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Nomenclature
cs speed of sound in Fermi liquid
c0s speed of sound in electron gas
c linear specific heat coefficient for quasiparticles
c0 linear specific heat coefficient for ideal gas
e electron charge
eF bare Fermi energy (for non-interacting particles)
h Planck constant
ℏ Planck constant h-crossed (h divided by 2p)
χP Pauli magnetic susceptibility (of electron gas)
χ magnetic susceptibility of Fermi liquid
k wave vector of particle
ℏk¼p momentum of particle
kF Fermi wave vector
kB Boltzmann constant
m magnetic moment per site (in dimensionless units)
m¼m=n magnetic moment per particle
hange History: February 2015. J. Spalek made changes throughout the text.
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m0 mass of free electron
m� effective mass of quasiparticle
mr spin-dependent effective mass of quasiparticle
l chemical potential (Fermi energy at T¼0)
n number of electrons per site (the band filling)
N total particle number
N0(e) density of bare states (both spin directions)
N(e) density of quasiparticle states (both spin directions)
q(T) electrical resistivity
V system volume
q¼N/V electron density
vF Fermi velocity
T temperature (in K)
TF�eF/kB Fermi temperature
Ha applied magnetic field (in Tesla)
U magnitude of intraatomic (Hubbard) interaction
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Figure 1 Schematic phase diagram of condensed 3He including its liquid–gas critical point (solid circle). The minimum on the melting curve
(Pomeranchuk effect) and the superfluidity (in the mK range) should be noted.
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1 Introduction: Quantum Fermionic Liquids

1.1 Basic Characteristics

By Fermi liquid (FL) we mean a quantum many-particle system of interacting fermions (i.e., particles with half-integer spins, such
as electrons, neutrons, protons, 3He atoms, and also quarks – all of spins S¼1/2), which reduces to an (almost) ideal gas of
fermions when the same system becomes sufficiently diluted (the particle density becomes sufficiently small). Fermi liquids
possesses the same type of phase diagram an pressure (p) – temperature (T) plane as a classical liquid except for two specific
features clearly observable for the canonical FL – condensed phase of 3He atoms. First, due to the quantum nature of the particles
involved, the zero-point motion prevents its solidification even at temperature T¼0 and low pressure. Second, FL transformations
can take place to the superconducting or/and ordered magnetic states. The last features will not be touched upon here. In other
words, we shall talk only about normal Fermi liquids (paramagnetic and non-superfluid). In Figure 1 schematic, but fairly
complete, phase diagram for the condensed 3He is provided.

First, we provide some useful formulas for the ideal gas. Namely, as the fermions obey the Pauli exclusion principle, they fill at
T¼0 the momentum p¼ℏk (k is the wave vector of the corresponding matter wave), states of energy ek¼ℏ2k2/2m0 up to the
highest occupied level – the Fermi energy eF. In the case of an ideal gas with spin S¼1/2, the value is

eF ¼ ℏ2k2F
2m0

; with kF ¼ 3p2
N
V

� �1=3

½1�

where ℏkF is the Fermi momentum, m0 is the bare (free-atom) mass, and N is the number of particles contained in volume V. For
gaseous 3He at normal pressure, one has the velocity of particles at the Fermi energy vF¼ℏkF/m0E104 cm s�1 and the Fermi
temperature TF¼eF/kBE6.2 K. The additional characteristic is the density of bare states at the Fermi level, N0(eF). When counted
per atom per one spin direction, it has the value

N0ðeFÞ ¼ 1
8p2

V
N
2m
ℏ2 3p2

N
V

� �1=3

½2�

In the case of electrons in a solid, one has: eFB1� 10 eV, kFB(1C2) Å�1, and N0(eF)B1022 states eV�1. This is the reason why
the particle-energy distribution is regarded as quasicontinuous. However, unlike in liquid 3He, the topology of the Fermi surface
for electrons in metals is not spherical and the particle momentum is conserved with accuracy of the order of the inverse-lattice
vector G. In this context, the liquid 3He can be regarded as a model Fermi liquid on both counts, since it is a truly translationally
invariant FL system in the normal state, with spherical Fermi surface according to eqn [1] in the momentum space. Additionally, it
is charge neutral as whole atoms are regarded as quantum-mechanical particles compose it.
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1.2 Basic Definitions

The Fermi liquid theory bears its name from the first phenomenological approach proposed by L.D. Landau (1956–57), which
aims to describe the quantum properties of liquid 3He in the normal (non-superfluid) state at low temperatures, kBT{eF (T≲1 K).
The spin S¼1/2 is that of 3He nucleus, since its 1s2 filled electronic shell is spinless. On the other hand, the liquid composed of
valence electrons in simple metals: Li, Na, or Cs represents a charged anisotropic FL of electrons coupled to the periodically
arranged (much heavier) ions via the electron–lattice coupling. Separate classes of FL represent the neutron stars (their external
layers) and the quark–gluon plasma, which compose liquids with relativistic speed of the particles at the Fermi level.

The FL state is a viable concept for three-dimensional systems, whereas one-dimensional systems (fermionic chains, ladders,
and nanotubes) are often described as Tomonaga–Luttinger liquids. The exact nature of the two-dimensional electronic liquids (e.g.,
the high-temperature superconductors in the normal state or the quantum Hall liquids) is under extensive investigation, but they
are certainly not regarded as Landau Fermi liquids. Also, the three-dimensional systems close to the magnetic or localization
instability (quantum critical point) represent non-Landau (non-Fermi) liquids, NFL. Therefore, by normal FL (or Landau FL), one
understands that it is a three-dimensional quantum liquid composed of interacting fermions with delocalized states and without
phase transition in this state induced by either mutual interactions between them or coupling to the lattice, or even when changing
the system temperature.

