Skip to main content

Web Content Display Web Content Display

Skip banner

Web Content Display Web Content Display

Prof. dr hab. Józef Spałek

photo Professor Jozef Spalek 

Room: D-2-69
Telephone: 12 664 4685
e-mail: jozef.spalek@uj.edu.pl
Address: ul. Łojasiewicza 11,
PL-30 348 Kraków
 
 photo of the book   photo of the book   photo of the cover Physics Reports

 

Academic Career - an overview

Prof. Józef Spałek is Professor of Physics in Department of Condensed Matter Theory and Nanophysics in the Institute of Theoretical Physics of the Jagiellonian University, in Kraków. His postdoctoral work was carried out in England (at Imperial College of Science, Technology, and Medicine), in USA (at Purdue University), and in France (CNRS, Université Paris-Sud, and Université Paris-Nord). He was also a visiting professor at Purdue University (1988-1990), visiting scholar at Harvard University (1995-1996), and professor at Warsaw University (1991-1998). His research interests are concentrated on quantum materials with strongly correlated electrons and in particular, on theory of high temperature ad heavy-fermion superconductivity. He is also interested in nanophysics and, latelly, in theory of chemical bonding. In both topics he proposed an original theoretical approach taking into account the strong correlations among the electrons. Recently, he has become interested also in the subject of emergent phenomena in Nature and related philosophical questions. He published over 320 scientific papers, a number of chapters in specialized monographs, comprehensive review article in Physics Reports, and two books.

For his work he was awarded the Maria Skłodowska-Curie Prize of the Polish Academy of Sciences in 1997 and a special fellowship from the Foundation for Polish Science in the years 2003-2007. In 2005, Professor Spałek received the Polish Order of Merit, the Polonia Restituta Cross from the President of Poland. He was also awarded the Alessandro Volta Silver Medal by Universita di Pavia for his work for the School "European Doctorate in Physics". In the period 2004-10 he was a member of the Science Council to the Minister of Science and Higher Education. For the years 2011-15 he has received a special grant TEAM from the Foundation for Polish Science (FNP). He is also recipient of a prestigous Grant MAESTRO for the years 2012-18 from the National Science Centre (NCN). In 2016 he received the two highest awards in science: the Foundation for Polish Science Prize and Prime Minister Award. In 2019 he received The Marian Smoluchowski Medal in Science, the highest award of the Polish Physical Society. He is a foreign member of Accademia di Scienze e Lettere based in Milano since 2006. In 2019 he has become a member of Academia Europaea. In 2020 he has been elected as corresponding member of the Polish Academy of Sciences.

Education

    • M.Sc. in Theoretical Physics, 1969, Jagiellonian University in Kraków, Poland
    • Ph.D. in Physics 1975, AGH University of Science and Technology, Kraków
    • Habilitation in Physics 1981, Jagiellonian University
    • Professor of Physics - since 1991, first at Warsaw University (till 1998), at present at Jagiellonian University in Kraków

     

Positions

  • 1994-2017: Head Condensed Matter Theory and Nanophysics Department in the Institute of Theoretical Physics, Jagiellonian University, Kraków
  • 1993-now Full Professor of Physics, Jagiellonian University - Kraków
  • 2005-2017: Full Professor at AGH University of Science and Technology in Kraków
  • 1991-98 Professor of Physics at the Warsaw University (Institute of Theoretical Physics)
  • 1986-90 Associate Professor of Physics at AGH University of Science and Technology, Kraków

International visits

  • 2000 Visiting Professor at Purdue University, (Dept. of Physics), USA
  • 1995/96 Visiting scholar at Harvard University, (Dept. of Physics) Cambridge, USA
  • 1988-90 Visiting Professor at Purdue University, USA (Department of Physics)
  • 1983-84 Post Rouge, Centre National de la Recherche Scientifique, Paris, France
  • 1978-80 Postdoctoral Fellow, Imperial College of Science, Technology and Medicine, London, U.K
  • Multiple short-term visits: Universita di Parma, Universita di Pavia, Universite Louis Pasteur, Strasbourg; Purdue University, CEA-CENG Grenoble (2000-2012)

