mott-
Hubbard localization, which should be observed experimentally if the mean-field slave
boson approach is a correct starting point for those systems. The importance of our
predictions is augmented by the assumed presence of a strong applied magnetic field,
which suppresses quantum-spin-fluctuation contribution to the dynamic properties of
almost localized fermions.

By statistical spin liquid we understand the state, for which the single-particle
states are still characterized by the quasimomentum fik, but in which the doubly oc-
cupied quasiparticle configurations |k T|> with opposite spins are totally suppressed
by the combined action of short-range Coulomb repulsive force (as characterized by
the intraatomic repulsion U) and of the magnetic field. This restrictions leads to the
corrections of system statistical properties [2],[8].

In the halffilled band case the (ALFL — SSL) transformation corresponds to
the Mott-Hubbard (metal-insulator) transition. Here we coneentrate on the partially
filled band case (with filling n < 1), i.e., we deal with quantum liquids on both
sides of the transition and study the transformation (or crossover behavior) as a
function of an applied magnetic field. In this manner, the present section extends
the previous treatments [3]-[6] of almost localized fermions. We also indicate that
our results reproduce qualitatively the properties of the heavy-fermion compound
CeRu,Sis; these properties are summarized in Fig. 6.1 [9],[10],[11}. The principal

claim of this section is that the field H,, in Fig. 6.1 specifies a novel (ALFL — SSL)
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change of state.

6.2 Fermi liquid to non-Fermi liquid transition and

comparison with experiment for CeRusSis.

X *

The quasiparticle picture involving the concepts of band narrowing factor ¢, and of
the nonlinear molecular field f3,,, introduced in. Chapters 4 and 5 is used here to
calculate the physical properties of ALFL. In effect, present approach reduces to the
classic Gutzwiller-Brinkman-Rice analysis [6] in the simplest case withn =1, H, = 0,
and for temperature 7' = 0, as well as to analysis of Spalek et al. [7] for n = 1 and
T > 0. In the case of non-zero temperatures the low-temperature expansion for the

Fermi liquid free energy, Eq.(4.24) yields

Frr, o L E_ o B o / 201 2 n 22 m2

- W(2 d)(1 n+2d)8w\(d(1 n) +d*) (§"d> -
5 W?(ﬁsBT)?<1 1)

+Ud = pgHym — — e 1 ] 6.1

HpLiaTil 3 W ¢ " q (6.1)

were in deriving (6.1) the density of state function (4.33) was used.

The principal feature of this approach is the optimization of the balance between
the renormalized band energy (>, , Fxo f(Eks), the entropy contribution (—7'S, last
term in (6.1)), and the Coulomb repulsive energy (Ud?) by minimizing the total free
energy with respect to the site double occupancy d* = (n;n;;) and magnetization m .
In an applied magnetic field the probability d* vanishes at a critical field value H, =
H., at which the system undergoes either a first-order metamagnetic transition or the

magnetization curve changes its character from the metamagnetic to the localized-
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moment type (¢f. Fig. 6.1a).

It is important to note at the outset that the ALFL is unstable for He == He,
even in the regime U/U, < 1, where U, is the critical value of interaction for the
Mott-Hubbard localization for n = 1 [6],[7]. This can be seen easily by computing
d? for n < 1 and noting that d*(H, > H.) < 0. Therefore, to describe consistently
the metallic phase beyond the point d*> = 0 we invoke additionally the concept of
statistical-spin-liquid [2],[8], for which double occupancies are excluded in reciprocal
space. In other words, we assume that the double occupancy probability (N, e, )
vanishes identically in the new phase. Physically, the SSL is the simplest type of
state, which is represented by the itinerant spins rather than by Landau quasiparticles
and encompasses the localized moment limit as a n — 1. Therefore, it represents a
natural choice for describing the doped Mott insulator, when the holes are itinerant
and the exchange interactions are not crucial (i.e., for U < U.). The properties of
this liquid have been studied before [2],[8]; we summarize next the features needed to
analyze in detail the ALFL — SSL transformation.

First, this exclusion leads to a modified statistical distribution function:

1
1§ achem’ 62}

N =
with @ = [2cosh(fupH,)|™", where p is the chemical potential, and § = (kpT) ™t

Second, the magnetic moment per atom m = (n;, = n;,) changes with fleld according

to

N
m =ftanh(Bug Ha), (6.3)

i.e., 1t has the same shape as in the localized-moment case. Additionally, in the low-
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temperature limit and for a constant density of states in the band with energies in

the interval [-W/2,W/2], the chemical potential is given by

= % — kpTlnlexp(BW (1 —n)) — 1] — kpTIn[2cosh(fusHa)] . (6.4)

AsT — 0, we find that p(T = 0) = W(n — 1/2) — uzH,, i.e., all moments are
aligned and the band is filled for n = 1; the latter situation corresponds exactly to
the localized-moment state. Finally, the Helmholtz free energy per site is determined

from the expression

w2

1
Fosi =~k [ delnll + % exp(-f(e - )] + pn (6.5)
—W/2
which for n < 1 reduces to
_ Fsgy, 1 S T
— :*-"" —*7_!{‘— 21 ! .
fssr W 271(1 ) g nt |2 coshi(fi/t)] (6.6)

where h = pgHo/W and ¢t = 1/(fW) = kgT/W. Forn = 1 and H, — 0 this
expression should be replaced by the expression (—#1n2) for free spins. Note that at
T =0,and for h = h,, frp = fosr = —:n(l —n) — hn.