A separate class is formed by the FLs close to the Mott (or Mott–Hubbard) localization; these are called the almost localized Fermi
liquids (ALFLs) (in the case of 3He, this transition corresponds to the solidification, also included in Figure 1). The schematic
division of the liquids of fermions, together with the corresponding examples, are listed in Figure 2.
1.3 Signatures of the Normal Fermi-Liquid State

The fundamental property of the FL state is the existence of a well-defined reference (gas) of single-particle states with momentum
p¼ℏk in the ground and lowest excited states with the energy eks, where the spin quantum number is s¼71 (note that the
z – component of the spin in physical units is Sz¼ℏs/2). Those reference states occupy their energy levels eks according to the
Fermi distribution

n0ks ¼
1

exp b eks � mð Þ½ � þ 1
½3�
Figure 2 Division of various liquids of fermions and the subdivision of the FLs into various classes.
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where b¼(kBT)
�1 is the inverse temperature in energy units, and m is the chemical potential determined from the fact that the total

number of particles is conserved, that is, N ¼Pksn
0
ks. In the ground state, this distribution reduces to the step function

n0ks ¼Yðm� eksÞ expressing the Pauli exclusion principle, and m expresses then the Fermi energy eF. The equation eks¼eF deter-

mines the shape of two (spin-dependent Fermi) surfaces in reciprocal (k) space. In the normal state and in the absence of an
applied magnetic field, eks¼ek, and under this circumstance a single Fermi surface emerges and kF represents (angle-dependent, in
general case) Fermi wave vector. In both solids and liquid 3He the value kFB1 Å�1 and this correspond to the Fermi velocity
vF�pF/m0¼ℏkF/m0.

1.3.1 Interaction among particles
The FL concept is particularly useful in the low-temperature regime T{TF¼eF/kB, where the interest lies only in describing the
thermal (and dynamic) properties of the lowest excited states. In other words, we are interested only in low-temperature properties
and gently perturbed by external fields changes with respect to the grand state. In this limit, one is interested in determining the
system energy change δE induced by the small change in particle occupancy redistribution δnks � nks � n0ks{1 (on average), due

to both interaction among them, and/or by the thermal excitations (the exact knowledge of the total state energy E is difficult to
calculate and even not necessary for the description of low-T properties). In this situation, the interaction in the diluted gas of
excited states can be included in the energy δE by making the expansion in terms of the occupation change:

δE¼
X
ks

ek � mð Þδnks þ 1
2

X
kk0ss0

f ss
0

kk0 δnksδnk0s þ⋯ ½4�

where f ss
0

kk0 expresses the (generally spin-dependent) density–density interaction between the excited particles, that leads foremostly

to the elastic scattering processes at the Fermi surface, as inside it the scattering processes are practically blocked out by the Pauli
principle (the possible excited states are blocked by states remaining occupied). It should also to be noted that the bare (without
interaction included) energy ek is counted from m(¼eF at T¼0). In such formulation, the ground state is regarded as a vacuum state
and scattering due to the repulsive interaction (e.g., of Coulomb-type) has the density–density form involving creation of excited
occupied state with energy e� mZ0 (particles) and the empty states (holes) with e� mr0.

In such approach, there are two subtleties apart from the unknown exact structure of the scattering function f ss
0

kk0 . The first is

connected with the conservation of particles number, which now takes the form
P

ksδN¼0. In other words, if the single-particle
excitations with ek4m are regarded as particles (δnk¼ þ 1), then those with ekom should be regarded as having δnk¼ � 1, i.e., as
holes. Alternatively, the excitation from the vacuum state requires that if the charge þ e is associated with the state ek4m and
δnks¼1, then the charge � e has to be associated with the excitation ekom, so that the total charge of the ground (vacuum) and the
excited states remains zero. This concept bears its origin from the Dirac concept of electrons and holes in relativistic quantum
mechanics, which in the present (nonrelativistic) situation does not lead to any peculiarities.

1.3.2 The Entropy of interacting particles (T{TF)
The second feature is associated with the determination of δnk at T40 or equivalently, with the determination of the system
entropy. Here, the phenomenology appears in its earnest namely, one assumes that it is taken in the usual form for noninteracting
fermions for the number of particles {δnks}, that is,

δS¼ � kB
X
ks

δnkslnδnks þ 1� δnksð Þln 1� δnksð Þf g ½5�

This assumption is justified by adopting the so-called adiabatic principle at the beginning: the single-particle (quasiparticle)
states in the presence of the interparticle interaction are in a one-to-one correspondence with those for the reference ideal gas. In
other words, the number of microconfigurations in the interacting system does not change, nor does the configurational entropy.
This theorem finds its microscopic justification through the Luttinger theorem (1960): the Fermi volume (i.e., the number of states
encompassed by in k-space by radius kF at T¼0) does not depend on the interaction magnitude as long as the system does not
undergo either magnetic or superconducting or delocalization–localization transition. This theorem implies that the occupation
number (δnks) can change, but the Fermi ridge (discontinuity) position in k space does not. It amounts to saying that the number
of available states for electrons in the states ek4m is the same as that for the holes (with ekom).

1.3.3 Quasiparticles
By writing down the total energy in the form

δE¼
X
ks

eks � mþ 1
2

X
k0s0

f ss
0

kk0 δnk0s

)
δnks �

X
ks

Eks δnks

(
½6�



Figure 3 The Fermi distribution for liquid3 He atoms at T¼0.37 K and ambient pressure. (After Mook, H.A., 1985. Momentum distribution of 3He.
Physical Review Letters 55, 2452).
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the energy Eks of the quasiparticle can be defined. This amounts to saying that the effective single-particle energies are well defined.
In effect, the distribution [3] for quasiparticles can be redefined (by minimizing the free energy δF¼δE� TδS), that is, with respect
to {δnks}, with the replacement eks� m-Eks. Figure 3 provides the statistical distribution function n(p)�nps for liquid 3He
obtained from the neutron scattering experiment of Mook (1985). It can be seen that the Fermi distribution function describes the
quasiparticle states well, but with the Fermi temperature TF¼1.8 K and the energy given by Ek¼p2/2 m�, where now m�E3m0 is
the effective mass of 3He atoms in the FL state at T¼0.37 K. The Fermi temperature is also renormalized by the factor
TF ¼ ðm0=m�ÞT0

F , where T
0
F ¼ eF=kB is the corresponding quantity for 3He gas of the same density. So, the interaction changes both

the mass and the Fermi energy to the same extent for all particles (i.e., not only those close to kF). Note that the mass enhancement
factor m�/m0 is not small and therefore cannot be regarded as a small perturbation of its initial value m0. It represents an effective,
renormalized mass due to the interparticle interaction. In other words, the mass increases in the milieu of all other particles due to a
repulsive interaction between them. Parenthetically, this means that the concept of mass in quantum physics is not invariant to the
same extent as in the classical physics.