Awards and distinctions

  • Award of Ministry of Higher Education (3 times before 2000) in that: 3rd degree for Ph. D. Thesis, 2nd degree for Habilitation Thesis
  • Special Prize of 3rd Branch of the Polish Academy of Sciences, 1984
  • Rector Prizes: at AGH (3 times) and at Jagiellonian University (2010)
  • Maria Skłodowska-Curie Award of the Polish Academy of Sciences, 1997
  • Senior Fellow of the Foundation for Polish Science (Program MISTRZ), 2003 – 2007
  • Special one-year S. Estreicher Scholarship from Jagiellonian University, 2000
  • Individual Prize of Minister of National Education, 1st degree, 2001
  • A. Krzyżanowski Scholarship at Jagiellonian University, 2002
  • Alessandro Volta Medal from Universita di Pavia, for help in establishing Program European Doctorate in Physics, 2003, certifucate
  • Order Polonia Restituta (2nd class), 2005
  • Laureate, Project & Grant TEAM from the Foundation for Polish Science, 2011-2015
  • Laureate, Grant MAESTRO from National Science Centre for the years 2012-18
  • Special Award of the Foundation for Polish Science, 2016
  • The Prime Minister Award in Science, 2016
  • Laureate of Marian Smoluchowki Medal in Physics of the Polish Physical Society, 2019 medaldyplom
  • Foreign Member of the Italian Accademia di Scienze e Lettere (Istituto Lombardo) from 2006
  • Member of the Academia Europaea, from 2019
  • Corresponding Member of the Polish Academy of Sciences, from 2020
  • Elected to the Union of Pure and Applied Physics (IUPAP); member of the Commission C.9 Magnetism for the term 2022-2024​

Scientific carreer in numbers

  • Published over 320 papers in refereed journals
  • Number of citations (without self-citations) about 5000
  • Hirsch index: 45
  • Supervised 23 Ph. D. Theses; supervising further 2 at the moment
  • Above 65 invited/plenary talks at scientific conference

Main scientific achievements

  • Provided in his Ph. D. Thesis first interpretation of surface magnon excitations observed in spin-wave resonance experiment
  • Derived the model now known as t-J model, used extensively in high-temperature superconductivity theory
  • Provided theory of bound magnetic polaron, which included for the first time the effect of thermodynamic fluctuations of spins on its quantum states
  • Constructed the thermodynamic model of the metal-insulator transition within the so-called Gutzwiller (mean-field) approach to the correlated electron systems
  • Discovered the spin dependence of particle mass in correlated systems, which subsequently was experimentally observed in 2005 by Cambridge/Grenoble group
  • Predicted a new type of quantum critical point (at the border Kondo insulator - non-Fermi liquid)
  • Proposed a new mechanism of spin-triplet pairing based on the Hund's rule exchange
  • Proposed a new method of calculating electronic properties of nanoscopic systems, based on the exact diagonalization combined with the ab initio approach (EDABI method)
  • At present: Has formulated (2013-now) a unified theory of high-temperature and heavy fermion superconductivity based on the extension of the renormalized mean field theory (Diagramatic Expansion of the Gutzwiller Wave Function and extended to include quantum spin and charge fluctuations), developed together with his coworkers: J. Kaczmarczyk, J Buenemann, M. Zegrodnik, and M. Fidrysiak
  • Applied his EDABI method to the problem of metallization of molecular hydrogen under pressure, developed with A. Kądzielawa and A. Biborski
  • Working also on the question of the distinguishability of quantum particles with spin-dependent masses and on its fundamental implications to quantum physics

Scientific cooperation

  • With many European centers (Pavia, Parma, Grenoble)
  • Purdue University in the United States
  • AGH University of Science and Technology (Kraków, Poland)
  • University of Silesia (Katowice, Poland)
  • Warsaw University (Warsaw, Poland)

Other activities

  • Member of Science Policy Committee in the Ministry of Education & Science (elected by the profession science councils to represent them in this Governmental body in Poland, 2004-2010
  • Chairman of the Krakow Branch of the Polish Physical Society, 2016 - now
  • Chairman of the Program Committee of the 45th Congress of the Polish Physical Society, 2019

Books/Selected chapters in scientific monographs

 