In Fig. 6.2, we display the free energies of the ALFL (as represented by fp; =
Fpr/W) and SSL states for n = U/lU. =095 and t = 5-1073. The two energies
coincide exactly at the point H,, at which d*> = 0. This means that the two states
coexist at H, = H,, and that SSL is the stable phase for H, > H.. In other words, at
H. the Fermi liquid transforms into a gas of hopping spins with unrenormalized mass

but with changed statistics. This statistics takes into account the total suppression

of antiferromagnetic correlations by a sufficiently strong applied field. For the sake
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Figure 6.2: Field dependence of the free energies for an almost localized Fermi liquid fpr,

and for the correlated liquid (fssr,). The ALFL is unstable for B By

of completeness we have plotted in Fig. 6.3 the field dependence of d? in the ALFL

state.

The resultant magnetization curve in the regime of the ALFL-SSL coexistence is
shown in Fig. 6.4 for the parameters (n = U/U, = 0.95), for which the metamagnetism
occurs in ALFL state (the inset provides the temperature variation of the critical
field). For n > m, ~ 0.973 the magnetization will exhibit only an upward turn
without a subsequent jump which indicates the metamagnetic behavior (discussed in
Chapter 4).

To model the field dependence of the linear coefficient 7y of the specific heat ¢
we have calculated numerically v = C/T' as a function of h; it is shown in Fig. 6.5.

The upper most curve for U/U, = 0.95 and n = 0.977 has the same shape as the
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Figure 6.3: The variation of the double occupancy probability within magnetic field, for
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data in Fig. 6.1b. Since v ~ m*; the v(h) curve models the field dependence of the
total mass enhancement, which in the present situation contains two (spin-dependent)
parts: m*/mo ~ 1/q; + 1/q;- Note; that with comparison to the case T' = 0, (cf. Fig.
5.5 ) the temperature influence rises up the effective masses enhancement (for the
same H,), or in other words, lowers the critical field h. as shown in inset Fig. 6.4.
Thus, the relation m*/mg = 1/2(1/¢; +1/q) explains the character of the m*(h)
data shown in Fig. 6.1d. Numerical results shows that the total effective mass m*
and thus v can have a cusplike behavior as a function of applied field H,. Note, that
the left parts in Figs. 6.4 and 6.5 describe the properties of ALFL.

In Fig. 6.6 we exhibit the shape of the T' = 0 de Haas-van Alphen oscillations for

ALFL, near the ALFL — SSL transition. By contrast with the results displayed in
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Figure 6.4: The theoretical magnetization curve; the inset shows the temperature depen-
dence of the metamagnetic field h.. Note a transition (or a crossover) from the metamagnetic

to localized-moment character.

Fig. 5.6, close to the metamagnetic point, the spin resolved signals differ significantly
and, hence, do not produce beats. Eventually, for h > hc (¢f., the upper inset in Fig.
6.6b) only the majority spin component is present (with the bare band mass!); the
oscillations begome very small and decrease with 1/h in the standard manner. How-
ever, the temperature dependence of the oscillations (with a corresponding crossover

from a FL to a non-Fermi liquid) requires a separate analysis. Let us only mentlon



33

n =085

1 L L 1
0005 001 0BS5S D.O2h

T

(R
Q

OrTTrT T T T T 71§

—h
Q

Uy, =095 , t=5-107

| i1 [
0.005 0.01 0.015 0.02 0.025 003
h

Figure 6.5: Field dependence of the linear specific heat coefficient for the specified para-
meters; note the cusp at i = h.. The inset illustrates a rapid change of the y(h) curve

with band filling n in the nearly half-filled situation.

that the transition is reached for 7' > 0 for a lower field than that required for 7' = 0.
This feature is in agreement with the trend observed for the Mott localization [7] and

is associated with the faster temperature change of the entropy for the localized and

SSLL states than that for ALFL.

The observed [11] magnetization oscillations (¢f. Fig. 6.1c) represent the total
signal ﬁasc. To describe an individual oscillation mode by a single mass m*, the ef-
fective cyclotron frequency must be introduced as w} = eH, /(2m*c), where m* is the
sum of m, and m,. The field dependence of this frequency is shown in Fig. 6.7, where

the lower inset provides the overall field dependence of w? in the range of the ALFL
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whereas the lower specifies the shape of the magnetization curve in this case.
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transition.

stability. The upper inset represents the experimental data for one of the CeRusSis
orbits [11]. The shallow dip in w? is intimately connected with the precursory metam-
agnetic behavior. Note that the steep part of the rhs of the theoretical curve levels off
as the band masses (and the magnetic saturation) is reached. Therefore, the effective
masses calculated from the band theory (in the version which does not include the

present correlation effects) can be identified with m* obtained experimentally only
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for H, = H,.

In view of the above quantitative analysis we conclude that a crossover from the
Fermi-liquid (albeit almost localized) to the non-Fermi liquid is signalled by a cusp-like
behavior of ¢ and by a qualitative change of the de Haas-van Alphen oscillation with
srowing applied field. Both effects accompany the metamagnetic behavior of m(h).
Obviously, a direct confirmation of these predictions would involve the determination
of the spin-split effective masses. Concerning this point, note that when d? — 0 the
effective masses in the ALFL phase are given by m,/my = (1 — n/2)/6 — om/(20),
where 6 = 1 — n. Therefore, the mass difference grows linearly with magnetization,
i.e., my —my ~mfé.