1.3.4 Electrons in metal as quasiparticles
The states of electrons in a metal are probed by exciting them by photons in the photoelectron emission from the solid. To describe
such a process, one has to know the so-called spectral density function Aks(o) describing microscopically the form of the system
energy spectrum when extracting (or adding) one electron with momentum ℏk and the energy o. Aks(o) is, in turn, defined as

AksðoÞ ¼ � 1
p
ImGksðoÞ � � 1

p
Im

1

o� Eks þ i
P00

sðoÞ
½7�

where Gks(o) is the retarded single-particle Green function for the quasiparticle. The quantity
P00

sðoÞ represents the imaginary part
of the self-energy

P
s and for a three-dimensional FL is given by

X00

s
ðoÞ ¼ bo2; b¼ const: ½8�

The real part of the self-energy is included in Eks (replacing in microscopic theory the phenomenological partBfkk0) and leads to
the mass enhancement; in the simplest case: Ek¼(m0/m

�)ek, where ek is the corresponding energy of particle in gas of the same
density.

The function Aks(o) is of fundamental importance for the many-particle system. This is because the density of states N(o) and
the statistical distribution function nks are derived from it, namely,

NðoÞ ¼
X
k

AksðoÞ; nks ¼
Z

doAksðoÞ ½9�

where the integration is over allowed values of energy of the system (e.g., the band width or the cutoff energy). In the paramagnetic
systems, the spin subscript is dropped; sometimes Aks(o) is defined by summing up over s¼71. The photoemission intensity,
that is, the number of electrons emitted in the direction k with the energy o is given by

IkðoÞ ¼ I0

Z
do0Akðo0Þnðo0ÞRðo0Þ ½10�

where R(o�o0) is the so-called resolution (instrument) function (usually taken in the Gaussian form), n(o) is the Fermi factor:
n(o)¼[exp(bo)þ 1]�1, with o¼0 representing the Fermi energy (I0 is the normalization constant). Figure 4 provides an



Figure 4 Photoemission spectra for a quasi-two-dimensional metal TiTe2 along the G-M line (from bottom to top). The solid line represents the
Fermi-liquid fit of the first equation of [9] to the data. The spectra are normalized to the same maximum height. After Allen, J.W., Gweon, G.-H.,
Claessen, R., Matho, K., 1995. Fermi liquids and non-Fermi liquids: The view from photoemission. Journal of the Physics and Chemistry of Solids
56, 1849.
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exemplary angle-resolved photoemission spectrum (ARPES) with the quasiparticle peak dispersing as the regime of energies is
probed with Ekom; the angle y describes the angle at which the photoelectron is emitted, and determines the wave vector k|| in this
quasi-two-dimensional metal and in turn, the particle energy. The dispersion relation for quasiparticles is linear when Ek-m, i.e.,
Ek� m¼ℏvF � (k� kF). More advanced angle-resolved techniques leads to the determination of the explicit form of dispersion
relation, i.e., the part with Ek� mo0 at is particularly useful for quasi-two-dimensional high temperature superconductors. This is
because for two dimensional systems in plane component of k¼k|| represents the whole particle momentum and thus Ek||�Ek0.
2 Properties at Low Temperatures

A brief description of the properties at low T follows. For that, first the function f ss
0

kk0 has to be specified. Namely, if elastic scattering

processes at the Fermi-surface-only are included, then one can postulate that f ss
0

kk0 ¼ f sskk0 ðkF � k
0
F=k

2
FÞ, that is, the elastic scattering

processes depend only on the relative angle between the respective momenta. Additionally, one can extend the form to the
explicitly spin-dependent form:

f ss
0

kk0 ¼ f s k � k0=k2F
� �þ s � s0 f a k � k0=k2F

� � ½11�
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where s, s0 ¼71 is the spin-quantum number and k¼k0 ¼kF. The form [11] defines the spin-symmetric (fs¼1
2(f

↑↑þ f↑↓)) and the

antisymmetric (fa¼1
2(f

↑↑� f↑↓)) functions in the situation when the spin–spin interaction is rotationally invariant (e.g., when we

neglect the spin–orbit interaction). Additionally, introducing y � k � k0=k2F , the functions can be expanded in terms of the Legendre
polynomials Pl(cos y), that is,

f s;a
kk0 ¼

X1
l ¼ 0

f s;al PlðcosyÞ ½12�

where coefficients with given angular momentum (are defined as)

f s;al ¼ ð2lþ 1Þ
Z þ1

�1
dxPlðxÞf s;aðxÞ ½13�

and represented the partial spherical-wave amplitudes. The ingenuity of this approach is rooted in the circumstance, realized only a
posteriori, that all the principal physical properties can be expressed in terms of a few parameters (f s0, f

s
1, and f a1 ). These properties

can be expressed in terms of the dimensionless interaction parameters Fs;al � Nð0ÞFs;al , where N(0) is the density of states at the

Fermi level including both spin directions and is defined by

Nðm¼ 0Þ ¼
X
ks

δðEk � mÞ ¼ � 2ð2pÞ�3
Z

d3kð∂=∂EkÞyðm� EkÞ ¼ vFðm�=ℏ3p2Þ ½14�

The last expression is valid for linearized dispersion relation: Ek� m¼ℏvF(kF� k)�(pF/m
�)(pF� p).
2.1 Summary of Properties

1. Effective mass enhancement at T¼0,

m� ¼m0 1þ 1
3
Fs1

� �
½15�
where m0 is the bare mass (the band-theory mass for the case of electrons).
2. Bulk compressibility of the FL system at T¼0,

κ � � 1
V

∂V
∂p

¼ r2

V
∂m
∂N

¼ r2

V
1þ Fs0
Nð0Þ � κ0

1þ Fs0
Nð0Þ ½16�

where r�dN/dV is the particle density at a given volume; associated with this quantity is the sound velocity vs, which is
v2s ¼ p2F=ð3m0=m�Þð1þ Fs0Þ.

