

A Primer to the Theory of Critical Phenomena

Copyright Elsevier 2018 This book belongs to Jozef Spalek

A Primer to the Theory of Critical Phenomena

This page intentionally left blank

A Primer to the Theory of Critical Phenomena

Jurgen Honig

Purdue University West Lafayette, IN, USA

Józef Spałek

Jagiellonian University Kraków, Poland

Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2018 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-804685-2

For information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: John Fedor Acquisition Editor: Anita Koch Editorial Project Manager: Katerina Zaliva Production Project Manager: Maria Bernard Designer: Maria Cruz

Typeset by VTeX

Contents

Prefa	ace	xi
1.	Introduction: Classical Phases and Critical Points	
	1.1 Physical Examples: Macroscopic Properties 1.2 Singularity of the Specific Heat	1 6
	1.3 Kelliarks	0
2.	The Ising Model and Its Basic Characteristics in the Mean Field Approximation	
	2.1 The Ising Model and Its Hamiltonian	9
	2.2 The Ising Partition Function and Free Energy	11
	2.3 Equilibrium Conditions and Thermodynamics	13
	2.4 Elementary Consequences of the Model	15
	2.5 Discussion: Critical Exponents	18
	2.6 The Meaning of the Ising Model and Mean Field Theory	20
	2.7 Problem 2.1: Numerical Checkout	20
	2.8 Problem 2.2: A Physical Estimate of T_c -Ordering Energy vs.	
	Entropy	22
	Appendix 2.A Primer in Statistical Physics – A Summary	22
	2.A.1 Principles of Thermodynamics (Thermostatics)	22
	2.A.2 Connection to Statistical Physics	24
	2.A.3 Elementary Example: Statistical Distribution Function for	
	Quantum Multiparticle System: Fermions and Bosons	26
	2.A.4 Outlook	28
	2.A.5 Final Note	29
	Appendix 2.B Expansion of Eq. (2.5) in Powers of M	29
3.	General Mean Field Approach	
	3.1 The Heisenberg Model and the Mean Field Approximation 3.2 Critical Phenomena in the Mean Field Approximation:	31
	A Further Elaboration	32

	3.3 Van de	er Waals Equation of State and Criticality*	37
	3.4 Densi	ty Fluctuations and Compressibility	42
	3.5 Mean	Field Theory for Binary Mixtures*	44
	Appendix	3.A Useful Relations Related to the van der Waals	
		Equation	52
	Appendix	3.B Definition of Correlation Functions	52
	Appendix	3.C Gibbs–Duhem Rules	53
	Appendix	3.D Formula for the Entropy Part in Eq. (3.61)	54
4.	The Lan	dau Theory of Phase Transitions: General	
	Concept	t and Its Microscopic Relation to Mean Field	
	Theory		
	4.1 Conce	ept of the Order Parameter	55
	4.2 Spin N	Magnetism: Microscopic Derivation of the Landau Theory	
	with S	Spatial Fluctuations of the Order Parameter*	67
	4.2.1	The Concept of Exchange Fields and Ferromagnetism	67
	4.2.2	The Appearance of the Gradient Term	70
	4.2.3	Formal Equivalence of the Landau Expansion and the Mean-field Approach	72
	4.2.4	Landau Theory of the Ferromagnetic Transition	75
		Supplement: Zero-field Susceptibility in the	
		Ferromagnetic Phase	77
	4.2.5	Mean-field Theory for Two-sublattice Antiferromagnets	77
	4.3 Rotati	onally Invariant Form of the Landau Functional	79
	4.4 Outlo	ok: Meaning of Mean Field Theory	80
		Problem 4.1: A Simple Physical Example of a Continuous	
		Phase Transition: Order-disorder Transformation	81
		Problem 4.2: The Entropy and a Continuous Phase	
		Transition for AB Alloys	83
	4.5 Histor	ical Note: Order of the Phase Transition	84
5.	More Ge	eneral Considerations Concerning Mean Field	
	Theory:	The Stratonovich–Hubbard Transformation*	
	5.1 Gener	ral Form of the Partition Function for the Ising Model	87
	5.2 The U	pper Critical Dimension	89
	5.3 Apper	ndix: Derivation of Eq. (5.4)	90
6.	General Phenom	ities Relating to the Study of Critical iena	
	6.1 Introd	luction	93
	6.2 Scalin	g Procedures: Kadanoff Blocks	94
		-	