Finally, we interpret the present approach from a physical viewpoint. First, the
almost localized nature of the Fermi liquid is essential, since only in that case is
the band energy of quasiparticles sufficiently small to be almost compensated by the
repulsive interaction among the carriers. In effect,the system is very susceptible to
much weaker perturbations such as the temperature or the applied magnetic field.
The heavy fermion materials are ideally suited for that purpose, since their kinetic
energy is characterized in the FL regime by an energy of the order Tx ~ 10 = 10*K.
Obviously, such a simplified single band approach is applicable for those systems
only if ppH, and hw? are substantially smaller than the effective Kondo temperature
kT, or equivalently, the hybridized quasiparticle band splitting.

Second, the physical reason behind the ALFL — SSL transformation is quite sim-
ple: the ALFL energy is always lower if only d > 0, since the allowed double occupan-.

cies decrease it. At low temperature the zero-field entropy of the SSL state (kg In2
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per carrier) is much higher than the entropy of the ALFL state ((272/3)k3T /W1 —
(U/U:)*1t). Thus, the entropy contribution (—7'S) to the free energy favors the SSL
state. Likewise, since the magnetization curve for the SSL is that for localized carriers,
the SSI. magnetizes much faster with increasing field than does the ALFL. In effect,
the SSL becomes stable at higher fields and temperatures. From the coexistence

condition Fpp, = Fgg, one can calculate the transition temperature.
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Chapter 7

Antiferromagnetic phase and
transition to the Mott-Hubbard

insulator

7.1 Introduction

Antiferromagnetism (AF) appears in the Hubbard model for an arbitrary interaction
strength U provided we are close to the half-filled-band situation (n — 1) [1].This
is easy to understand qualitatively, since the intraatomic interaction U 7, (nin; 1) s
diminished by keeping apart the electrons with the opposite spins [2]. At the same
time, the band energy is not increased because the concomitant nesting condition
€x+qQ = —ex (albeit achievable for bipartite lattices only) does not increase energy
of the occupied states, even when going beyond the Hartree-Fock picture. In effect,
the regime of the band filling n, for which the AF state is stable at given U has been

95
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determined for variety of theoretical approaches [1,3]. The reliability of the results for
the half-filled case is not in question, as they reduce to those in the Hartree-Fock and
to the mean-field (Heisenberg) approximations in the weak- and strong-correlation
limits, respectively. The theoretical results are in accord with the fact that all known
Mott insulators with the half-filled configurations of the relevant group of atomic
orbitals are also antiferromagnetic insulators. The basic question remaining is to
what extent the existing [1] picture can be regarded as a proper mean-field theory of
correlated fermions.

In this Chapter we concentrate our attention to two specific features of quasipar-
ticle states not elaborated so far, namely, (i) to an evolution of the magnetic gap
(renormalized by the electronic correlations) into the Mott-Hubbard gap, and (ii) to
a rather weak renormalization of the effective mass for the half-filled-band case, which
is in contrast with that calculated in the paramagnetic (PARA) case [3]. As in the
preceding chapters these results are also obtained within the slave-boson approach in
the mean-field approximation. We compare it briefly with the corresponding analy-
sis in the infinite-dimension limit [1]. In particular, we introduce again the concept
of a nonlinear staggered molecular field, which shows up as the effective (nonlinear-
in-magnetization) magnetic gap, evolving at temperature T' = 0 continuously with
increasing U into the Mott-Hubbard gap. In connection with this evolution we single
out the magnetic and Coulomb parts of the localization energy. This particular fea-
ture resolves explicitly the old question about the difference between the Slater and
Mott-Hubbard insulators in the sense that only the Mott-Hubbard gap survives when

antiferromaguetism disappears in the U — oo limit. In the limit U — 0 the magnetic
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gap reduces to the original Slater (Hartree-Fock) gap.
In the following section we derive the free energy in the antiferromagnetic case, as

well as calculate the principal physical quantities. In the last section we discuss the

obtained analytic results.

7.2 Ground state energy

7.2.1 'The Hamiltonian in the slave-boson representation

We start from the extended Hubbard model, which contains intersite exchange in-
teractions. The model Hamiltonian decomposed into two sublattices A and B, each

containing N/2 atomic sites, takes the form

'H = E t"':AjB (CIAO'CJ'BU G CIBngAU) +U E :niATniAi Seld E :nimﬂ'im
<iajp>0 iA ig
- E M Hy— E My Hy +4J g B - B — LV (7.1)
iA ip <iajmp>

The first term represents single-particle hopping of electrons between the sublattices
(nearest neighbors), the second and the third express the intraatomic interaction of
the same magnitude on all sites, the fourth includes the Heisenberg exchange between
the sublattices and (=N, is the reference energy with p being the chemical potential,
and N.(< N)the total number of fermions. In the mean-field approximation for the
slave bosons, the rotationally invariant approach of Li et al [4] and the Kotliar-
Ruckenstein [1] formulations can be brought to an equivalent form [5]. The effective

AF-Hamiltonian written in the slave-boson representation takes the form

Hyp=HY +HE — un,, , (7.2)
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where the dynamic part is

H,E‘illz" - ”N = Z tiAjB (ZJAC'ZJ.BO'fiIAO‘ijU + ngaszJfEBafjAU) +

<iagp>o
't Z fiTAaf.J'AU(_# — gk UszB)"}’ Z Udjqd

iAG i‘A -

Z 1EUfJBG' (THB +O’sz,q)+ZUdIBd

130’ iB

N ,
+;TZTT?,AmB, (7.3)

and the part containing constraints is

2 . »
H( ) Z ,\{1) (eueu erwpmT +p1Alp1“ +dEAdiA - 1)
_I_ Z )l(l) (BZBBIB +pLB p‘i.BT +p151p131 +d13d7’}? S 1)

2)
Z )\q( AT ( T AT f:Bo‘ Pmapz,ia di@du)

ZAO'