Publications

  1. A. Ślebarski, J. Spałek, M. Fijałkowski,Thermodynamic and electrical transport properties of CeRhSb1−𝑥Te𝑥 systems: Transition from Kondo insulating to the Griffiths and non-Fermi liquid states, J. Magn. Magn. Mater. 587, 171239 (2023), https://doi.org/10.1016/j.jmmm.2023.171239, ArXiv:2302.05194
  2. M. Fidrysiak, B. Rzeszotarski, J. SpałekTuning topological superconductivity within the t-J-U model of twisted bilayer cuprates,Phys. Rev. B 108, 224509 (2023), https://doi.org/10.1103/PhysRevB.108.224509, ArXiv:2310.04379
  3. E. Brocławik, M. Fidrysiak, M. Hendzel, J. Spałek, Interparticle correlations and chemical bonding from physical side: Covalency vs atomicity and ionicity, Advances in Quantum Chemistry, 87 351-373 (2023), https://doi.org/10.1016/bs.aiq.2023.02.002
  4. J. Spałek, Brief Perspective of High-Temperature Superconductivity in the Cuprates: Strong Correlations Combined with Superexchange Match Experiment, Acta Physica Polonica A 143 169-179 (2023), doi.org/10.12693/APhysPolA.143.169
  5. M. Hendzel, J. Spałek, Degree of Atomicity in the Chemical Bonding: Why Return to the H2 Molecule?, Acta Physica Polonica A 143 189-193 (2023), https://doi.org/10.12693/APhysPolA.143.189
  6. M. Hendzel, M. Fidrysiak, and J. Spałek, Towards Complementary Characterization of the Chemical Bond, J. Phys. Chem. Lett. 13 10261-10266 (2022), https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02544
  7. M. Hendzel, M. Fidrysiak, and J. Spałek, Many-particle covalency, ionicity, and atomicity on example of simple molecules, J. Phys. B: At. Mol. Opt. Phys. 55 185101 (2022), https://doi.org/10.1088/1361-6455/ac8298 
  8. J. Spałek, M. Fidrysiak, M. Zegrodnik, and A. Biborski, Superconductivity in high-Tc and related strongly correlated systems from variational perspective: Beyond mean field theory, Physics Reports, 959 (2022) pp. 1-117, https://doi.org/10.1016/j.physrep.2022.02.003
  9. M Zegrodnik, A Biborski, M. Fidrysiak, and J. Spałek, Superconductivity in the three-band model of cuprates: nodal direction characteristics and influence of intersite interactions, J. Phys.: Condens. Matter, 33 415601 (2021), pp. 1-8, https://doi.org/10.1088/1361-648X/abcff6;
    https://doi.org/10.48550/arXiv.2009.04922
  10. R. Kurleto, M. Fidrysiak, L. Nicolai, J. Minár, M. Rosmus, Ł. Walczak, A. Tejeda, J. E. Rault, F. Bertran, A. P. Kądzielawa, D. Legut, D. Gnida, D. Kaczorowski, K. Kissner, F. Reinert, J. Spałek, and P. Starowicz, Photoemission signature of momentum-dependent hybridization in CeCoIn5, Phys. Rev. B 104 125104 (2021), pp. 1-14, https://doi.org/10.1103/PhysRevB.104.125104
  11. M. Fidrysiak, and J. Spałek, Unified theory of spin and charge excitations in high- Tc cuprate superconductors: A quantitative comparison with experiment and interpretation, Phys. Rev. B 104 L020510 (2021), pp. 1-8, https://doi.org/10.1103/PhysRevB.104.L020510; arXiv: 2104.12812 [cond-mat.str-el] ⇒ link do arXiv
  12. M. Fidrysiak, D. Goc-Jagło, and J. Spałek, Collective spin and charge excitations in the t-J-U model of high-Tc cuprates, J. Mag. Magn. Mat. 539 168359 (2021) pp. 1-5, https://doi.org/10.1016/j.jmmm.2021.168395
  13. M. Zegrodnik, P. Wójcik, and J. Spałek, Superconducting dome with extended s-wave pairing symmetry in the heavily hole-overdoped copper-oxide planes, Phys. Rev. B 103 144511 (2021), pp. 1-8, https://doi.org/10.1103/PhysRevB.103.144511
  14. M. Fidrysiak, and J. Spałek, Universal collective modes from strong electronic correlations: Modified 1/Nf theory with application to high-Tc cuprates, Phys. Rev. B 103 165111 (2021), pp. 1-27, https://doi.org/10.1103/PhysRevB.103.165111; 
    https://doi.org/10.48550/arXiv.2012.06630
  15. J. Spałek and Danuta Goc-Jagło Electronic Correlations and Metal-Insulator Transitions, Chapter in the Switching effects in transition metal oxides, Wydawnictwo Naukowe PWN, ISBN: 978-83-01-21316-9, 2021, pp. 223-244 ⇒ zobacz rozdział
  16. J. Spałek,The Bose-Einstein statistics: Remarks on Debye, Natanson, and Ehrenfest contributions and the emergence of indistinguishability principle for quantum particles, Stud. Hist. Scien. 19 (2020), pp. 422-441, https://doi.org/10.4467/2543702XSHS.20.013.12569