6.3	Operations in Reciprocal Space	95
6.4	Utility of Algebraic Power Laws	96
6.5	Homogeneous Functions	97
6.6	Fixed Points	98
6.7	Appendix: A Simple Example	99

7. Failure of Mean Field Theory and Scaling Methods

7.1	Kadanoff Scaling	101
7.2	Properties of the Homogeneous Equation	103
7.3	Scaling Laws for Second Derivatives	105
7.4	Summary and Remarks	107
7.5	Appendix A: Scaling Law for the Chemical Potential	108

8. Kadanoff Scaling

8.1	Example Involving a Ring	111
8.2	The Case of Two Dimensions	115
8.3	Rescaling of the Triangular Lattice	118
8.4	Determination of Averaged Perturbation Potentials	120
8.5	Determination of the Fixed Point	121

9. The Renormalization Group Operations

9.1 Real Space Renormalization	123
9.2 Renormalization of the Hamiltonian	124
9.3 Tracking Parametric Changes During Coarse Graining	124
9.4 An Example	125
9.5 Group Properties of the Coarse Graining Operation	127
9.6 Scaling Fields and Properties	128
9.7 Classification of Variables and Related Fixed Points	128
9.8 Back to Homogeneity Relations	130
9.9 Consequences	132
Appendix A	133
Examples	135

10. Additional Interrelations Between Critical Exponents

139
140
141
142
142
144

11. Extension of the Landau Approach to Inhomogeneous Systems and the Physical Picture of Gaussian Fluctuations

11.1 Smoothing Operations	147
11.2 Use of Functional Integrals	149
Interpretation of the Formalism	150
11.3 Rock-Bottom Approximation	151
11.4 Fourier Transforms and Scaling in Reciprocal Space	151
11.5 Extension: The Ginsburg-Landau Functional in a Rotationally	
Invariant Case	153
11.6 A Concrete Example: Gaussian Fluctuations and the Ginzburg	
Criterion	154
The Ginzburg–Landau Functional for a Continuous	
System: Formal Approach to Gaussian Eluctuations	
system roman approach to Gaussian ractautions	
12.1 Gaussian Integrals	159
12.2 Partition Function for the Gaussian Model	161
12.3 Operations in k Space	162
12.4 Partition Function	164
12.5 Correlation Functions	165
12.6 Comment	167
12.7 Renormalization of the Hamiltonian	168
12.8 Establishing the Requirements of the Fixed Point	168
12.9 Conclusion	169
Appendix 12.A Hubbard–Stratonovich Transformation	169
Appendix 12.B Relation $ \nabla_x \phi ^2 = -\phi \nabla^2 \phi$	170
Appendix 12.C Comment on Functional Integration	171
Appendix 12.D Meaning of Functional (Variational) Derivatives	172
	11.1 Smoothing Operations 11.2 Use of Functional Integrals Interpretation of the Formalism 11.3 Rock-Bottom Approximation 11.4 Fourier Transforms and Scaling in Reciprocal Space 11.5 Extension: The Ginsburg–Landau Functional in a Rotationally Invariant Case 11.6 A Concrete Example: Gaussian Fluctuations and the Ginzburg Criterion The Ginzburg–Landau Functional for a Continuous System: Formal Approach to Gaussian Fluctuations 12.1 Gaussian Integrals 12.2 Partition Function for the Gaussian Model 12.3 Operations in k Space 12.4 Partition Function 12.5 Correlation Functions 12.6 Comment 12.7 Renormalization of the Hamiltonian 12.8 Establishing the Requirements of the Fixed Point 12.9 Conclusion Appendix 12.A Hubbard–Stratonovich Transformation Appendix 12.B Relation $ \nabla_x \phi ^2 = -\phi \nabla^2 \phi$ Appendix 12.C Comment on Functional Integration Appendix 12.D Meaning of Functional (Variational) Derivatives