Jr Z A11_:;cr ( zBUf?BU pjgapiBo' - d‘i!BdiB) e (?4)

igd

Here in order to decouple the intersite part the Hartree-Fock approximation was used

5 1 1 5 1
SiASJ'B ~ SiAE <m‘j5> + 5 (7711“4) Sjg - E (m’iA> (ij) 5 (75)

where m; = n;, —n;, and thus, for a two-sublattices antiferromagnetic state: (m;,) =
m4 and {m;,) = —mg.
In order to perform the integration over the fermion degrees of freedom one needs

to express Hap in the bilinear form for fermions. Then (7.2) reduces to

HAF —_— 31}:1 + HLEF5 (7-6)
‘Nhere
i _ 7 !
Hﬁhg' = Z tf_qu_? (zj_zlazjﬁﬂfilcrijU 1 ZIBJZjAO’fiTBUfjAU)

<ipjB>0
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£ Fofine (AD = = 0 (Joma + Ho))

+ Z Fhofise (2D = pt o (Jzma = I.))
igo
+NszAmB, (7.7)
and
B = 5 (e (e o i i <1))
Py (Phaoino — dl s, )
Ei:(UdT FAI)(QBQB-pr#%m'+puupW14ﬂﬁd@-;l))
+ SN, (Plaoine = dldip ) (72)
igo

In the saddle point approximation all bosonic fields are assumed again constant
in space and time, 85 By, =< 8, >=< 654 g Additionall_y, the fields that
does not depends on spin must have the same values on both sublattices, namely,

eq=ep = e and d4 = dg = d. The Hamiltonian (7.6) takes the form

Hap = Hp + Hp, (79)
where
HF - Z 9o 1'AJB (fz ;a’fjgd = fz‘TBg.fjAU) (710)
<igis>o
Z 1Agfj,4p (Aff”” —p—o(Jzmp + HG))
i40
. Z ijijBO (AJQB) —p+o(Jzma— Ha)) ,
ipo
and

N
Hp = Ehmﬂm+NUf+ (7.11)
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‘%% ()\S) (ez +d+ Z Do — 1) Z A2 (p2 4 d2))

N

+ 5 (,\m( }d+2pbg—l) Z/\fg pBUer‘?)).

In (7.10) g, =< % ,%,, > ie. due to Eq. (4.1), here it takes the form

€P o T dp.n\? €Pgo deE _
(1—d2—p%,) (1 —e?~p;) \/(1 —d#—pl) (11— —pl7)

(7.12)

Transformation to the momentum space is carried out by the sublattices, i.e.

1 . 3 ; ! ;
Flia = VN2 D etfualy, and fio= o= 3" e Mg, (713)

T VIN/2 7
Note that the sublattices comprise ( V/2) atoms. In effect, the reduced Brillouin zone

contains (IN/2) states (is halved with respect to that for paramagnetic state). This

transformation allows to write the Hamiltonian (7.10) in the form

}_ITF = Z GoEk ( ,T-L‘T-’ Qpke - aLkaaAkU) (714)
¥ Z ate (A = p— o (Jzms + H))

P 3 et (89 b0 Uz ),
with

£, == Z tiAjBefk(&A“Ris)_ (715)
L fms
The Bose part (7.11) acquires a classical value, whereas the Fermi part (7.14) is of

single-particle nature and therefore, can be diagonalized by the Bogolyubov transfor-

mation we discuss next.
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7.2.2 The Bogolyubov transformation

The Bogolyubov transformation corresponds to the following change of the basis

T cosd sin @ T
a ko ko ko akc
(- @

a' . :
ska —sinfry €osOry

where the quasimomentum (%-vector) runs over the values in the reduced Brillouin

zone. This transformation allows to write Hr In the form

or = HO + g™, (7.17)

where

HEY = 37 Blobi [oessin2hs + s b (AP — = o (Jorns + Ha))
ko

+cos® O, ()\fm —p+o(Jzmyg— Ha)” -+

Z a;‘wakg [—qgsk sin 205, + c0s? Ory (}\((,EA) —p—o(Jzmp + Ha))
ko

+sin? O (,\Em S § e H))] , (7.18)

and

H}mil} —_— Z (a};a:@kg + B}:aa’kg) (719)

ko
1
® [gagk cos 204 — 5 sin 205 ((z\ffm - /\((,QB)) + chzmAmB)} .

Since the angle 0;, is not fixed as yet one may choose it such in such way that the

Hamiltonian HI"™ = 0. This is guaranteed by the condition

qusk . (?20)
Jz(ma +mp) +0 (/\({TQA) B /\((TQB))

tan2b., =0
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So, due to Eq. (7.20) the Hamiltonian Hap = H(D) + Hg. The corresponding free
energy functional is evaluated the same way like in the paramagnetic case. Namely,

after performing the integration over the fermionic variables as well as introducing

the new variables (cf. Eqs. (4.3))

2 _ .2 2 £ — 2 .2
sz ﬁpLT—a_pil ) ﬁ’fL _pLT ! (7 21)
Do, = XD AN, 20, =27 -2,
which provides the relations

)‘(2) = ’\ UﬁmiL)

iL0

for L = {A, B}, one obtains the free energy functional per lattice site is in the form

I L T B A g
R Zm[ue Pio +hko H“’)} (7.23)

2

-l Z In {1 8" Eii)* Ai?*"‘“‘*‘)}
+§szAmB +Ud* + un
1
+3 [Moa (€% +d* +2p% — 1) — 2Xoa (p% + d°) — BrraMa]