  17. J. Spałek,Mott Physics in Correlated Nanosystems: Localization-Delocalization Transition by the Exact Diagonalization Ab Initio Method, Chapter in the Topology, Entanglement, and Strong Correlations Modeling and Simulation, Vol. 10, Eva Pavarini and Erik Koch (eds.), Verlag des Forschungszentrum Jülich, ISBN 978-3-95806-466-9 (2020), pp. 7.1-7.38, www.cond-mat.de/events/correl20/manuscripts/spalek.pdf
  18. A. Biborski, M. Zegrodnik, and J. Spałek, Superconducting properties of the hole-doped three-band d-p model studied with minimal-size real-space d-wave pairing operators, Phys. Rev. B 101 214504 (2020), pp. 1-9, https://doi.org/10.1103/PhysRevB.101.214504
  19. J. Spałek, Strongly Correlated Quantum Matter: A Subjective Overview of Selected Fundamental Aspects Acta Phys. Polon. B 51 No. 5, (2020), pp. 1-38, https://doi.org/10.5506/APhysPolB.51.1147
  20. M Zegrodnik, A Biborski, and J. Spałek, Superconductivity and intra-unit-cell electronic nematic phase in the three-band model of cuprates, European Physical Journal B 93, 183 (2020), pp. 1-8, https://doi.org/10.1140/epjb/e2020-10290-3,
    https://doi.org/10.48550/arXiv.1909.03701
  21. M. Fidrysiak, and J. Spałek, Robust Spin and Charge Excitations Throughout High-Tc-cuprate Phase Diagram From Incipient Mottness, Phys. Rev. B, 102 014505 (2020), pp. 1-11, https://doi.org/10.1103/PhysRevB.102.014505
    https://doi.org/10.48550/arXiv.1912.06232
  22. M. Fidrysiak, D. Goc-Jagło, E. Kądzielawa-Major, P. Kubiczek, and J. Spałek, Coexistent spin-triplet superconducting and ferromagnetic phases induced by the Hund's rule coupling and electronic correlations II: Effect of applied magnetic field, Phys. Rev. B 99 205106 (2019), pp. 1-13, https://doi.org/10.1103/PhysRevB.99.205106
  23. M. Zegrodnik, A. Biborski, M. Fidrysiak, and J. Spałek, Superconductivity in the three-band model of cuprates: Variational wave function study and relation to the single-band case, Phys. Rev. B, 99 104511 (2019), pp. 1-12,https://doi.org/10.1103/PhysRevB.99.104511
  24. M. Zegrodnik and J. Spałek, Incorporation of charge- and pair-density-wave states into the one-band model of d-wave superconductivity, Phys. Rev. B 98 155144 (2018), pp. 1-8, https://doi.org/10.1103/PhysRevB.98.155144
  25. M. Fidrysiak, M. Zegrodnik, and J. Spałek, Unconventional topological superconductivity and phase diagram for an effective two-orbital model as applied to twisted bilayer graphene, Phys. Rev. B, 98 085436 (2018), pp. 1-10, https://doi.org/10.1103/PhysRevB.98.085436
  26. A. Biborski, A. P. Kądzielawa, and J. Spałek, Atomization of correlated molecular-hydrogen chain: A fully microscopic variational Monte Carlo solution, Phys. Rev. B 98 085112 (2018), pp. 1-12, https://doi.org/10.1103/PhysRevB.98.085112
  27. J. M. Honig and J. Spałek, Monograph: A Primer to the Theory of Critical Phenomena, Elsevier Science, Amsterdam 2018, 242 str.; spis treści
  28. M. Fidrysiak, M. Zegrodnik, and J. Spałek, Realistic estimates of superconducting properties for the cuprates: reciprocal-space diagrammatic expansion combined with variational approach, J. Phys.: Condensed Matter 30 475602 (2018), pp. 1-22, https://doi.org/10.1088/1361-648X/aae6fb
  29. E. Kądzielawa-Major, M. Fidrysiak, P. Kubiczek, and J. Spałek, Spin-triplet paired phases inside a ferromagnet induced by Hund's rule coupling and electronic correlations: Application to UGe2, Phys. Rev. B 97 224519 (2018), pp. 1-10, https://doi.org/10.1103/PhysRevB.97.224519
  30. M. Zegrodnik and J. Spałek, Stability of the coexistent superconducting-nematic phase under the presence of intersite interactions, New J. Phys. 20 063015 (2018), pp. 1-13, https://doi.org/10.1088/1367-2630/aac6f7
  31. M. Fidrysiak and J. Spałek, Stable high-temperature paramagnons in a three-dimensional antiferromagnet near quantum criticality: Application to TlCuCl3, Phys. Rev., 95 174437 (2017), https://doi.org/10.1103/PhysRevB.95.174437
  32. M. Abram, M. Zegrodnik, and J. Spałek, Antiferromagnetism, charge density wave, and d-wave superconductivity in the extended t-J-U model: role of intersite Coulomb interaction and a critical overview of renormalized mean field theory, J. Phys.: Condensed Matter 29, 365602 (2017), https://doi.org/10.1088/1361-648X/aa7a21
  33. M. Zegrodnik and J. Spałek, Universal properties of high-temperature superconductors from real-space pairing: Role of correlated hopping and intersite Coulomb interaction within the t-J-U model, Phys. Rev. B 96 054511 (2017), https://doi.org/10.1103/PhysRevB.96.054511