13. The Ginzburg–Landau–Wilson Formalism: Beyond the Gaussian Approximation

13.1 Generalities	175
13.2 The RGT Execution	176
13.3 Rescaling Effects	178
13.4 Case $d > 4$	178
13.5 Case <i>d</i> < 4	180
13.6 Determination of the Fixed Point	181
13.7 Case $d = 4$	183
Appendix 13.A	184

14. Correlation Functions

14.1	Correlations Involving Lattice Sites	185
14.2	Correlations in the Continuum Limit	187

	14.3 Specification of the Two-Point Connected Correlation	100
	Function	100
	Appendix 14 A. Eurotional Derivatives	190
	Appendix 14.8 Functional Derivatives	192
	for Three Dimensions	193
15.	Beyond the Landau Model	
	15.1 Basics	195
	15.2 The Generating Functional for Establishing Correlations	197
	15.3 The Two-Point Correlation Function	199
	15.4 Postscript	200
	Appendix 15.A Anomalous Dimension of φ	200
16.	An Elementary Examination of Quantum Phase	
	Transitions Involving Fermions*	
	16.1 Introduction: Factors Determining a Continuous Quantum Phase Transition	203
	16.2 Example: The Mott–Wigner Criterion for the Electron Gas	205
	16.3 Localization on a Lattice: The Hubbard Model	203
	16.4 Detailed Discussion of Localization of Fermions: Quantum	207
	Critical Points	209
	16.5 Quasiparticle Representation of Interacting Electron Systems:	200
	From Classical to Quantum Critical Points	212
	16.6 Quantum Phase Transition: A Generalized Landau-Hertz	
	Functional	216
	Formal Remark	217
	16.7 An Example	218
	16.8 Concluding Remark	219
17.	Supplement: Going Beyond the Gaussian Formulation	
	17.1 Method 1: Two-point Correlation Functions	221
	17.2 Method 2: The Generating Functional for Establishing	
	Correlations for a Single Variable	224
	17.2.1 Extension to <i>n</i> Variables	225
	17.2.2 Contractions and Wick's Theorem	226
	17.2.3 Correlation Functions Involving a Single Variable	227
	17.2.4 Determination of Ginzburg–Landau-type Correlation Functions for Several Variables; Brief Introduction to	
	Feynman Diagrams	228
	17.2.5 Illustration of the Use of Feynman Diagrams	230
	17.2.6 Second-order Expansion	231

17.2.7 Summary	233
17.2.8 Postscript	233
17.2.9 Appendix	233
17.3 Exercises	234
Bibliography	237
Index	239

Preface

This book is intended to be an introduction to the basic theoretical background for the general area of critical phenomena taking place near a continuous phase transition. These phenomena encompass a singular behavior of physical properties, that is, the behavior of measurable physical quantities that may take infinite values at the critical point (e.g., at the critical temperature). Although many books and review articles already deal with this topic, they are often written at an advanced level of mathematical sophistication. We therefore attempted to provide the necessary background information readers will need to study the advanced presentations. Particular emphasis is placed on developing the concept of the order parameter and on a systematic approach starting from Landau mean-field theory.

We generally have tried to keep the discussion at a reasonably elementary level. Some familiarity with the elements of quantum mechanics, Fourier series and transforms, and complex variables is assumed. However, we have not hesitated to include some specialty topics relevant to our aim; this more advanced material, marked with (*), can be omitted on a first reading. Also, to render the individual chapters more self-contained, we have repeated some presentations in different chapters. Although we have tried to be careful, nothing can ever be expected to be error-free. We will therefore appreciate being informed where we have been remiss.

It remains to thank Elsevier personnel for their great patience in bringing this book to production. Particular thanks are due to Dr. Danuta Goc-Jagło for her skills in reconfiguring part of the original Word text into the LATEX format and editing the figures.

This project was partly supported by The National Science Centre (NCN) through Grant MAESTRO, No. DEC-2012/04/A/ST3/00342.

Jurgen M. Honig Józef Spałek West Lafayette–Kraków, 2016–2017