1 i )
+= [’\UB (_62 + d* —I—Qp% == I) — 2XoB (pQB ~:—d2} = ﬁmBMB] g

2
where
Eéz) = — {qgak sin 201, + 0J2(m 4 cos® O, — mp sin’ 9;;5)} ;
(7.24)
Eff,) = -+ [goex 5in 20y + 0 J2(mp cOS? O, — mp sin’ Ore)] ;
and
e a) = (Xoa + 0f,,4) c08® Ors + (XoB + 00,,5) sin® 0y,
(7.25)

AP = (xop + 08,4 sin% Ops + (Mop + 0B..5) COS? Oy

The value of the 6y, is given by the Eq. (7.20).
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7.2.3 Saddle-point conditions

The free energy functional (7.23) depends on 12 bosonic fields: e, d, p(a,B), Ao(a,B)s
XY oo, Bungany Miam) and the chemical potential p. First, the minimization with

respect to fields )\&)}, )\&3) provides

=&’ +d*+2p{, 5 —1=0, (7.26)

which yields

2

. |
pi=rp=5(=¢=d)=p" (7.27)

The minimization with respect to the chemical potential a—fgiﬂ = gives

éNL/Q Z (f (Eﬁfj)) + f (Ei{?)) =, (7.28)

ko
where f @ is the Fermi-Dirac distribution function with the quasiparticle energy

Egﬁ) = B L ALD _pH, (7.29)

and n is an average electron number per lattice site.

The conditions 2548 = () and %—%BE = () yields respectively

o4
L 1 ) =B\ .
2N/2 g (f (Eka ) cos® o + f (Ekg) sin® gkcr) =p° +d% (7.30)

and

%NL/Q S (f (Effj)) sin? 0y, + [ (_Eii)) cos” 9;“,) =p*+d% (7.31)

5

Note that due to the Bogolyubov transformation

(=) (8)

_ 2 1
N kg = Ny, €0S° Oro + N,

sin® O + 2 o:T_Gﬂ -+ ,Sﬁ_gakg sin 2044,
¢ (odo s + Blacae) (7.32)

s 1 T :
Noke = nﬁ) sin® By, + nﬁf} cos? Ok — 3 (almﬁka + ﬁ}makg) sin 26%,,
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: _ (o) _ (B) i '
with 1, 5 ke = azq ayko Oga,mbker Mg = akaaka, and n;’ = [}, 0r,. The particle num-
ber conservation requires

Z <szaf_-;U + JBgnga> Z (N ko + Ngka) —Z <n§m +n£’§)>, (7.33)

i4,JB ko

which is authomaticaly obeyed in the sense of average values. Similarly, due to the

Egs. (7.32) and (7.30),(7.31) one obtains

Sna = N / 3 Z< Togke > | (7.34)
— %.5}.71/5 %: (f (E,w ) cos? by, + f (Eﬁf,)) sin? Gkg) =p* +d?
and
%ns = % /2 Z< ko > (7.35)

I

1, il - ; - wy
Lt 3 (1 () (o) =
ko
where n4 and ng simply means the average number electrons per lattice site in the

sublattices A and B and due to the Eq. (7.33) is related with the overall average

particles number n according to

ng+ng

n=—tp— =2 (p* +d%). (7.36)

Eq. (7.36) strictly corresponds to relation (4.12) derived in the paramagnetic case.

Finally, the conditions g—gﬁﬂ =0 and Qfﬁﬁ = 0 provides

}?1/—2 ; o (f (Eﬁ) cos? Oy + f ( )sm 9“) %MFA, (7.37)

and

s Yo (7 (B st 1 () eoo) = oty v



105
Note that due to the transformation Egs. (7.32) and the definition of the sublattice

magnetization (cf. Eq. (7.5)), ma = M4 and mp = Mp. Thus, the free energy (7.23)

takes the form

Far 1 kT —B(EL AL —oH -
ko
1 kBT —ﬁ(Eéfg)jLAf:)—aHa—p)
N3 g In [1 te |

1
‘l-EJZ‘mATRB +Ud*+n (1 — Aoa — AoB)

1 1

“EﬁzAm;’g == 5535’”15-

7.2.4 The free energy and magnetization at H,=0

At H, = 0, the sublattices magnetization must be equal,

M4 =g = M0, (7.40)
as well as the symmetry conditions imply that /\Eﬁ) = )\fl), and ,\ff = )\fT). Thus, due
to Egs. (7.21) one obtains

A(]A — ADB = /\, (741)
and
ﬁmA = _BmB = _ﬁm' (742)

Consequently, the band energy renormaliztion factor ¢, Eq.(7.12) does not depends

on ¢ and takes the form

. (1—n+ z.dﬂ)\f(g - _“_?) _ (%) +2d (gii?) VIZatd -

Ja— - @ e - @)
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Note that in the case of vanishing magnetization g, reduces to one in the paramag-

netic case (cf. Eq.(4.17)). The Eq.(7.20) becomes now

tan 260, = U%’
with half of the Slater gap
A=Jzm+ 8,
which yields
sin 20, — ia—%, o8y =+ :

L+ (exq/A)? JLT /)

The formulas (7.44)-(7.46) allow us to write Eqgs. (7.24),(7.25) in the form
o, «, (e, 8
BEN 4 ASO = BN
where
ES = 74/ (ge) + A2,
is the effective quasiparticle energy, and
Hefr = 1 — A,

is the effective chemical potential.

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)

Performing calculations analogues to those in the paramagnetic case (cf. Chapter

4), one finds that in the low temperature regime the free energy of the antiferromag-

netic phase is

(7.50)
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where the band energy per lattice site is

¥ = 3 (B () + B0 (B
+%sz2+Ud2 +mB,, (7.51)

and the entropy

= @Zitf@@)mf(@éﬂ -
N/z ZZ (1= (B))m(1-5 (BD)).