  34. A. Biborski, A. P. Kądzielawa, and J. Spałek, Metallization of solid molecular hydrogen in two dimensions: Mott-Hubbard-type transition, Phys. Rev. B 96 085101 (2017), https://doi.org/10.1103/PhysRevB.96.085101
  35. M. Zegrodnik and J. Spałek, Effect of interlayer processes on the superconducting state within the t-J-U model: Full Gutzwiller wave-function solution and relation to experiment, Phys. Rev. B, 95 024507 (2017), https://doi.org/10.1103/PhysRevB.95.024507
  36. J. Spałek, M. Zegrodnik, and J. Kaczmarczyk, Universal properties of high-temperature superconductors from real-space pairing: t-J-U model and its quantitative comparison with experiment, Phys. Rev. B 95 024506 (2017), https://doi.org/10.1103/PhysRevB.95.024506
  37. J. Spałek, Liquids, Theory of: Fermi Liquids, Chapter in the Reference Module in Materials Science and Materials Engineering, Oxford: Elsevier; 2016. str. 1-20 (2016) ⇒ link
  38. A. Biborski, A. P. Kądzielawa, A. Gorczyca-Goraj, E. Zipper, M. M. Maśka, and J. Spałek, Dot-ring nanostructure: Rigorous analysis of many-electron effects, Sci. Rep. 6 29887 (2016), https://doi.org/10.1038/srep29887
  39. M. M. Wysokiński, J. Kaczmarczyk, and J. Spałek, Correlation-driven d-wave superconductivity in Anderson lattice model: Two gaps, Phys. Rev. B 94 024517 (2016),https://doi.org/10.1103/PhysRevB.94.024517
  40. M. Abram, M. Zegrodnik, and J. Spałek, Antiferromagnetism, charge density wave, and d-wave superconductivity in the extended t-J-U model: role of intersite Coulomb interaction and a critical overview of renormalized mean field theory, J. Phys.: Condens. Matter 29 365602 (2017), https://doi.org/10.1088/1361-648X/aa7a21
  41. M. Abram, M. M. Wysokiński, and J. Spałek, Tricritical wings in UGe2: A microscopic interpretation, J. Mag. Magn. Mat. 400 (2016), pp. 27-30, https://doi.org/10.1016/j.jmmm.2015.07.017, arXiv: 1509.06661 [cond-mat.str-el] ⇒ link
  42. A. P. Kądzielawa, A. Biborski, and J. Spałek, Discontinuous transition of molecular-hydrogen chain to the quasi-atomic state: Exact diagonalization - ab initio approach, Phys. Rev. B 92 161101(R) (2015), https://doi.org/10.1103/PhysRevB.92.161101
  43. M. M. Wysokiński, J. Kaczmarczyk, and J. Spałek, Gutzwiller Wave-Function Solution for Anderson Lattice Model: Emerging Universal Regimes of Heavy Quasiparticle States, Phys. Rev. B 92 125135 (2015), https://doi.org/10.1103/PhysRevB.92.125135
  44. P. Wójcik, M. Zegrodnik, and J. Spałek, Fulde-Ferrell state induced by the orbital effect in the superconducting nanowire, Phys. Rev. B, 91 224511 (2015), https://doi.org/10.1103/PhysRevB.91.224511
  45. A. Biborski, A. P. Kądzielawa, and J. Spałek, Combined shared and distributed memory ab-initio computations of molecular-hydrogen systems in the correlated state: process pool solution and two-level parallelism, Comp. Phys. Comm. 197 pp. 7-16 (2015), https://doi.org/10.1016/j.cpc.2015.08.001; arXiv: 1504.00500 [cond-mat.str-el] ⇒ link
  46. M. Zegrodnik and J. Spałek, Spontaneous Appearance of the Spin-Triplet Fulde-Ferrell-Larkin-Ovchinnikov Phase in a Two-Band Model: Possible Application to LaFeAsO1-xFx, J. Supercond. Nov. Magn. 28 pp. 1155-1160 (2015), https://doi.org/10.1007/s10948-014-2800-0
  47. M. M. Wysokiński, M. Abram, and J. Spałek, Criticalities in the itinerant ferromagnet UGe2, Phys. Rev. B, 91 081108(R) (2015), https://doi.org/10.1103/PhysRevB.91.081108
  48. J. Spałek, From correlations to unconventional superconductivity, Phil. Mag. B, 95, pp. 451-452 (2015), https://doi.org/10.1080/14786435.2014.1000416
  49. J. Spałek, Fifty years of Hubbard and Anderson lattice models: from magnetism to unconventional superconductivity - A brief overview, Phil. Mag. B, 95, pp. 649-660 (2015), https://doi.org/10.1080/14786435.2014.969352; 
    https://doi.org/10.48550/arXiv.1410.4959
  50. J. Spałek, Foreword, Proceedings of the XVI National Conference on Superconductivity and Strongly Correlated Systems, Zakopane, October, 2013, edited by J. Spałek and D. Goc-Jagło, Acta Phys. Pol. A 126, A5-A6 (2014)
  51. M. M. Wysokiński, M. Abram, and J. Spałek, Criticalities in the itinerant ferromagnet UGe2, Phys. Rev. B, 91 081108(R) (2015), https://doi.org/10.1103/PhysRevB.91.081108
  52. M. Zegrodnik and J. Spałek, Spontaneous appearance of the paired state with nonzero Cooper-pair momentum: Possible application to the iron pnictides, Phys. Rev. B, 90 174507 (2014) pp. 1-8, https://doi.org/10.1103/PhysRevB.90.174507