3. Paramagnetic susceptibility at T¼0 is enhanced in the following manner:

χð0Þ � ∂M
∂Ha

� �
0
¼ 1

4
gmBð Þ2Nð0Þ 1

1þ Fa0
� χp

m�=m0

1þ Fa0
½17�

where g is the Lande factor and (∂M/∂Ha)0 expresses the magnetic susceptibility as the ratio of magnetization to the magnitude
of the (small) applied magnetic field creating it. χp¼1

2 (gmB)
2N0(0) represents the Pauli susceptibility of the Fermi gas. At T40,

the susceptibility takes the form χðTÞ ¼ χð0Þð1þ ~aT2Þ, where ~a is a constant, which can be obtained from the low-T expansion.
4. Electrical resistivity of the electron fluid can be represented by the formula r¼m�/(nce

2t), where nc is the carrier concentration,
e¼ |e| is the carrier charge, and t is the lifetime for scattering due to the inter-particle interactions (Baber–Landau–
Pomeranchuk)

1=tBm�T2 ½18�

So the resistivity can be described by r(T)¼AT2, with ABg(0)2, where g(0) is the linear specific heat coefficient
gð0Þ ¼ ðp2=3Þk2BNð0Þ. In the case of neutral FL, this inverse relaxation time determines the viscosity.



8 Liquids, Theory of: Fermi Liquids

Author's personal copy
5. Specific heat has both the contributions due to single-particle excitations, Bg(0)T and that due to the collective spin
fluctuations; the latter are reflected in the simplest case as a maximum in the dynamic susceptibility χ(q,o) at q¼o¼0. In effect,

CðTÞ ¼ gð0ÞT þ δT3lnðT=Tsf Þ ½19�

where g(0)¼m�pF/(3ℏ
3)�g0(0)m

�/m0, and δ and Tsf are characteristics of the collective spin fluctuation spectrum.
6. The Wilson ratio of the extrapolated values, Rw�χ(0)/g(0), describes the relative strength of magnetic and charge excitations.

For Rwc1 the system is close to the ferromagnetic stability (Fa0-� 1); in the opposite situation (Fa0-0) the Wilson ratio for
the Fermi liquid is close to that for the Fermi gas (is an universal number 3ðgmBÞ2=ð2p2k2BÞ).
2.2 Collective Excitations

Apart from the paramagnetic spin fluctuations, there is a specific collective excitation of the FL – the zero sound. It appears for
frequencies, for which oct�1, that is, in the collisionless regime for quasiparticles. The role of the restoring force during the
propagation of such density fluctuations is provided by the averaged self-consistent field of the remaining particles in the system.
In such a nomenclature, the complementary hydrodynamic (collision-dominated) regime corresponds to the sound propagation
for o{t�1. The density oscillations in the last regime correspond to first-sound propagation in a liquid, which can be identified
with damped oscillation, the ordinary sound.

Explicitly, the ordinary (low-frequency) sound for (ot{1) propagates with the velocity

cs ¼ κm�r
� ��1=2 � c0s

1þ Fs0
1þ 1

3F
s
1

whereas the zero-sound (at high-frequency, otc1) has roughly the value uD
ffiffiffi
3

p
cs. Note, that in the expression for the sound

velocities the third constant (Fs0) appears for the first time, in additional to Fa0 and Fs1.
Apart from those excitations, there are electron–hole and plasmon excitations, for elaboration of which the reader is advised to

consult more specialized texts (see Further Reading section). The same remark applies to the discussion of other nonequilibrium
and transport properties of Fermi liquids.

2.3 Liqiud 3He as a Test Case

As one can see from eqns [15]–[17], one can determine the three parameters Fs1, F
0
s , and F0a by measuring respectively the linear

specific heat, bulk compressibility, and paramagnetic susceptibility for given particle density N/V (i.e., for given pressure) for which
one calculates the Fermi momentum pF¼ℏkF and the density of states according to corresponding formulas for the ideal gas. In Table 1
we display the values of those parameters as a function of pressure. Note that the values of determined parameter can be taken as
input values to determine the explicit values of other (e.g., dynamic) properties and thus, to test the theory mutual consistency, though
such test has not been carried out so far. Also, the parameter values are not small, as even when Fa0-�1, the magnetic susceptibility is
singular and reaches the Stoner threshold for a quantum transition to ferromagnetism. On the other hand, the effective mass can become
large (m�/m0B6 at the solidification point of heavy fermions m�/m0 can reach the value 102 or even larger, see below).
3 Unconventional Fermi Liquids

A brief summary of the Landau approach to the Fermi liquids is as follows. The expansion of the system energy (internal energy for
To0) does not start with a microscopic Hamiltonian, although it can be justified in the manner. This approach conveys physics
even without the explicitly known Hamiltonian and still can provide predictions concerning an overall behavior of the system as a
function of pressure and/or temperature if only kBT{m. So, it minimally provides a semiquantitative rationalization of the basic
macroscopic properties for fermionic systems in the liquid or the interacting gas states, in a single-phase state, i.e., when there are
no phase transitions and/or classical/quantum critical points encountered. The inclusions of the last features requires general-
ization of the Landau–Fermi-liquid concept we overview briefly next.