Here, the Fermi-Dirac distribution function f(F), is defined with the effective chem-

ical potential as follows

1

f(E)= m (7.53)
Note, that the quantity [, plays a role of the molecular field, since it adds to the effec-
tive Heisenberg field Jzm/2, and in the case J = 0 (taken in the numerical analysis)
constitutes the entire gap (cf. Eq.(7.45)). On the whole, the first two terms in (7.51)
provide the contribution to the thermodynamics coming from the single particle ex-
citations in the Slater subbands having energies +FEy. These quasiparticle energies
comprise the effective mass renormalization m*/my = 1 /q, and the molecular field
frm; both to be determined in a self-consistent manner detailed below. The field 3,
arises from the local constraints (3.9) and (3.10), (here additionally decomposed due
to the sublattice structures) imposed by the correlations induced by the intraatomic

interactions.

Finally, the sublattice magnetization Eqgs.(7.37) or (7.38) takes now the form

.;_m = Nl/‘) Z (f (b(a)) c0s? 01, +f( )sm Gkg), (7.54)
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and due to the Eqs. (7.46) transforms into

= o |f ()

k

E3 :

e of (EE)) FE,f‘(‘T)' . (7.55)

7.2.5 'The special case H,=0, T=0

In order to evaluate the expression for the free energy, one needs first to express the

chemical potential y1,;; as a function of the band filling n. At zero temperature this

can be done exactly.

Due to Eq.(7.28) one finds

=S E) @) o

k

Assuming that the range of energy for bare particles includes in the of band of

width W, 1.e.,, —%’ Lep € %, Eq.(7.56) transforms into

I

B = /dap(a)x (7.57)

W
2

0 (s v/laer  82) 10 (g = oo +.22)].

where density of state function for the bare particles

°6) = 5773 > e ) (7.58)

and the step function is

1 if 220,
®(£) — (7.59)
0 otherwise.

Let as assume next that p,;; < 0 (for the symmetric distribution of p(e), with gravity

center at zero this corresponds to the case with n < 1). Therefore, the second term
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in (7.57) vanishes authomaticaly. Assuming that p(e) = « (cf. Eg. (4.33)), the

remaining part of the integral can be written as

n—] dew ( qe)” + A2 — |'ueff‘)’

(7.60)

which shows clearly that there are two integration regimes for which © # 0, namely

Iy £ g de 1 7
- “e S e, T d 7.61
where
1 2 2
Ep = E nu’eff - A (762)

I'hus, one finds that the relation between the effective chemical potential and the

band filling is
(7.63)

1 = 1
= s A% = 2 {L—nj).
L,Vq\/}u‘eff 2( n)

The consideration of the case n > 1 is straightforward because of the electron-hole
symmetry.
It is useful to transform the obtained formulas for the free energy and the mag-
netization into the dimensionless form. Namely, starting from Eq. (7.50), at T =0

and replacing the summation over k by the integration over energies £ one obtains

the formula

~¥(1-n)
F 1 i
AF / de 4/ (ge)* + A? 43 Jzm? + Ud® +mpf,,.

N wW)2
W

T2

(7.64)

Similarly, Eq.(7.55) for the sublattice magnetization has the form
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—E(l 7)
/ " RO . S (7.65)
W/ 2 1/ (ge) +A2
The above integrals can be evaluated by using standard integrals tables. Note that
integral appearing in (7.64) can be expressed through the integral (7.65), i.e. through
the magnetization. Thus, finally we obtain the following expression for the ground

state energy per site in the units of W, (far = Far/NW) is
B 1 g\? A2
far = —-5\/(2) ¥ (W) (7.66)
l1-n q(1—n)\? B il § L A
Ty \K 2 ) T\ T T g =)

where w = U/2W, and j = Jz/W.

The evaluation of the integral (7.65) provides the following magnetization formula

\/:LQ (1 —n) 9A

By with z = W (7.67)

The next step is to minimize the functional (7.66) with respect to the variables d
and m. However, contrary to the paramagnetic case the free energy functional cannot
be brought to the form explicit in magnetization . This problem can be solved
by minimizing first the ground state energy with respect to z and then, due to the

relation (7.67), expressing m via z. So, the expression for the ground state energy

takes the final form

1 1-— 1 1
far = —qu L4 g (Tn) g/ (1 — n) + a2+ 2ud® + 5 <§$Q“jm) , (7.68)

with the parameters m and ¢ determined respectively by the Eqgs.(af30) and (7.43).

The numerical minimization of the expression (7.68) allows us to calculate d2 and m.
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7.2.6 Chemical potential

Combining relations (7.49) and (7.63) one finds the chemical potential in the form

Va\2
#ﬁ)\Jr.Uveff:)\:t\/A2+(17q) (1—n)*. (7.69)

Since the numerical minimization of (7.68) allows us to determine the quantities d?and
 for settled parameters: u,j and n, the only unknown variable in Eq.(7.69) remains
A. In order to find A one needs to make use of the two remaining minimum conditions,

namely Qg;%ﬂ =0 and a_g§£ = 0. First of them yields

0 = 220 19+

! (%)eﬁm, p?=§a‘2:l : 7]
| ) B ,
el i)

and similarly the condition a_lgéﬁ =0, leads to

de e=v1-n+d?, p2=L—d2

1 EO) _p(F@))
7 [(f (B&) - £ (B)) m}

Combining these two abave equations, one obtains

A =QQ, (7.72)

where

and

(7.73)
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Next, replacing the summation in (7.73) by integration, and assuming that n < 1

b

one finds

—sW(l—-n)

/ ﬁ | (7.74)

Note, that in the case n = 1, chemical potential ;1 = A, while for the cases when n

differs infinitesimally from unity

A=A, for n—1"
Jliss (7.75)
A+A, for n— 17,
i.e. the discontinuity in the Fermi energy appears when n approaches half filling from

below or from above.. The conditions (7.75) allows to display the effective Slater gap

and compare it with the previously obtained Mott-Hubbard gap.