  53. A. P. Kądzielawa, A. Bielas, M. Acquarone, A. Biborski, M. M. Maśka, and J. Spałek, H2 and (H2)2 molecules with ab initio optimization of wave functions in correlated state: electron-proton couplings and intermolecular microscopic parameters , New J. Phys. 16 123022 (2014), pp. 1-26
  54. E. Kądzielawa-Major and J. Spałek, Anderson-Kondo Lattice Hamiltonian from the Anderson-Lattice Model: A Modified Schrieffer-Wolff Transformation and the Effective Exchange Interactions, Acta Phys. Pol. A 126, A100-A103 (2014), https://doi.org/10.12693/APhysPolA.126.A-100
  55. H. Bednarski and J. Spałek, Effect of thermodynamic fluctuations of magnetization on the bound magnetic polaron state in ferromagnetic semiconductors, New J. Phys. 16 093060 (2014), pp. 1-18, https://doi.org/10.1088/1367-2630/16/9/093060
  56. M. M. Wysokiński, M. Abram, and J. Spałek, Ferromagnetism in UGe2: A microscopic model, Phys. Rev. B 90, 081114(R) (2014) pp. 1-5, https://doi.org/10.1103/PhysRevB.90.081114
  57. J. Kaczmarczyk, J. Buenemann, and J. Spałek, High temperature superconductivity in the two-dimensional t-J model: Gutzwiller wave function solution, New J. Phys. 16 073018 (2014), pp. 1-30, https://doi.org/10.1088/1367-2630/16/7/073018
  58. M. Zegrodnik, J. Buenemann, and J. Spałek, Even-parity spin-triplet pairing by purely repulsive interactions for orbitally degenerate correlated fermions, New J. Phys. 16 033001 (2014), pp. 1-16, https://doi.org/10.1088/1367-2630/16/3/033001
  59. M. M. Wysokiński and J. Spałek, Properties of an almost localized Fermi liquid in an applied magnetic field revisited: a statistically consistent Gutzwiller approach, J. Phys.: Condensed Matter 26, 055601 (2014), pp. 1-9, https://doi.org/10.1088/0953-8984/26/5/055601
  60. J. Spałek, M. Zegrodnik, Spin-triplet paired state induced by Hund’s rule coupling and correlations: a fully statistically consistent Gutzwiller approach, J. Phys.: Condensed Matter 25, 435601 (2013), pp. 1-7, https://doi.org/10.1088/0953-8984/25/43/435601
  61. M. Abram, J. Kaczmarczyk, J. Jędrak, and J. Spałek, d-wave superconductivity and its coexistence with antiferromagnetism in t-J-U model revisited: Statistically consistent Gutzwiller approach, Phys. Rev. B 88, 094502 (2013), pp. 1-10, https://doi.org/10.1103/PhysRevB.88.094502
  62. J. Spałek, Emergence in Laws of Nature and Hierarchical Structure of Science, chapter in the book How Science Spies on Nature and How Technology Imitates Nature; edited by A. M. Kłonkowski & M. Jaskuła; Publisher: Wydawnictwo Uniwesytetu Gdańskiego, Gdańsk 2013, pp. 147-159
  63. M. Zegrodnik, J. Spałek, and J. Buenemann, Coexistence of spin-triplet superconductivity with magnetism within a single mechanism for orbitally degenerate correlated electrons: Statistically-consistent Gutzwiller approximation, New J. Phys. 15 073050 (2013), pp. 1-22, https://doi.org/10.1088/1367-2630/15/7/073050
  64. A. P. Kądzielawa, J. Spałek, J. Kurzyk, and W. Wójcik, Extended Hubbard model with renormalized Wannier wave functions in the correlated state III: Statistically consistent Gutzwiller approximation and the metallization of atomic solid hydrogen,  Eur. Phys. J. B 86 252 (2013), https://doi.org/10.1140/epjb/e2013-40127-y
  65. M. M. Wysokiński and J. Spałek, Seebeck effect in the graphene-superconductor junction,  J. Appl. Phys. 113, 163905 (2013), https://doi.org/10.1063/1.4802503
  66. J. Kaczmarczyk, J. Spałek, T. Schickling, and J. Buenemann, Superconductivity in the two-dimensional Hubbard model: Gutzwiller wave function solution, Phys. Rev. B 88, 115127, (2013), pp. 1-5, https://doi.org/10.1103/PhysRevB.88.115127
  67. O. Howczak J. Kaczmarczyk, and J. Spałek, Pairing by Kondo interaction and magnetic phases in Anderson-Kondo lattice model: statistically consistent renormalized mean field theory, Phys. Stat. Solidi (b) 250, No. 3, 609–614 (2013), https://doi.org/10.1002/pssb.201200774
  68. O. Howczak, J. Kaczmarczyk, J. Spałek, From magnetic and Kondo-compensated states to unconventional superconductivity in heavy fermions: a unified approach,
    https://doi.org/10.48550/arXiv.1209.0621
  69. O. Howczak and J. Spałek, Spin and Magnetic Field Dependences of Quasiparticle Mass in Ferromagnetic State of Heavy Fermions, J. Phys.: Conf. Ser. 391 012022, pp. 1-4 (2012), https://doi.org/10.1088/1742-6596/391/1/012022