A nonstandard behavior is to be expected when a normal FL undergoes a phase transition. As liquids which undergo the
superconducting or superfluid transitions are discussed elsewhere in this encyclopedia, the focus here is on the solidification of
3He and the Mott–Hubbard localization of an almost localized electron liquid. Figure 5 provides the molar pressure dependence
of gð0Þ ¼ ðp2=3Þk2BNð0Þ, as well as the mass enhancement m�/m0 for 3He calculated from the relation g(0)¼g0(m

�/m0), where
g0 ¼ ðp2=3Þk2BN0ð0Þ, and N0(0) represents the corresponding density of states for an ideal 3He gas (of the same density).
Parenthetically, the density of states in FL state, N(0), is also enhanced, N(0)¼N0(0)(m

�/m0). As the liquid approaches the
solidification threshold, that is, freezing of atoms into a lattice, the quasiparticle mass doubles. At the highest pressure (B36 bars),
the system solidifies via a discontinuous transition. This is regarded as a canonical case of the Mott transition from F-L to an atomic
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Figure 5 Pressure dependence of the linear specific-heat coefficient g(0) (in units of the gas constant R) and the effective mass enhancement
m�/m0 of the 3He atoms in the liquid state (top), when approaching the solidification. (After Greywall, D.S., 1986. 3He specific heat and
thermometry at millikelvin temperatures. Physical Review B 33, 7520).
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lattice at spin 1/2 particles. At the transition the Fermi surface disappears, since m�/m0 - 1 if the transition were continuous.
Also, due to a weak van der Waals binding of atoms into a lattice and a large zero-point motion of atoms as quantum particles, a
number of phases is possible under applied pressure.
3.1 Heavy-Electron Systems

Even more spectacular effective mass enhancement is also observed in the heavy-electron systems, which compose intermetallic
compounds involving itinerant 4f or 5f electrons, for example, CeAl3, UPt3, UBe13, and many others. The effective masses m�

encountered there can reach B102 m0.
In Figure 6 we provide the collected data for the principal characteristic for CeAl3 and related systems. Note that value of

gC1600 mJ mol�1 K�2, the value of χ enhanced also strongly and finite as T-0, the signature of a paramagnetic state. Addi-
tionally, the T2 dependence of the resistivity is clearly seen. This system represents also a canonical system of a normal Landau
Fermi liquid with enormous effective mass of the carriers. The original form initial 4f electrons of Ce3þ ions must lead to such
huge enhancement of g(0), since the isostructural compound. LaAl3 does not possess any of the above characteristics.

In Figure 7, the molar specific heat data for the moderately heavy-fermion compound CeRu2Si2 is presented. The extrapolated
value of g(0)¼355 mJ K�2 mol�1 has been subtracted from the C/T data. The heavy mass of these quasielectrons is characterized
by new characteristic temperature replacing the Fermi temperature TF�m/kB, which is often called the effective Kondo (coherence)
temperature TK�p2R/3g, which characterizes roughly the bandwidth for these very heavy quasiparticle states. The solid curve
represents the second term of the expression [19] divided by T. The heavy masses are associated, in this case, with the hybridized
4f1 states due to the Ce3þ ions with the conduction states, and the intraatomic Coulomb interaction for the 4f2 configuration is
large, so the f-states can become itinerant only when the valency is slightly larger than Ce3þ (4f1�e configuration with e≲0.1). In
other words, a small number of holes in the originally atomic 4f1 configuration causes the almost localized behavior when these
electrons additionally hybridize with the extended valence (band) states of, for example, 5d–6s type.

The Fermi liquid nature of the compounds for T≲TK is evidenced further in the behavior of the resistivity r(T)¼r0þAT2, as
well as by the Wilson ratio Rw close to the value for electron gas. The two observations are displayed in Figures 8 and 9,
respectively. The straight line in Figure 8 illustrates the relation ABg(0)2, whereas that in Figure 9 corresponds to a Fermi gas. So,
indeed, the concept of very heavy quasiparticles in a very narrow band of hybridized 4f-conduction band states is applicable even
in these extreme situation.
3.2 Almost Localized Systems and Mott–Hubbard localization

As said above, the original Landau theory does not encompass the situation of quantum freezing of the Fermi liquid when, for
example, strong enough repulsive interaction among particles forces them to localize into the set lattice states. This is the case of
Mott or Mott–Hubbard transition, the latter taking place in the case of lattice fermions.

Under these circumstances, a proper language of description starts with the microscopic Hubbard model (or Anderson-lattice model
for hybridized systems), where a short-range type interaction among almost atomic states involves all the system electrons as the whole
system undergoes a phase transition. This description is based on starting form a complementary language (atomic limit), whereas
the Landau–Fermi liquid concept is based starting from the electron–gas concept. Below we summarize the properties obtained based
on the Gutzwiller approximation for the Hubbard model and discuss it subsequently in quasiparticle terms. We assume that we have
one state and one electron per atom. The picture is of a mean-field type within the frame of theory of phase transitions.



Figure 6 Fundamental electronic properties of heavy fermions CeAl3, UBe13, and CeCu2Si2. The straight lines are guide to eye to underline the
Fermi-liquid temperature deendences (see in particular the insets). Clockwise from left top: linear specific heat coefficient C/T for CeCu2Si2, UBe13,
and CeAl3; inverse magnetic susceptibility showing the evolution with the decreasing T from the Curie–Weiss to the Pauli (temperature
independent) form; inset: electrical resistivity showing the T2 dependence. (After Andres, K., Graebner, J.E., Ott, H.R., 1975. 4f Virtual-bound-state
formation in CeAl3 at low temperatures. Physical Review Letter 35, 1979; Steglich, F., et al., 1979. Superconductivity in presence of strong pauli
paramagnetism: CeCu2Si2. Physical Review Letter 43, 1892).
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The Mott–Hubbard localization takes place when the magnitude U of the short-range (intra-atomic) repulsive interaction
exceeds the average band energy per particle ð1=NÞPksek � e. This is because the band energy represents the binding energy gained
by forming an extended (Bloch) state of electron in solid, whereas the Coulomb repulsion competes with such a process as it tries
to keep the particles as far apart as possible, that is, on their parent atoms (where they are localized).

To put this type of argument on a quantitative basis, the renormalized band energy is represented as qe, where the so-called
band narrowing factor is q⩽1 and vanishes at the localization threshold. The Coulomb energy (per atom) is written as UZ, where
Z�〈ni↑ ni↓〉 represents the probability that the atomic state ‘i’ is doubly occupied (a single state per atom is taken, so that the spins
are opposite then). When Z40, the double occupancies are formed and the electrons (originally one per atom) can hop from one
atom onto a neighboring one and thus conduct charge. To close the argument, one specifies q�q(Z), which in the simplest
formulation (the Gutzwiller ansatz) is of the form q(Z)¼8Z(1� 2Z). Thus, the total energy is

EG=N ¼ qðZÞeþUZ � qðZÞ
X
ks

ek þUZ ½20�

In the equilibrium state, ∂EG/∂Z¼0, ∂2EG/∂Z240. One then obtains

Z � Z0 ¼
1
4

1�U=Ucð Þ ½21�



Figure 7 Overall temperature dependence of the (molar) specific heat of CeRu2Si2, with the linear part extracted. (data: Courtesy of J Flouquet
group from Grenoble).