7.3 From Slater to Mott picture

The discussed results are based on the numerical minimization of the free energy (7.68)
with respect to the variables d and z. The variable z, displayed on Fig. 7.1, has a
physical meaning of the ratio of the Slater gap to the renormalized band energy. The
growing ratio A/(Wq) drives the system towards localization induced by a formation
of magnetic moments arranged in the sublattices, whereas the growing ratio U/W
drives the system towards localization independent of magnetic ordering. In result,
the present formulation allows us to single out the contributions coming from the two
factors. The magnetic energy is thus measured with respect to the effective band

energy (~ W), renormalized by the Coulomb interaction.
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Figure 7.1: The dependense of the variable T = 2/ /W g from the interaction U/U,.

In Fig. 7.2 we have exhibited both the effective Slater gap 2A and the Mott-
Hubbard gap for n = 1. Those characteristics are plotted for the ground state.
The chemical potential is then (T = 0) = A. The Mott- Hubbard gap is expressed
through the difference in the chemical potential in the paramagnetic case (A = 0)
for n = 1.001 (the upper part) and for n = 0.999 (the lower pa:rt), and was discussed
also earlier [6]. For n = 1 the antiferromagnetic Slater split-band picture appears
for arbitrary small U, and A increases with increasing U/U.. In the limit U/U, ~ 1
the gap is composed of the Slater and the Mott-Hubbard parts, and when U — oo
the former merges gradually with the latter. This can be seen explicitly in Iig.7.3,
where we have shown the ground state energy E/(W N)versus U/U.. In the strong-

correlation limit the energy is determined by the kinetic-exchange contribution ~ 1 JU
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Slater gap

Hubbard
gap

Figure 7.2: 2A/W and the Hubbard gap as the functions of interaction strength. The

Slater gap merges with the Mott-Hubbard gap as U /U, — 0.

[2]. Therefore, the energies of para- and antiferro-magnetic states are the same in the
U — co limit. The inset illustrates another interesting characteristic of the solution
namely, the magnetic gap is not proportional to the magnetization, as one would
expect from the Hartree-Fock solution. In other words, the molecular field 5, is a
nonlinear function of m, since from the condition df/8A = 0 we obtain the relation
20 /W = mq/+/1 —m2. Also, AF solution disappears altogether for n ~ 0.83. In the
strong correlation limit the kinetic exchange contribution determines the free energy

behavior also if n < 1, as shown on Fig. 7.4. Of course, in that case system is always

in the metallic phase.
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Figure 7.3: Ground state energy for (AF) state at n = 1 vs. U/U,. The lower curve is
the fit to the expression (—0.042 x U,./U). The inset displays the difference in behavior of

magnetic moment m and half of the Slater gap (A/W), both plotted as a function of the

band filling.

To visualize the difference between the magnetic gap and the magnetization we
have plotted in Fig. 7.5 both quantities as a function of the interaction strength
UJU, = U/2W, for different band filling n. While for n = 1 the magnetic moment
saturates gradually with growing U/U., it displays a maximum for n < 1. This means
that the holes in the lower Slater subband have a stronger detrimental influence on
AF phase in strong-correlation limit; their dynamics is incorporated coherently in the
low-U magnetism when d* 2 (1 —n). The Slater gap for n = 1 obviously grows

~ [ and this indicates again that it merges with the Hubbard gap, which can be
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Figure 7.4: Ground state energy for AF state versus U/ Uy, for different band fillings.

estimated analytically and is = U — W + 4UW?/(2(U? + W)= U —W.

The double occupancy d? = {niyns)) is shown in Fig. 7.6 for different band fill-
ings. It decreases continuously with growing U/U,, i.e. the charge fluctuations are
gradually suppressed, while the magnetic moment behaves differently (cf. Fig. 7.5).

The difference in the behavior of d? and mis caused by the circumstance that the
d? is of intraatomic nature, whereas m is determined from the competition between
the magnetic energy ~ 2, (also of intraatomic nature) and the renormalized band
energy ~ Wq (i.e. the processes frustrating the spins on sublattices). The inset to
Fig. 7.6 exemplifies the difference between the diminution of @ with growing U/U,
for n = 1 in two situations. For paramagnetic (PARA) case d® = 0 for U > U, this

feature is concurrent with the effective mass divergence at the Mott-Hubbard local-



LLF

AlW

magnetization

Figure 7.5: A/W (top panel) and the magnetic moment m = {(nit — 1) (bottom) versus

U/U. and for different values of n.

ization boundary [7]. This divergence does not emerge in the antiferromagnetic state,
as d* approaches zero gradually in the same manner, as m approaches saturation
(m — 1). Therefore, we have displayed in Fig. 7.7 the effective mass renormaliza-
tion m*/my = 1/q as a function of U/U, for different n values. Again, the inset
lustrates the difference with the n = 1 case. One should note that the enhancement

factor in AF state is very small compared to that in PARA state, which is equal to
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0.25

Figure 7.6: d* = (nsny;) vs U/U,, and for the different n values. The inset display the

difference in behavior for para- and antiferro-magnetic cases for n = 1.