  70. M. Sadzikowski, J. Kaczmarczyk, and J. Spałek, Induced spin polarization via Andreev reflection from polarized phase of spin-triplet superconductor, Physica C 483 217-221 (2012), https://doi.org/10.1016/j.physc.2012.09.012
  71. H. Bednarski and J. Spałek, Application of pair approximation to bound-magnetic-polaron states in diluted magnetic semiconductorsy, Acta Phys. Pol. A 122 1052-1055 (2012), https://doi.org/10.12693/APHYSPOLA.122.1052
  72. M. Abram, J. Kaczmarczyk, J. Jędrak, and J. Spałek, Statistically-consistent mean-field approach to t-J-U model: Antiferromagnetism versus superconductivity, AIP Conf. Proc. 1485 276-280 (2012), https://doi.org/10.1063/1.4755825
  73. M. M. Wysokiński, J. Jędrak, J. Kaczmarczyk, and J. Spałek, Magnetic and thermodynamic properties of correlated fermions - application to liquid 3He, AIP Conf. Proc. 1485 319-323 (2012), https://doi.org/10.1063/1.4755833
  74. J. Spałek and D. Goc-Jagło, On Strongly Correlated Quantum Matter Paradigm: Magnetism - Superconductivity Redux, Phys. Scr. 86 048301, pp. 1-8 (2012), https://doi.org/10.1088/0031-8949/86/04/048301
  75. M. Zegrodnik and J. Spałek,  Coexistence of spin-triplet superconductivity with magnetic ordering in an orbitally degenerate system: Hartree-Fock-BCS approximation revisited, Phys. Rev. B 86, 014505, pp. 1-14 (2012), https://doi.org/10.1103/PhysRevB.86.014505
  76. J. Spałek,  Theory of Unconventional Superconductivity in Strongly Correlated Systems: Real Space Pairing and Statistically Consistent Mean-Field Theory - in Perspective, Acta Phys. Pol. A 121, 764-784 (2012), https://doi.org/10.12693/APhysPolA.121.764
  77. M. Zegrodnik and J. Spałek, Coexistence of Spin-Triplet Superconductivity with Antiferromagnetism in Orbitally Degenerate System: Hartree-Fock Approximation, Acta Phys. Pol. A 121, 801-804 (2012), https://doi.org/10.12693/APhysPolA.121.801
  78. O. Howczak and J. Spałek, Anderson lattice with explicit Kondo coupling revisited: metamagnetism and the field-induced suppression of the heavy fermion state, J. Phys.: Condensed Matter 24, 205602, pp. 1-14 (2012), https://doi.org/10.1088/0953-8984/24/20/205602
  79. H. Bednarski and J. Spałek, Bound-magnetic-polaron molecule in diluted magnetic semiconductors, J. Phys.: Condensed Matter 24, 235801, pp. 1-13 (2012), https://doi.org/10.1088/0953-8984/24/23/235801
  80. M. Zegrodnik, J. Spałek, Spin-triplet pairing induced by Hund’s rule exchange in orbitally degenerate systems: Hartree-Fock approximation, Acta Phys. Polon. A, 121, 1051-1055 (2012), https://doi.org/10.12693/APhysPolA.121.1051
  81. J. Kaczmarczyk, M. Sadzikowski, and J. Spałek, Conductance spectroscopy of a correlated superconductor in a magnetic field in the Pauli limit: Evidence for strong correlations, Phys. Rev. B 84, 094525 (2011), https://doi.org/10.1103/PhysRevB.84.094525
  82. J. Kaczmarczyk and J. Spałek, Coexistence of antiferromagnetism and superconduvtivity wit t-J model with strong correlations and nonzero spin polarization, Phys. Rev. B 84, 125140, pp. 1-10 (2011), https://doi.org/10.1103/PhysRevB.84.125140
  83. J. Jędrak, J. Kaczmarczyk, and J. Spałek, Statistically-consistent Gutzwiller approach and its equivalence with the mean-field slave-boson method for correlated systems,
    https://doi.org/10.48550/arXiv.1008.0021
  84. J. Spałek, Exchange interaction as the source of superconducting pairing in correlated systems: a brief overview, J. Phys.: Conf. Series 303 012108, pp. 1-16 (2011), https://doi.org/10.1088/1742-6596/303/1/012108
  85. J. Spałek and A. Ślebarski, What makes a Kondo insulator/semiconductor?, J. Phys.: Conf. Series 273 012055, pp. 1-4 (2011), https://doi.org/10.1088/1742-6596/273/1/012055
  86. J. Kaczmarczyk, M. Sadzikowski, and J. Spałek, Andreev reflection between a normal metal and the FFLO superconductor II: a self-consistent approach, Physica C 471 193-198 (2011), https://doi.org/10.1016/j.physc.2010.10.009
  87. J. Jędrak and J. Spałek, Renormalized mean-field t-J model of high-Tc superconductivity: comparison with experiment, Phys. Rev. B 83 104512, pp. 1-7 (2011), https://doi.org/10.1103/PhysRevB.83.104512
  88. J. Kaczmarczyk and J. Spałek, Superconductivity in a correlated system of quasiparticles with spin-dependent masses, AIP Conference Proceedings 1297 422–427 (2010), https://doi.org/10.1063/1.3518906

