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I, INTRODUCTION

The Hubbard model is‘Very ugeful for the description
of two kinde of phenomena due to correlations in narrow
bends: band ferromagnetism of metals and alloys, and wmetal-

-nonmetal transition1. The HHubbard Hamiltonian is:

oy

H =Z-.t£j“-:a_jd + UZ"!.;@‘"-Q ’
’ . . . ..

;o
with tij=t?;. Indices 1 and J represent lattice sites,
while < =21 is a spin quantum number..The operator
a;o’ (akf ) crestes (destroys) an electron with the diag-
onal spin:component g% = 072 on site i, =0 Ny =a;S 8
igs the operator of barticle number on the site i. The
first sum in Eq. (1) is usually called the hopping term and
exprésses the movement of an electron with 5% = g/2 fronm
site J to site‘ i. The hopping term is written in the
Wannier reﬁresentation and 1t stands for the kingtio energy
of electrons plus‘the energy due to the attractive periodic
potential. The larger the contribution of this sum to the
total energy of the system, the more freely the electrons
move through fhe lattice and form proportionally wider
bandg. In the tight binding approximation we Limit ourselves
to the hopping between the neérest neighboure <i,j > and
then we put"t<jqj>:=t < 0.

The second sum in Eq. (1) describes the Coulomb re-
pulsion between electrons with opposite spins on the same
lattice site. In the nondegenerate Hubbard model each stom
hags only single orbital atomic state available for elec=-

trons (i.e. of 1s type), which can hold up to two electrons
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wilk opposgite spins, 28 it can be seen from Tg. (1).

. The Coulomt =nd exchange Interactiong between elec~
trong located on aifferent sites are neglected in the tra-
ditionsl Hubbard treatment1. Fowever, the intersite inter—
actiong come out slgo froﬁ the Hubbard Damiltonian (1) if
the Coulomb repulsgion U ig strong enough; A part of them
ig a spin-spin interacticn of the Heigenberg form (iée;
ﬁi"ij)’ and after Anderéom2 is called the kinetic éxohange
interaction. The concept of the kinetic exchange intersc~
tion ig ghortly summarized in Sec.IT.

In Sec.III we obtain an explicit form of the effec-—
tive Hamiltonian with the virtuzsl hOpping Tfrom gingle- to
double-occupied sites included in 1t, uging the cancmical.
transformation methcad,

Sec.IV congists of conclusions.

II. THE CONCEET OF THR KINRTIC RYCHANGE INTERACTIONS

Tt could have been expected that even for small %
and for the case of cne electron per atom (i.e. for n = 1,
the band ilg half-filled. In fact, the situation ig wore
oompiex. In the atomic limit, i.e. for noninteracting atoms
(t = 0), ezch a2tom has two energy levels which are gplit

by U. 50 in the ground state for =n = 1 only lower Jevel

w

are filled. Similarly, when [t[ & U electrons £ill only
the lower energy level which ig broadened oy fthe interac-—
tion and forms a narrow band. Thus 2 system at the tempera-
ture T = O can remain an Insulater, due to an increage

of the electrogtatic energy by the amount pU,:wheré js

1s a number of double occupied sites. Such sn insuiating
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system, waile t £ O, is called the Mott imsulator-. It is
~important then.to asgk about the spin configuration of thig
eyetems. From that reason our aiw in this paper is to con-
struct an effective Hamiltonian in which the sgpin degénér—
acy existing in the atomic limit is removed. The method
adopted to the problem iz algo applicable if n # 1: i:e.
foi a.partially filled band. As we sghall gee it gives re-
sults which are more general than the approach based on
the perturbation theory2;4. In fact, in the latter case

the Helgenberg-type interasction was derived from the Hub-

bard model for '11=’]'2 and thus the total Hamiltonian ig of
the form:
2 .
_ + Z | +.2_JE e
H—Ztaigajd -+ Uv' miﬁ‘m‘:+ U-Z’ éi ""5-’_\ 4
<A, §> A <132 f2)
.= (st g7 &% o gt - - a7

where 8y = 085,855,510y 8 = ajpa3 55 =85, a4

wZ ~ . a
end 57 = (ng, -ni¢)/¢. The last term in Eg. (2) is called
the kinetic exchange intersction and is only a part of the
Heisenberg Hamiltonian®. The case of the Mott ingulator,
when.the operator n; = ng |
ble In Eq. (2) gince the hopping term is always present