1/g=[1— (U/U.)* ' The difference between AF and PARA states diminishes with
decreasing n, as in that situation the magnetic moment is reduced rapidly. So, the
weak mass enhancement in the n = 1 can be associated with the appearance of the
gap. Also, the physical parameters d*, 1 —m, and 1 —n are all of the same magnitude.
This is easy to envisage when estimating e.g. the band narrowing ¢, which is in the
AF state roughly ~ 2d*/(1 — m?) and is of the order of unity.

In order to visua]jzg the relative contribution to the ground state energy coming
from the Coulomb interaction Ud? and the magnetic term (3, - m, in Fig. 7.8 we have

plotted the difference of these two terms. As one would expect, along with decreasing
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Imxlmo

Figure 7.7: m*/mq (with respect to the band value mg) vs U/U, and for the n values
shown. The inset shows a rather weak enhancement close to the Mott-Hubbard limit.
n the magnetic contribution disappears and the system turns to the behavior of the
paramagnetic metal. On the other hand, the closer is the system to the half filling, the
stronger is the magnetic contribution. Note, that in case n = 1 the system approaches
the Mott-Hubbard insulating state, as U = oo.
Finally, in Fig. 7.9 we have displayed the stability regime n — U/U, of AF phase.

The inset has been obtained [8] in the limit of infinite dimension with the help of
quantum Monte Carlo simulation. One should note the regime of the filling n of the
stable AT phase is the broadest for U/U, ~ 1, i.e. when the molecular field is the
strongest (cf. Fig. 7.5).

The Mott-localization is achieved gradually at T = 0 in AF state. In other words,
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(Ud? - B -m) [W]

Figure 7.8: Comparation between the magnetic and the Coulom term contributions to the

free energy.

the present approach provides a continuous evolution from Slater to Mott insulator,
as shown e.g. in the bottom of Fig. 7.3. The same holds true even when we include
the intersite exchange (J > 0). The continuous evolution with growing U/W does not
preclude the first order transition at nonzero temperature, as has been demonstrated

some time ego [9], and subsequently reconfirmed in the limit d — oo [10].

In summary, in this Chapter we have addressed the question of crossover from
Slater to Mott-Hubbard picture in the half-filled band case, as well as have discussed
detailed the behavior Qf quasiparticle properties in AF state in the nonhalf-filled band
case. Although our analysis is based on the saddle-point solution of the slave-boson

functional-integral approach, the results can serve as a proper mean-field analysis,
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Figure 7.9: The stability regime of AF solution; the inset: results of Monte-Carlo calcula-

tions in the d — oo limit [10].

since they interpolate between those in the Hartree-Fock approximation in the limit
U — 0 and those in mean-field approximation for the Heisenberg model (for n = 1) in
the U — oo limit, Thus they represent the basis for inclusion of Gaussian fluctuations
[11] in a magnetically ordered (AF) state close to the Mott-Hubbard localization.
Also, the full analysis of the Mott-Hubbard boundary should include the disordered

local-moment phase [12], not analyzed in the present thesis.
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Chapter 8

Summary and conclusions

In this thesis we have discussad properties of the Fermi liquid close to the Mott -
Hubbard localization, as well as have determined its transition to either correlated
liquid or to the antiferromagnetic phase. These results were derived within the mean
-field picture of correlated narrow-band electrons. Among the new effects determined
and discussed in the thesis are:

(i) The importance of the spin-split masses and the appearance of a nonlinear
molecular field, ss well as their role in the physical properties of systems with almost
localized fermions:

(ii) The instability of the Fermi liquid of almost localized quasiparticles against
the non-Fermi-liquid state in an applied magnetic field;

(iii) The determination of the regime, in which the system exhibits metamagnetism
and differentigﬁ of the form a metamagnetic behavior; and

(iv) A detailed discussion of the antiferromagnetic state for an arbitrary band
filling, and In particular, of & crossover behavior from the Slater antiferromagnetic
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insulator to the Mott-Hubbard insulator with the growing magnitude of Coulomb

interaction.

Apart from that, in the first three chapters we have summarized the slave bo-
son approach and with this tool we have reproduced the older results of Gutzwiller,
Hubbard and Brinkman and Rice. Thus, the slave boson approach represents an
unification of the older concepts already on the mean-field level, as well as allows for

an interpolation between the Hartree-Fock and the strong-correlation limits (see e.g.

Fig. 7.3).

A number of topics, which would make the present thesis more complete, have
not been included. Among them probably the most important is the effect of quan-
tum Gaussian fluctuations on the antiferromagnetic state. Also, it seems interesting
to compare the corrections to the mean-field free energy (coming from the Gaussian
fluctuations) in the antiferromagnetic and paramagnetic cases, the more so, since in
the mean-field approach we observe the separation between spin and charge fluctua-
tions in the paramagnetic phase, whereas in the antiferromagnetic case we do not. In
general, a closer look into the dynamical properties of almost localized Fermi liquid
has to be carried out to determine the stability conditions for the saddle-point solu-
tions. The existing analysis of the Gaussian in the paramagnetic state [1] confirms the
stability of this state. Work along this line for the antiferromagnetic phase is planed
foe the near future. Apart from that, the existing comparison between the mean-field
slave-boson solution and the Mote-Carlo simulations (2| speaks also in favor of our

picture. However, it must be said that even though the present approach reduces
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correctly to the Hartree-Fock approximation as far as the equilibrium properties are
concerned, it does not provide correctly the sum rule for the dynamical spectral func-
tion [3] in the Hartree-Fock limit. Thus, putting into agreement the static and the

dynamic properties in the weak correlation limit poses still a problem.
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