Popular science publications

  1. J. Spałek, Kot czy kod Schrödingera? Na marginesie rocznicy fundamentalnego odkrycia, Postępy Fizyki, 64, 1 (2013), pp. 12-16
  2. J. Spałek, Emergentność w Prawach Przyrody i Hierarchiczna Struktura Nauki, Postepy Fizyki 63, 1, pp. 8-18, (2012)
  3. J. Spałek, Garść reminiscencji z okresu pionierskiego, Ze zjazdów i konferencji, Postępy Fizyki, vol. 57, 5, pp. 233-234 (2006)
  4. J. Spałek, Statystyka Natansona-Bosego-Einsteina? Krytyczne tak, Postępy Fizyki, 56, 4, pp. 146-153 (2005).
  5. J. Spałek, Czy fizyka jest modelową nauką opisu świata ?, Alma Mater,
  6. J. Spałek, Wyzwania przyrodnika, Alma Mater, 62, pp. 47-48 (lato 2004)
  7. J. Spałek, Na kampusie Purdue, Alma Mater, 48, pp. 26-27 (luty 2003)
  8. J. Spałek, Na drodze do nanoświata, Alma Mater, 47, 7-8 (styczeń 2003)
  9. J. Spałek, Nagroda Nobla z fizyki 2003, Foton 83, pp. 39-41 (Zima 2003)
  10. J. Spałek, Od atomu do cieczy kwantowej, Serwis Informacji Naukowo-Technicznej KBN, 4(9), str. 3 (2002)
  11. J. Spałek, Ciecze kwantowe wczoraj i dziś, Postępy Fizyki, tom dodatkowy 53D, pp. 22-35 (2002)
  12. J. Spałek, Czy fizyka ma szansę w XXI wieku ?, Postępy Fizyki, 53, zeszyt 1, pp. 19-25 (2002)
  13. J. Spałek, Świat skorelowanych fermionów: lokalizacja Motta i ciecze kwantowe superciężkich kwazicząstek, Postępy Fizyki, 51, zeszyt 1, 1 - 15 (2000).
  14. J. Spałek, Jednostki mają służyć fizyce, Postępy Fizyki, 51, zeszyt 5, 272 - 3 (2000)