+ = 1, is not ezsily viei-

Hi-g
whenever t £ O. We will ghow that in the case of the Mott
iﬁsulator our effective Hamlltenian reduces Strictly to the
Hamiltonian of the Anderson kinetic exohéngez. In a pertur-
bative approach the Mott insulator was discussed taking the
whole hopping.term ag a perturbation. With the help of the
canonical transformation method we remove the part of it

connected with transitions from single- to double-occupied

sites only, and we replace it by the spin-dependent inter—
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gsite interactions between electrons.

III., THE FFFECTIVE HAMTLTONIAN

The essgential feature of the theory which we would
like to develop now is that we take into sccount ab ini-
tio  the fact that intra—atomic forces are sufficiently
strong (|£|KU), to prevent two electrohs of opposite
gping from occupying the same atomic sitei'except in vir-
tual transitions4.lTo start with we divide the site—bccu—
pation number Hilbert space into two subgpaces: the first
one which includes statees with occupation number ni=0
and 1 in each lattice gite i, and the hopping between
them, and the gecond one -~ the subspace of double—occupled
sites (nld.= n._ d = 1), and the hopping between them, i
Next we treat the hopping between these gubspaces ag a per-
turbation which we want fo eliminate by the properly cho-
gen unitary transformation of the Hamiltonian. Sﬁeh a trane-

formation hag been recently considered by Stevens5. Follow-

ing his condept, and with the help of the identity:

t), ala s = tZ Oig (i" Mg+ “A—d) ajs (4'“J"d+m~5"") J
<1,,J> <ayj> '

“ (%s)

we divide the hopping part of the Hamiltonian (1) into terms
which operate in pérticular subspaces or trsngform the elec-
tron from cne to the other. For convenience we write the
full Hamiltonian és four terms: a projection of it onto the
first subspace (EOHPO); onto the second subapace (PNHPN);
and the mixing term (POHPN t PyHP,), where P, and Py are
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projection operators of the first and second subspaceg, Tre-

apectively (PO+PN = 1)

H=BHE+BHE +RHB+BHE, .,

Where?

(P H(P tZ. CLLd (/-L ﬂ'I.L_. )ajd (4'-_%-—6)-‘) (4—8.)

(1_’J>6

BHE = £, aifmegapmps + U2 mamg

44,i%0 * (4%)

QHB =t ), al (d-m_)axms |

4-1.,‘})6 . (4-0)
and

H? tz, at.d n\_-d Jd (4‘ ) (46.)
<-‘Ld>6 '

Tet us define the operator:
+¢e H
Ho A (5)
where K ::PHP + P HP HT:H'-,H

O 0 NN *
duces the Hamiltonian H for € = 1. We look for a trans-

o » Band which repro-

formation:
—ieS e S
H __} '}{ a He eﬂ..E

with 8 = S+, such that gte has g1l ite off-diagonsl el-

’ (6)

ements of order leass than € . Of course, the effective

Hamiltonian }t= ﬂ€=i « Assuming that:



-

ieS 4 22
e “—”’l+i65‘§€251 (7)

| 2
~wWe obtain terms up to order ~€7;

jte":_Ho+€(H4_+i[Ho,S])4; '
-4e*(2i[H, S]- [[HO,SJ,SD, (8)

The linear term ~€& ig absent when:

H o+ i [H..S1-0.

f9)

This condition substituted into Egq. (8) gives:

= H,+4e[H,8].

(10)

Ege (9) may be golved with respect to S. It can be pro-

jected onto gubspaces and thus can be written as:

(-POH{LPN ;|"’.L:Po [HOIS]PN .= O,

| | f9a)

Po(HOS —SHO)PO B OI‘I
f9%)

P(H.3-SH,)B,=0.
f9¢)

Eqe f9b) and (9c) are satisfied if we put P SP_ = P, and

PN"SPN = Py « It 1s the only solution of these equationg
because. P, [HO,S] Py #0 and thus § is not a function
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of H but commutes with it when projected onto subspaces.

O.