Figure 8 Universal scaling to the A coefficient in resistivity (r(T)¼r0þAT2) of various heavy fermion systems vs. the coefficient g0. The straight
line represents the so-called Kadowaki–Woods scaling law ABg2(0) (after Auerbach, A., Levin, K., 1987. Universal low temperature properties of
heavy fermion systems. Journal of Applied Physics 61, 3162).
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Figure 9 Universal scaling of the coefficient g0 vs. the susceptibility χ0 for various heavy fermion systems. The straight line is for the ideal
electron gas. (after Auerbach, A., Levin, K., op. cit).
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q � q0 ¼ 1� U=Ucð Þ2 ½22�

EG=N ¼ e 1�U=Ucð Þ2 ½23�

where Uc ¼ 8jej is the critical value of the interaction, at which EG¼Z0¼0, that is, the energies totally compensate each other (the
metallic state for U⩾Uc becomes unstable). One can also calculate the magnitude of spin site on the representative atom that i
defined as

〈S2i 〉¼
3
4

1� 2Z0ð Þ ¼ 3
8

1þ U
Uc

� �
½24�

At U¼Uc the spin of the site reduces to the Pauli spin, with 〈S2i 〉¼ 1
2

1
2 þ 1
� �

, i.e., to its value in the atomic limit.

A brief interpretation of this new approach with respect to the standard Landau language is in place. Namely, in distinction to
the Landau theory, for which the reference state is the ideal electron gas and relevant are the electrons at or in vicinity of the Fermi
surface, we now take into account all the system fermions (electrons) into consideration as the local interaction U can reach the
magnitude eF or be even large. The band narrowing factor q represents a restriction on the motion of individual fermions
throughout the system due to the repulsive interaction from the other particles. The reason why the repulsion can be regarded as
local (intraatomic) is that now even the itinerant Wannier states are considered near the limit of atomic states overlap is small with
the states centered on the neighboring sites. We introduce a quasiparticle language even in that limit as discussed next. For that
purpose, we make a brief discussion concerning the transformation of the Fermi liquid into a lattice of localized states, as
exemplified by the already introduced Mott–Hubbard transition.

3.3 Mott–Hubbard Transition as a Phase Transition

The factor q(Z0) can be interpreted as describing the mass enhancement also. Namely,

m�

m
¼ gð0Þ

g0
¼ q�1 ¼ 1� U

Uc

� �2
" #�1

½25�

So, m� diverges (and so does the linear coefficient of the specific heat) as U-Uc if only the transition is continuous.
Additionally, one can also calculate the magnetic susceptibility χ(0), which reads

χð0Þ ¼ χP
qðZ0Þ

1� U
Uc

1þ U=ð2UcÞ
1þU=Ucð Þ2

" #�1

½26�
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where χP is the Pauli susceptibility. Note that χ is divergent as U-Uc, since q-0 in this case (the other factor represents
the renormalized Stoner criterion for the onset of ferromagnetism). Hence, the point U-Uc represents, at least within this
simple approach, a quantum critical point (the Brinkman-Rice point). One can also define the parameters F1s and F0a by comparing
eqns [25] and [26] with eqns [15] and [17].

3.3.1 Localization of electrons at T40 and quasiparticles
One can generalize the meaning of the factor q(Z) by generalizing the concept of quasiparticle with energies Ek¼q(Z)ek.
This generalization is basic on the notion that in eqn [20] each of the bare (noninteracting) energy ek is reduced (renormalized)
by the same factor q. Hence, the statistical distribution of quasiparticles is postulated then, as in the Landau–Fermi liquid,
in the form f ðEkÞ ¼ fexp½bðEk � mÞ� þ 1g�1. In effect, the free energy of the metallic (delocalized) ALFL written for all
fermions is

F
N

¼ 1
N

X
ks

Ekf ðEkÞ þUZþ kBT
N

X
ks

f ðEkÞ ln f ðEkÞ þ 1� f ðEkÞ½ �ln 1� f ðEkÞ½ �f g ½27�

In the low-T limit, the expansion to the first nontrivial order leads to the generalized free energy expression

F
N

¼ � qðZÞeþUZ� g0T
2

2qðZÞ þ oðT4Þ ½28�

This quantity reduces to the physical free energy at ALFL for the optimal configuration, i.e., for which F has a global minimum
as a function of Z¼ ZðT=UjejÞ.

The next step is to introduce the discontinuous phase transition in the context of metallic ALFL instability. The localized
electrons (atomic s¼1/2 spins) are represented in the paramagnetic phase in the simplest manner by their entropic part only, that
is, their free energy in the simples case amounts to

F1
N

¼ � kBT ln 2 ½29�

where the exchange interactions between the electrons have been neglected as only paramagnetic states are discussed here.
Equating F¼Fl, the coexistence of the states regarded as phases in the thermodynamic sense is obtained.

The phase diagram for this system on the plane T�U/Uc is shown in Figure 10, together with the ‘mean-field’ critical points.
The main feature is the reentrant (PM) metallic behavior in the high-temperature regime. Such a reentrant behavior is observed for
the condensed 3He (on the p� T plane, cf. Figure 1). For the canonical Mott–Hubbard electronic system, pure and doped V2O3, the
upper line Tþ (U) represents a crossover behavior accounted for in a more refined approaches (dashed line here).
3.4 Spin-Dependent Quasiparticle Masses and Metamagnetism

There are two unique properties of almost-localized electrons in the presence of magnetic field. The first of them is the itinerant-
electron discontinuous transition to metamagnetism, that is, the transition in an applied magnetic field to an almost saturated
ferromagnetic phase via a first-order transformation. The metamagnetic transition is companied by a maximum in the linear
specific heat coefficient g(Ha). The second is the appearance of a spectacular and unique spin dependence of the quasiparticle
masses, with m�/m0�ms/m0¼1/qs, which appears only for a non-half-filled narrow-band situation. In the limit of strongly
correlated electrons (UcUc), the enhancement factor takes the form

1=qs ¼ 1� nsð Þ= 1� nð Þ ½30�

where n is the number of electrons per atom (the band filling) in the correlated band, with the energies of particles
Ek¼Eks¼qsek� smBHa, and ns is the number of electrons (per atom) of spin s (the quantity m � n↑ � n↓ð Þ= n↑ þ n↓ð Þ is the spin
polarization per particle). Figure 11 presents the spin-split masses as a function of m for both the majority and the majority-spin
subbands for the two-band fillings close to the half-filling, i.e., close to the Mott–Hubbard transition, where localized phase would
stabilize. The spin-split masses were predicted first theoretically but have late been detected experimentally in the heavy fermion
systems CePd2Si2 and CeCoIn5 (see Further Reading).

In Figures 12(a) and 12(b) we have plotted the magnetic moment, the double occupancy probability and the spin-split masses,
all as a function of the applied field. The numerical results are drown for a two-dimensional square lattice; other parameters: the
band filling n is specified and U/Uc¼0.95.



Figure 10 Schematic phase diagram for the almost localized electrons in a narrow band in the paramagnetic state. (After Spałek, J., 2006. Magnetic
properties of almost localized fermions revisited: Spin dependent masses and quantum critical behavior. Physica Status Solidi (b) 243, 78).

Figure 11 Spin-split effective masses for almost localized electrons as a function of magnetic polarization m ¼ ðn↑ � n↓Þ=ðn↑ þ n↓Þ for the
number n of electrons per atom specified. Inset: the same for the polarized electron gas. (After Spałek, J., Gopalan, P., 1990. Almost localized
electrons in a magnetic field. Physical Review Letters 64, 2823).
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Figure 12 (a) Applied magnetic field dependence of magnetic moment exhibiting the metamagnetic behavior (topmost curves) and the double-
occupancy probability d2

0 . (b) The spin dependent masses m��ms relative to the bare (band) mass mB vs. reduced applied field. The vertical
dotted line marks the magnetic saturation limit, at which only the spin-magnetic carriers with m�¼m0¼mB survive. (After Korbel, P., 1997. PhD
Thesis, Jagiellonian University, Kraków, see: http://th-www.if.uj.edu.plztms/download/phdTheses/Pawel_Korbel_PhD.pdf, Almost Localized Fermi
Liquid and its Instabilities Against Mott-Localized and Spin-Liquid States).
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3.5 Marginal Fermi Liquid

In the case of a normal FL, one has Re
P

(o)Bo, and Im
P

(o)Bo2, whereas in the phenomenological approach to high-
temperature superconductors, Varma and co-workers assumed that

X
ðoÞBl o ln

oc

joj þ ijoj
! 

½31�



Figure 13 Momentum distribution for interacting electrons in a nanochain of N atoms specified and for different interatomic distances R (in units
of 1s Bohr orbit). (cf. Spałek, J., Rycerz, A., 2001. Electron localization in a one-dimensional nanoscopic system: A combined exact diagonalization
– An ab initio approach. Physical Review B 64, 161105).
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and hence the imaginary part is of comparable magnitude to the quasiparticle energies with energies oBek (l is the effective
coupling constant and oc is the so-called cutoff frequency i.e., the energy beyond which the marginal FL (MFL) concept does not
hold). The real part of the self-energy is weakly singular and this, in conjunction with the fact that

P00B|o|, specifies the two-
dimensional nature of those systems. Such phenomenological approach describes roughly the so-called optimally doped high-Tc
superconducting systems in the normal state.
3.6 Nanosystems as Quantum Fermi Liquids

In the era of nanotechnology, a legitimate question is: how short can a quantum (monoatomic) wire be? The answer to this
question can be provided in the simplest manner by solving exactly the system of NB10 atoms with one valence electron (e.g., a
chain of N hydrogen or alkali atoms in the simplest situation). Figure 13 shows the statistical distribution function nks drawn for
different interatomic distances R in units of Bohr radius a0. For RE2a0, the distribution is close to the Fermi distribution, with
quasi-discontinuity (the vertical dashed line) near the Fermi point for the infinite system. The distribution is continuous nksE1/2
independent of the particle energy, when the particles become localized on atoms.
4 Beyond the Concept of Fermi Liquid: Quantum Criticality

By quantum phase transition we understand that taking place at temperature T¼0, i.e., when thermodynamic fluctuations in the
equilibrium vanish. This situation raises immediately the basic question that one would think that at T¼0 the quantum con-
densed matter is governed by the pure quantum-mechanical laws. But then, what does it actually mean when we cannot solve the
N-1 problem at hand exactly? In that situation, the concept of spontaneously broken symmetry, introduced for a classical
continuous phase transition by Landau, with a concomitant order parameter quantifying that broken symmetry state is still valid
albeit of not with as simple meaning, as its classical correspondant. In that situation, the order parameter appears at T¼0 as a
function of the parameter such a external pressure (p) or applied field (Ha) or connection of particles. Obviously, the proper
scaling lows around this quantum critical point (QCP) must also involve the limit T-0(T40) to determine the quantum critical
properties distinct from the near the classical critical point (CP). The basic question is what exactly induces the symmetry
breakdown at T¼0? We are interested here in an itinerant (correlated) fermionic liquids. In that situation, at least in the case of
Mott–Hubbard localization, it involves a competition between the kinetic (renormalized band) favoring energy of the delocalized
states, and the repulsive interparticle interaction favoring the localized (quasiatomic) states. We have seen it earlier, where at
U¼Uc the kinetic (qeo0) and the interaction (UZ40) parts compete and compensate each other exactly for U¼Uc. At T¼TMIT40
the difference in entropy (thermodynamic factor) plays the role of the tip-of-balance in the situation when the above two energies
almost balance out each other. The second example is provided by the heavy fermion systems in which there is a subtle



Figure 14 A schematic phase diagram on pressure–temperature plane with a quantum critical point (QCP) in between magnetic and normal
metallic states. The region in red corresponds to classical regime, the quantum critical regime, where usually temperature dependence of physical
quantities appears is also marked (cf. Table 2). (After Lanzarich, G.G., 2005. Magnetic quantum liquid enigma. Nature Physics 1, 11).