With regard to that we héve:

LSB - [+ EHR+ (RHR)RSR (e,

One may solve this equation by the following iterstior pro-
cedure. Afsuming that on the T hess Of Eg. (11) POS(D)PN:O
we get an expresaion for POS(1)PN; next subgtituting
POS(1)PN to the rJhes. of Eq. (11) we obtain an'expression
for _POS(Z)PN, etc. Lterating up to infinite order we con-
gtruct a gecmetric progression, which leads tc the final

formula for PSPy of the form: ' (12)

2,38, --i RHE, (BHE, - BHR.) "

The gimplesgt approximation of (PNHPN'POHPé) ig the re-
placement of it by the encrgy difference between centers
of gravity of two subbands which is equal A=~W ., So

from Eq. (11):

PSP, ~-i U (BHD).

(1%)

and with regard to Bg. (10) we have:

(14)

# - RHE+B AR,

where:

LHE =RHR - U*RHBHB, |,

(15a)



DT - RME - u’i]?,,,HE,H’PN .

(15b)

Subqtltutlng Fq. (40) and HEq. (44) to Eg. (15a) and (15%),
we get after some manipulations and neglecting terms con-

necting more than two lattice sites:

'P?C'P "'tZ, CL.,.,—(4- Lo’) 6(4— )

<1.,J pX-)

2 SIS mlemed bl

P}f? tZ a m,,a Qs Mj-6 T U_Zrndrnw

1,326
+ Zp “-.6(“1..-6 (d ‘ﬂ 5)(4 'Vl )
4“'JJ>6 (17)
- where Sf- = S;: for d =X 1y respectively. The part (17)

of the effeotlve Hamiltonian does not 1nfluence the magnetic

' state in the case Jt{ € U and It kT (Which means

that <11 a,)“" <> ), end thug can be neglected. So the
effective magnetic Hamiltonian HM can be rewritten with

neW operators introduced: . | (18)

/balo’ = s (/-[- -mi-o’): Vi = /b,: b&a ’

in the final form ag:
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The new operators bch and bid’ fulfill anticommuta-

tion relationg: o | | Gﬂwﬁtﬁon

['qum ,] 4_3@66, (4-me. d)"'ST m
['b(d) J O : _ (20)

In the particular case of the Mott inéulator L _1—nl_d ,
and - HM reduces to the Heigenberg Hamiltonian with pogi-
tive exchange interactions due to the kinetio exchange;
Therefore, the derived here Hamiltonian (19) can be con-
gidered ag 2 generalizatibﬁ of the Anderson kinetic ex-

change Hamiltonian to the case n; £ 1.

IV.e CONCLUSTONS

Let vs summarize shortly the main points of +his
paper. We have applied the canonical transformation method
in 2 nongtandard situation, namely we have not assumed
that Ho ig diagonal., The canonical_tranéformatioa hag been
uged to construof the effective Hamiltonian in which the

gpin degenerscy of the Hubbard model ig removed. For this
purpose we have divided (projected) the hopping term in
Eq. (1) into four parts cormected with hopping from single~
to double-occupied sites snd vice-verss by the spin—dépend—
ent intersite interactions. The obtained formula (19) ror
thege interactions réduces_to the Anderson kinetic exchange2
for the Mott ingulator which ig not the cage in the rertur—
bational approaoh4. Moreover, the canonical transformation
method is more universal thah the perturbation theory in

thie senserthét it renormalizes the ground gtate of the ays-
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tems It means that we replace interactions befWeen bare
particles by interactioné between guasiparticles. The same
method has been applied in the theory of superéonductivity
where attractive interactions between electroneg are con-
structed from electron-photon interaction®.

However, we have congidered here the casge when
[t{ € U only, so the metallic phase, after the Mott
transition; is beyond the gcope of this paper; It requires
the inclugion of real hopping from single- to double-~oc-
cupled gites which has been here discarded by the canoni-
cal transformatibn. Analogical problem occurs in the BCS
theory6 which 1is not appropriate for the description of
a norma; metallic phase above the critical temperasture TG.
Since we have replaced the hopping between single- and
double-occupied sites by the virtual hoppihg, the only con-=
clusion about nonmetal—metal trangition Which can be drawn
from the theory presented here ig that trangition to the
metallic state cannot occur in a nagnetically orderéd

gtate.
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