Table 2 Spin-fluctuation scenario at QCP: temperature dependence of physical quantities for T-0 (courtesy of Dariusz Kaczorowski); a and T0
are constants

Dimension Specific heat coeff., C/T Electrical resistivity, Dr Magnetic susceptibility, Dχ

d¼3 FM (z¼3) BlogT0/T BT5/3 BT�4/3

AFM (z¼2) B1� aT1/2 BT3/2 BT�3/2

d¼2 FM (z¼3) BT5/3 BT3/2 BT�1/logT
AFM (z¼2) BlogT0/T BT B(logT)/T
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counterbalance between a weak magnetic ordering or spin fluctuations and the onset of superconductivity, particularly if it takes
the form of spin-singlet superconductivity, in which case it takes the form of a competition between the local dynamic magnetic
excitations and their non-magnetic (Cooper pairs) correspondants.

Let us characterize briefly QCP in general terms. In Figure 14 we draw schematically the phase diagram involving a quantum
critical point. What is important, in the quantum critical regime marked on the Figure the temperature dependence of the
properties in the low-T limit are completely different than the corresponding properties for the Fermi liquid discussed earlier (in
which we had integer exponents, i.e., quantities BT or to BT2 only). The difference is displayed schematically in Table 2 for the
systems of dimensionality d¼3 and for system close to ferromagnetic (FM) and anti-ferromagnetic (AFM) instability. Appearance
of the dynamic exponent stems from the circumstance that in the case of quantum phase transition (T-0), a nontrivial dynamics
(time dependence) arises and is entangled with the ordinary thermodynamic spin fluctuation processes. The logarithmic term
appeared already when the collective spin fluctuations are included (cf. Figure 6). Near the quantum continuous transition we
observe additionally that the single-particle dynamics (manifested by the term gT in the specific heat) becomes overshadowed by
the singular collective (e.g., spin) fluctuations.
5 Extension of the Fermi-Liquid Concept: Magnetism and Superconductivity

Expression [4] can be generalized to include not only particle–particle density interaction, but also the spin–spin exchange
interaction, where the second term is changed to the spin-rotationally invariant form.

f ss
0

kk0 ¼ f s k � k0=k2F
� �þ r � r0f a k � k0=k2F

� � ½32�

where r�(sx,sy,sz) denotes the Pauli matrices. In the broken symmetry state the latter term introduces generally an effective field
which introduces a uniform spin splitting if fao0 and thus can lead to a Stoner quantum critical point (QCP) for Fa0 ¼ � 1 as
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signaled by the form of the magnetic susceptibility (cf. eqn [17]) divergence at T¼0. For Fa0≲� 1 we have a weak ferromagnetic
state with strong spin fluctuations of the small static moment already at low temperatures, as the Curie temperature
TcBjFa0 � 1j-0. We are thus entering the quantum critical regime outlined above. It can be modeled by the Hubbard model from
which the scattering function of the form [11] or [32] can be derived (cf. Vollhardt, 1984).

The situation is quite different in description of superconductivity. In the simplest case of the Bardeen–Cooper–Schrieffer
(BCS) theory the pairing is taking place in k space, so the Landau quasiparticles picture can be directly adopted to that case.
However, the density–density (including spin–spin) form of correlation functions is insufficient in this case. In general, the
particle-number non-conserving term must be added, to the particle–particle interaction which in turn introduces a gap in the
single-particle spectrum of individual quasiparticles representing the exited states from the condensed (paired-particle) state.
The state is still metallic. Therefore, the particle current in such condensed state is composed of a coherent (with the same phase)
supercurrent of the pairs. Note that almost vertical lines locked up at T¼TN and T¼Ts in the range of 1 mK in Figure 1 represent
the (antiferro-) magnetic and paired (superfluid) transition lines for 3He in the solid and liquid phases, respectively. So, even in
this canonical Fermi fluid those two types of ordering appear in addition to the Mott transition (solidification). A further analysis
of those points requires a separate and thorough discussion.
6 Outlook

The concept of the Fermi liquid is very useful in rationalizing the temperature, pressure, applied magnetic field data for many
metallic materials and on this basis, determining the principal characteristics. The concept can be extended to describe some classes
of superconductors (classical BCS superconductor) and itinerant ferro- and antiferro- magnets, although in most of the cases
inclusion of interelectronic correlations is important if not indispensable. The rule of thumb in singling out a specific metal as a
Landau-type Fermi liquid is: a relatively high value of the linear specific-heat coefficient (g0B10 mJ mol K�2 or more), a relatively
high value of the paramagnetic susceptibility χ≳10�3 emu, and the carrier effective masses m� obtained from, for example, de
Haas-von Alphen method in the range of 2C10 m0. In the correlated systems gcg0 which means that the electronic entropy
represents an important part of total entropy, temperature dependence of resistivity r(T) has a large BT2 term and the m�/m0c1.
It is absolutely amazing that FL concept is applicable to the metallic heavy – electron systems with the effective electron masses
m�/m0B102C103 (i.e., reaching that of proton or neutron at rest). Equally amazing is the circumstance that their Fermi energy
eF ¼ e0Fðm0=m�Þ{e0F so that it must be characterized in Kelvin units, since TF�eF/kBB10C102 K. The principal physics of Landau
Fermi liquids is well established, so the present research in this area has shifted to the study of strongly correlated systems and
those with a quantum criticality non-Fermi liquids (NFL). The last subject is the process of intensive studies. Figure 14 illustrates a
typical phase diagram on the pressure–temperature plane at the border of magnetism in heavy-fermion compounds. In Table 2 we
show typical singular type of behavior observed in those systems close to QCP and T-0.
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